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Causal-aware reliability
assessment of single-channel
EEG for transformer-based sleep
staging

Yongkang Hu', Xiangbo Yang', Yunhan Xu and Jingpeng Sun*

School of Artificial Intelligence, Anhui University, Hefei, China

Single-channel EEG-based sleep staging methods are well-suited for wearable
applications in home environments, offering a practical solution to reduce the
diagnostic burden on clinical institutions and address the growing demand for
large-scale sleep monitoring. However, its reliability remains a critical concern
compared to multi-channel polysomnography (PSG) used in clinical settings.
To address this, we propose a Transformer-based sleep staging model and
conduct a systematic investigation into the causal-inspired analysis between EEG
channel selection and staging reliability. Our experiments reveal that electrodes
positioned over the central brain region yield significantly higher accuracy,
macro-F1, and consistency in sleep stage classification compared to those
located in frontal or occipital regions. These findings provide causal insights into
the spatial determinants of perceptual reliability in EEG-based sleep monitoring,
supporting the design of robust wearable systems.
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1 Introduction

Sleep staging plays a vital role in evaluating sleep quality, diagnosing sleep disorders,
and assessing both physical and mental health. Different sleep stages reflect distinct
physiological states, characterized by complex spatio-temporal interactions among various
systems. In clinical practice, polysomnography (PSG) is the standard approach for
sleep monitoring, simultaneously recording multiple physiological signals, including
electroencephalography (EEG), electrooculography (EOG), electrocardiography (ECG),
and electromyography (EMG), across different regions of the brain and body. This
multimodal setup captures temporal variations across spatially distributed channels.
Sleep experts manually score each 30-second epoch by analyzing the characteristics of
individual signals and their interrelations, following standardized guidelines such as the
American Academy of Sleep Medicine (AASM) Scoring Manual (Berry et al., 2017) or
the Rechtschaffen and Kales (R&K) manual (Hobson, 1969). The 30-second epoch length
is the clinical standard widely used in sleep staging. However, manual annotation of
a single overnight PSG recording typically requires approximately two hours of expert
labor. With the increasing need for accurate sleep assessment, diagnosis, and long-term
monitoring in home environments (Mikkelsen et al., 2019), manual scoring has become
increasingly impractical due to its labor-intensive and time-consuming nature. Moreover,
the process is highly dependent on individual expertise, rendering it susceptible to human
error and inconsistencies. These limitations have motivated the development of automatic
sleep staging methods, with recent efforts increasingly focused on causal-aware and
self-supervised learning paradigms to improve generalization and interpretability.
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Over the past two decades, automatic sleep staging methods
have been broadly categorized into two main types: (1) traditional
machine learning approaches and (2) deep learning-based
approaches. Traditional machine learning methods typically
involve a two-stage pipeline. In the first stage, hand-crafted features
are extracted from physiological signals-either directly, such as
temporal and frequency-domain features, or indirectly through
signal processing techniques such as signal decomposition (Hu
etal, 2021; Cheng et al.,, 2024). In the second stage, classifiers such
as support vector machines (SVM), k-nearest neighbors (kNN),
random forests, and decision trees are employed to categorize the
extracted features and perform sleep stage classification (Satapathy
et al., 2021; Sekkal et al, 2022). However, the performance of
traditional methods heavily relies on expert-defined features and
empirical thresholds, resulting in limited generalization capability
and poor adaptability in real-world scenarios.

With the advent of deep learning, its powerful feature
representation and end-to-end have

learning capabilities

significantly advanced automatic sleep staging. Numerous
deep learning-based methods have been proposed to improve
the accuracy and efficiency of sleep stage classification (Phan
et al., 2021; Phan and Mikkelsen, 2022; Niknazar and Mednick,
2024). For example, Ji et al. (2023) proposed 3DSleepNet, a
model based on 3D convolutional neural networks (CNNs),
which simultaneously captures spatial, spectral, and temporal
dependencies in multi-channel physiological signals. Compared to
conventional 2D CNNs, the 3D architecture enables more effective
modeling of dynamic signal evolution across time. Phan et al.
(2021) introduced XSleepNet, a sequence-to-sequence model that
processes both raw multi-modal signals (EEG, EOG, EMG) and
their time-frequency representations, achieving promising results.
Additionally, Niknazar and Mednick (2024) employ a bidirectional
long short-term memory (Bi-LSTM) network combined with a
signal decomposition mechanism to enhance the interpretability of
feature learning for automatic sleep stage classification.

