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Introduction: This study aims to utilize a DenseNet based deep learning
framework to predict brain age in patients with Moyamoya disease (MMD),
examining the relationship between brain age and disease severity to enhance
diagnostic and prognostic capabilities.

Methods: We analyzed unenhanced MRI scans from 432 adult MMD patients
and 565 normal controls collected between January 2018 and December
2022. Data preprocessing involved converting DICOM files to NIFTI format and
labeling based on established diagnostic criteria. A DenseNet121 architecture,
implemented using PyTorch, was employed to predict brain age. Statistical
analyses included correlation assessments and comparisons between predicted
brain age, chronological age, and MRA scores.

Results: The predicted brain age for MMD patients was significantly higher than
their chronological age, averaging 37.9 years versus 35.8 years (p < 0.01). For
normal controls, predicted brain age matched chronological age at 36.5 years.
Delta age (difference between predicted brain age and chronological age) was
significantly elevated in MMD patients (p < 0.001) and positively correlated with
MRA scores, indicating a link between arterial stenosis severity and accelerated
brain aging.

Discussion: The DenseNet based model effectively predicts brain age,
revealing that MMD patients experience accelerated brain aging correlated with
disease severity. These findings highlight the potential of brain age prediction
as a biomarker for MMD, aiding in personalized treatment strategies and
early intervention. Future research should explore multi-center datasets and
longitudinal data to validate and extend these findings.

KEYWORDS

Moyamoya disease, brain age, DenseNet architecture, deep learning, magnetic
resonance imaging

Introduction

Moyamoya disease is a rare cerebrovascular disease characterized by gradual
narrowing of the internal carotid artery and its main branches (Scott and Smith,
2009), resulting in a decrease in blood flow to specific areas of the brain (Tagawa
et al, 1987). This type of cerebral hypoperfusion can lead to reduced oxygen and
nutrient transport, neuronal loss, and progressive brain tissue damage (Taki et al., 1988;
Kazumata et al,, 2015; Hara et al., 2018; Baron et al., 2014). Therefore, over time,
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structural and cognitive changes occur, exacerbating as the disease
progresses (Su et al, 2013; Kazumata et al,, 2019; Qiao et al,
2017). Cognitive function, to a certain extent, reflects the severity
of the disease. The testing of cognitive function relies on the
Mini Mental State Examination (MMSE), which has a high
sensitivity to mild cognitive impairment (Tsunoda et al., 2023).
However, the false-positive rate of MMSE is high, making it
difficult to effectively guide clinical treatment (Mitchell, 2013).
Cerebral revascularization plays a certain role in the treatment
of cognitive impairment in moyamoya disease (Bao et al., 2022;
Kim et al., 2016). In the field of neuroscience, the importance of
brain structure magnetic resonance imaging has been recognized
as it can reveal atrophy in different regions of the brain (Giedd,
2004). The gray matter volume of the brain in patients with
moyamoya disease decreases to varying degrees and is closely
related to cognitive function (Ramanoél et al., 2018). Based on
the characteristics of research methods, research is limited and
cannot be evaluated for individuals. The concept of “brain age”
has emerged and is receiving increasing attention. It is a means
of estimating the age of an individual’s brain based on a series
of structural neuroimaging features (Smith et al, 2019). This
concept is used to evaluate the degree of aging of the brain relative
to a person’s actual age. The deviation between an individual’s
brain predicted age and their physiological age—also known as
brain predicted age difference (brain-PAD) or delta age can be
used to quantify the deviation from healthy aging (Cole and
Franke, 2017). Although the normal aging process affects the
brain to some extent, pathological factors can accelerate this aging
process (Yankner et al., 2008). The latest advances in machine
learning have enabled the creation of brain age prediction models
that utilize complex, nonlinear, and multivariate imaging data
(Baecker et al., 2021). However, existing models typically require
high-resolution T1 images and impose strict requirements on
scanner providers and imaging protocols, which rely on extensive
data preprocessing (Jonsson et al., 2019; Franke et al, 2010).
The development of deep learning technology has opened up
avenues for processing large, high-dimensional, and nonlinear
datasets, expanding the scope of brain age prediction. DenseNet
is a type of convolutional neural network (CNN) architecture.
DenseNet differs from traditional CNN architectures by promoting
maximum information flow between layers. In a typical CNN
architecture, each layer receives input only from the preceding
layer. However, in DenseNet, each layer receives input from
all preceding layers. This dense connectivity pattern ensures
that features learned by the network at any depth are directly
available to all subsequent layers. It encourages feature reuse,
which helps combat the vanishing gradient problem and enables
better gradient flow during training. It reduces the number of
parameters compared to traditional CNN architectures, leading
to more efficient models. Dense connectivity facilitates feature
propagation and enhances feature extraction, which can lead
to improved performance, especially in tasks with limited data.
Due to these advantages, DenseNet has become a popular choice
for various computer vision tasks, including image classification,
object detection, and image segmentation (Iandola et al., 2014).
A brain age framework suitable for routine clinical head MRI
examinations has been constructed. Based on DenseNet, rapid
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and accurate assessment of brain age in patients with moyamoya
disease can be achieved (Wood et al, 2022). Given the age-
dependent clinical manifestations and progression of moyamoya
disease, accurate prediction of brain age is crucial. Accurate brain
age estimation helps clinicians classify patients based on the
severity of age-related symptoms and helps develop appropriate
treatment strategies. Early detection through brain age prediction
may promote timely intervention and potentially prevent serious
complications, including stroke. In clinical practice, age prediction
helps to customize diagnosis and treatment methods, ensuring
personalized and effective patient care. Therefore, this study adopts
a deep learning brain age prediction framework to predict brain
age in patients with Moyamoya disease and elucidates the complex
relationship between brain age and disease severity.