Despite the promising performance of existing methods, many
rely on large volumes of input data—often requiring multiple
modalities or multi-channel EEG recordings. As a result, these
approaches are better suited for clinical environments rather than
portable, wearable applications in home settings. To bridge this gap,
researchers have increasingly focused on developing single-channel
EEG-based sleep staging methods (Zaman et al., 2025).

For example, Supratak et al. (2017) proposed DeepSleepNet,
a convolutional neural network (CNN)-based model that extracts
local features from single-channel EEG signals for sleep staging.
Perslev et al. (2019) introduced U-Time, a fully convolutional
network inspired by the U-Net architecture, which maps single-
channel EEG signals to a high-dimensional space and then
projects them back to a lower-dimensional representation. To
incorporate temporal dependencies, Supratak et al. later developed
TinySleepNet (Supratak and Guo, 2020), a hybrid model that
first extracts local features using CNNs and subsequently models
temporal information with recurrent neural networks (RNNs),
effectively combining both types of information for sleep staging.
With the growing success of Transformer models in time-series
modeling, Phan et al. (2022) introduced SleepTransformer, the first
sleep staging model based on the Transformer architecture, and
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achieved strong performance using single-channel EEG data. Wang
et al. (2025) proposed EfficientSleepNet, a lightweight architecture
for single-channel EEG-based sleep staging that incorporates
depthwise separable convolutions, grouped convolutions, channel
reordering, and a novel channel attention mechanism to enhance
efficiency and performance.

Although these single-channel methods have demonstrated
encouraging results, they often overlook important design
considerations, such as the selection of EEG channels. For instance,
DeepSleepNet uses Fpz-Cz and Pz-Cz, U-Time adopts Fpz-Cz
and C3-A2, and SleepTransformer utilizes Fpz-Cz and C4-Al,
but none of these studies provide a systematic justification for
their channel choices. Furthermore, they do not explore how
staging performance varies across different channels, nor do
they investigate potential limitations of single-channel approaches
across specific sleep stages. These aspects are critical for the
practical deployment of wearable single-channel sleep monitoring
systems. To address these gaps, this study proposes a causal-
aware Transformer-based sleep staging model that integrates
convolutional neural networks (CNNs) with a Transformer
architecture. The model is designed for single-channel EEG-based
sleep staging and further enhanced by incorporating EOG signals
to capture multimodal interactions. We systematically investigate
the electrode-driven causal influence of EEG channel selection on
staging performance and analyze the variability of classification
accuracy across different sleep stages. Our work contributes to the
development of personalized, interpretable, and deployable sleep
monitoring systems, aligning with the broader goals of causal
self-supervised learning and perception science.

The contributions of this paper are as follows:

e We propose a novel sleep staging model that integrates CNNs
with a Transformer architecture, enabling effective feature
extraction and temporal modeling from single-channel EEG
signals. The model is further enhanced by incorporating EOG
signals to capture cross-modal causal interactions.

e We conduct a systematic investigation into the causal impact
of EEG channel selection on sleep staging performance,
addressing a critical yet underexplored aspect of model design.

e We analyze the limitations and variability of single-channel
EEG-based sleep staging across different sleep stages,
providing insights into the reliability, interpretability, and
generalizability of such models in real-world applications.