Methods

Data collection

The unenhanced MRI scans of 600 adult MMD patients
and normal individuals at hospital between January 2018 and
December 2024 (Figure 1). The MRI scans were performed on
Signa 3.0T (General Electric Healthcare, Chicago, US), Ingenia
3.0T (Philips Healthcare, Eindhoven, Netherlands) or Verio 3T
(Siemens, Erlangen, Germany) scanners.

We excluded patients who had been diagnosed (1) with cerebral
infarction or cerebral hemorrhage, (2) had other cerebrovascular
or nervous system diseases, (3) had a history of brain surgery, (4)
had incomplete image series, or (5) had poor image quality due to
artifacts or a low signal-to-noise ratio. Of the initial 600 patients,
only 432 met the criteria for inclusion in the model development
dataset. For the control group, we initially reviewed 600 candidate
cases who underwent MRI for routine health examinations or
non-cerebrovascular complaints. Individuals with any history
of cerebrovascular or neurological disease were excluded. After
removing 35 cases with incomplete sequences or poor image
quality, 565 normal controls were retained.

This study was approved by the Institutional Review Board
(IRB) of hospital, and all medical images and clinical data were fully
anonymized. Digital Imaging and Communications in Medicine
(DICOM) images were obtained from Picture Archiving and
Communication System (PACS) servers in compliance with the
Health Insurance Portability and Accountability Act.

Data labeling

The age of all patients was extracted from the header
information of MRI scans using PyDicom, a Python package for
working with DICOM files. Batch processing techniques were
employed to ensure efficient extraction and compilation of patient
demographic data.

The diagnostic criteria for definite MMD were in accordance
with the guidelines by the Research Committee on MMD of Japan
(Kuroda et al.,, 2022). The diagnosis of MMD was confirmed using
additional clinical evidence, including CTA, MRA, and DSA. The
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FIGURE 1
Flowchart of the study methodology. This flowchart illustrates the step-by-step methodology employed in the study for predicting brain age in

Moyamoya disease (MMD) patients using deep learning techniques.

narrowing 1, C1 segment signal interruption 2, and disappearance
3. For the middle cerebral artery (MCA), a normal vessel is 0, M1

magnetic resonance angiography (MRA) images of patients with
Moyamoya disease were subjected to detailed analysis. The severity

of arterial stenosis or occlusion was evaluated using the Houkin
MRA scoring system. In this system, the Houkin MRA scoring
system for Moyamoya disease assigns a score to each major cerebral
artery based on its stenosis or signal status on MRA. For the internal
carotid artery (ICA), a normal vessel is scored 0, C1 segment
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segment narrowing is 1, M1 segment signal interruption is 2, and
disappearance is 3. For the anterior cerebral artery (ACA), the A2
segment and its distal portion are

scored 0 if normal, 1 if the signal is reduced, and 2 if the
segment is absent. For the posterior cerebral artery (PCA), the
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P2 segment and its distal portion are scored 0 if normal, 1 if
the signal is reduced, and 2 if absent. The total score ranges
from 0 to 10, with higher scores indicating more severe vascular
involvement. Specifically, MRA images were evaluated for the
severity and distribution of stenosis or occlusion within the cerebral
arteries using established scoring system. To ensure accurate
classification, two experienced neuroradiologists (each with >10
years of experience) independently reviewed the MRI/MRA scans
to confirm the absence of Moyamoya disease or other brain
abnormalities. Any discrepancies were resolved by consensus with
a third senior radiologist.

Data preprocessing

The raw data collected is in DICOM format, and it has been
organized into different folders based on their respective labels.
The T2WI series data has been converted into neuroimaging
informatics technology initiative (NIFTI) format and renamed
using dem2niigui software (v2.1.64-1, MRIcron, McCausland
Center for Brain Imaging, United States).

Model selection

In this study, we employed a brain-age prediction model
based on the DenseNetl21 architecture, as described by David
A. Wood et al. The DenseNet architecture, which incorporates
shortcut connections between internal neuron layers, was chosen
to mitigate the vanishing gradient problem commonly encountered
in deep neural networks (Pascanu et al., 2013). The DenseNet
brain-age models were adapted from the implementation available
at Project MONAI, utilizing PyTorch 1.7.1 (Paszke et al,

TABLE 1 Demographic and imaging characteristics of participants with
MMD and controls.

Participant MMD n Controls n
Number 432 565

Age (mean + standard deviation) 35.84 £18.97 36.53 £ 8.08
Male/female 195/237 252/313
Manufacturer

SIEMENS 196 234
General electric healthcare 169 187
Philips healthcare 67 144

MMD, Moyamoya disease; n, number of patients.

10.3389/fnins.2025.1668993

2019). Scripts enabling replication of brain-age prediction models
using custom scans are available at the provided GitHub
repository (https://github.com/MIDIconsortium/BrainAge). All
modeling was performed with an NVIDIA RTX 4090 24 GB
graphics processing units (GPU).

Statistical analysis

The categorical variables are represented by counts while
the continuous variables are represented by means + standard
deviations. Categorical variables were compared using Fisher’s
exact test, Pearson’s chi-square test, or the Mann-Whitney
U-test. Differences in the mean of continuous variables
between groups were analyzed using the student’s t-test.
The results were considered statistically significant when the
probability value was < 0.05. All statistical analyses were
performed using SPSS software (Version 26.0, IBM, New York,
NY, USA).

Results

The study analyzed data from 432 Moyamoya disease (MMD)
patients and 565 normal controls, after excluding cases with
incomplete sequences or poor image quality.

Demographic and imaging data

As shown in Table 1, the average age of MMD patients was
35.8 years, with a gender distribution of 195 males and 237
females. MRI data for these patients were sourced from SIEMENS
(196), General Electric Healthcare (169), and Philips Healthcare
(67). For the normal controls, the average age was 36.5 years,
with 252 males and 313 females. Their MRI data came from
SIEMENS (234), General Electric Healthcare (187), and Philips
Healthcare (144).

Predicted brain age analysis

As shown in Table 2, The average predicted brain age for MMD
patients was 37.9 years, compared to their average chronological
age of 35.8 years. Correlation analysis revealed a significant positive
relationship between predicted brain age and chronological age in
MMD patients (r = 0.77, p < 0.01, Figure 2A), indicating that the
model effectively captures brain aging in this group.

TABLE 2 Predicted vs. chronological age and correlation in MMD patients and controls.

Participant Predicted age Chronological age Correlation
(mean =+ standard deviation) (mean + standard deviation) coefficient
MMD 37.92+13.72 35.84 + 18.97 0.773* 0.001
Controls 36.52 4 8.10 36.53 4 8.08 0.894*
MMD, Moyamoya disease; *p < 0.05; **p < 0.001.
Frontiersin Neuroscience 04 frontiersin.org
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Relationship between predicted brain age and chronological age in participants. (A) Correlation analysis revealed a significant positive relationship
between predicted brain age and chronological age in MMD patients (r = 0.77, p < 0.01). (B) Correlation analysis revealed a significant positive
relationship between predicted brain age and chronological age in controls (r = 0.89, p < 0.01). Each point represents the age of participants, with
the x-axis showing the chronological age (years) and the y-axis showing the corresponding predicted age (years). The marginal histograms along the
top and right edges of the plot display the chronological age and predicted brain age, respectively. The plot also includes a linear regression line (not
shown in the example code) with a 95% confidence interval, further emphasizing the positive correlation.
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FIGURE 3

Violin plots illustrate the distribution of delta age for MMD patients
and controls. The delta age was significantly higher in MMD patients
than in normal controls (p < 0.001). The white dot signifies the
median, while the thick horizontal line denotes the interquartile
range (IQR).

For normal controls, the average predicted brain age matched
their chronological age at 36.5 years, with a stronger correlation
(r = 0.89, p < 0.01, Figure 2B), confirming the model’s accuracy
in estimating brain age for healthy individuals.

Frontiersin Neuroscience

TABLE 3 Association between MRA scores and delta age in MMD patients.

Rank A age (mean Correlation
=+ standard coefficient
deviation)

Average score 6.07 2.07 £8.01 0.141**
Max score 6.85 2.07 +8.01 0.117*

MRA, magnetic resonance angiography; Aage, delta age; *p < 0.05; **p < 0.001.

Delta age analysis

Delta age, defined as the difference between predicted
brain age and chronological age, was significantly higher in
MMD patients compared to normal controls (p < 0.001,
Figure 3). This suggests accelerated brain aging in individuals with
Moyamoya disease.

Further analysis demonstrated a significant positive correlation
between delta age and the highest MRA score (p < 0.01)
as well as the average MRA score (p < 0.05) in MMD
patients (Table 3). These findings indicate that greater arterial
stenosis or occlusion severity is associated with more pronounced
brain aging.

Discussion

The study’s findings reveal significant insights into the
relationship between MMD and brain aging. The application
of a DenseNet-based deep learning model to predict brain age
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demonstrated that MMD patients experience accelerated brain
aging compared to normal controls. The positive correlation
between delta age and MRA scores suggests that the severity
of arterial stenosis or occlusion is closely linked with increased
brain aging. These results highlight the potential utility of brain
age prediction as a biomarker for assessing disease severity and
progression in MMD patients.

Accurate brain age estimation can assist clinicians in classifying
MMD patients based on the severity of age-related symptoms,
aiding in the development of personalized treatment strategies.
Early detection through brain age prediction may promote
timely intervention, potentially preventing serious complications
such as stroke. This study underscores the importance of
integrating advanced neuroimaging techniques and machine
learning models in clinical practice to enhance diagnostic and
prognostic capabilities.

Previous research has established the impact of cerebral
hypoperfusion on cognitive function and brain structure in MMD
patients (Su et al, 2013; Kazumata et al, 2019; Festa et al,
2010). Studies have shown that decreased gray matter volume is
associated with cognitive decline in these individuals (Zimmerman
et al., 2006). Our findings align with this body of literature by
demonstrating that MMD patients exhibit higher predicted brain
ages compared to their chronological ages, reflecting accelerated
brain aging.

The utilization of deep learning models, particularly
DenseNet, for brain age prediction represents a significant
advancement over traditional methods. Previous studies have
employed machine learning techniques to estimate brain
age; however, these models often require high-resolution
images and extensive data preprocessing (Baecker et al., 2021).
Our approach using DenseNet efficiently handles large, high-
dimensional datasets, providing accurate brain age predictions
with routine clinical MRI examinations. This enhances the
feasibility of incorporating brain age prediction into standard
clinical workflows.

Despite the promising results, several limitations should be
acknowledged. First, the study’s retrospective design and the use
of data from a single institution may limit the generalizability
of the findings. The sample size, while substantial, may not
capture the full spectrum of variability in MMD patients and
normal controls.

Second, the exclusion of patients with incomplete image series
or poor image quality might introduce selection bias, potentially
affecting the model’s performance in real-world clinical settings.

Future research should focus on addressing the limitations
identified in this study. Expanding the dataset to include multi-
center data and diverse patient populations will enhance the
generalizability and robustness of the findings. Incorporating
longitudinal data will allow for the investigation of causal
relationships between brain aging and disease progression in
MMD patients.

Additionally, future studies should explore the integration of
multimodal imaging data, such as combining T1-weighted,
T2-weighted, MRI,
comprehensive assessment of brain structure and function.
This could further improve the accuracy and reliability of brain age

and functional to provide a more

prediction models.
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Moreover, investigating the potential therapeutic implications
of brain age prediction in MMD patients is crucial. In the
future, brain age prediction may help choose the timing of
interventions. Understanding how interventions such as cerebral
revascularization impact brain aging could inform treatment
strategies and improve patient outcomes.

Conclusions

In conclusion, this study demonstrates the utility of a DenseNet
based deep learning model for predicting brain age in MMD
patients, revealing significant associations between brain aging and
disease severity. These findings have important implications for
the diagnosis, prognosis, and treatment of Moyamoya disease,
paving the way for future research to build upon and refine these
initial insights.
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