2 Methodology

In this section, we delve into the detailed introduction of our
proposed models, SingleSleep and SingleSleepPlus. The SingleSleep
model is tailored to utilize a single-channel EEG signal as its sole
input, focusing exclusively on leveraging this singular bio-signal
for sleep staging purposes. In contrast, the SingleSleepPlus model
integrates both single-lead EEG and EOG signals as inputs, with
the primary objective of enhancing sleep staging performance by
augmenting the model with the additional EOG modality. We
assess the efficacy of SingleSleep by comparing its classification
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FIGURE 1

The architecture of SingleSleep. The model takes in raw
single-channel EEG signals and extracts features using multi-scale
1D-CNN and transformer encoders. Sleep staging is then performed
using the final classification layer.

outcomes with those of SingleSleepPlus, thereby elucidating the
inherent limitations associated with relying solely on EEG signals
for sleep staging. The architecture of the proposed SingleSleep and
SingleSleepPlus are shown in Figures 1, 2.

2.1 Problem statement

The task of single-channel EEG sleep staging, derived from
a complete nocturnal clinical EEG recording, is framed as
a sequential, multi-class classification challenge. A full-night
recording encompasses numerous epochs, each spanning 30-
second, and is categorized into one of the five distinct sleep stages:
WAKE, N1, N2, N3, or REM.

Accordingly, the training dataset, denoted by a set of N
instances, comprises 30-second epochs with corresponding labels
{xi, yi}f; 1> where each {x;,y;} is drawn from the product space
X x Y. The space X, represented as X € RT*Cencapsulates the
input features within an epoch, with C encompassing the EEG (and
EOG) modalities present in the recorded signals. The label space Y
is characterized by the set {WAKE, N1, N2, N3, and REM}, aligning
with the respective sleep stages.

In formal terms, the sleep staging problem is construed as the
learning process of an artificial neural network, denoted as F, which
is predicated on a transformer-based architecture. The network F is
designed to discern the contextual relationships within the input
sequence of sleep epochs X and to map these sequences onto the
corresponding sleep stage representation Y, The output ¥, taking
values in the set {0, 1, 2, 3, 4}, corresponds to the sleep stages
WAKE, N1, N2, N3, and REM, respectively.

2.2 Model components

The proposed model comprises three major components:
multi-scale 1D-CNN, Transformer encoder, and Cross-modal
fusion module.

2.2.1 Multi-scale 1D-CNN
Sleep stage data is embedded within the EEG signals,
encompassing both local and global informational layers. The local
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features pertain to characteristic sleep waveforms such as slow
waves, sleep spindles, and K-complexes, while the global features
relate to the collective information among these waveforms across
an entire EEG epoch. To effectively extract sleep stage information
from EEG, it is essential to analyze and integrate both local and
global informational content. Capitalizing on the proficiency of
traditional CNNs in capturing local features, we adopt CNN as
our extractor of local features. To also encompass global features,
we enhance CNN’s receptive field by incorporating convolutional
kernels of diverse sizes, thereby augmenting its capacity to extract
global characteristics. Prior research supports the efficacy of multi-
scale CNNGs for this objective. Consequently, we employ the multi-
scale 1D-CNN module delineated in Pradeepkumar et al. (2022)
as the preliminary feature extractor for EEG analysis. The multi-
scale 1D-CNN module comprises three branches, each employing
convolutional layers with varying kernel sizes: one branch uses
a 1D-CNN with a kernel size of 50, another employs two 1D-
CNNs with kernel sizes of 25 and 2, respectively, and the third
branch utilizes three 1D-CNNs with kernel sizes of 5, 5, and 2.
After each 1D convolutional operation, a LeakyReLU activation
function is applied. The multi-scaled features are subsequently
standardized through batch normalization. The aggregated feature
representations are then concatenated along the embedding
dimension, followed by a subsequent 1D-CNN with a kernel size
of 1, which is itself followed by LeakyReLU activation and another
round of batch normalization. It should be highlighted that the
convolutional process utilizes non-overlapping windows that are
0.5 seconds (sampling rate: 200 Hz) in length. That is, given a single
channel input sequence X, € RT*! of length T, it is mapped into
a feature space of X/ € R(T/(05%/))XE swhere ¢ € C, fs is the
sampling frequency and E is the embedding size.

2.2.2 Transformer encoder and cross-modal
fusion module

The self-attention mechanism serves as the cornerstone of
the transformer encoder. Here, we elucidate the principles
of self-attention and the primary training process, utilizing
SingleSleepPlus as an exemplar.

Upon receiving the output feature X from the multi-scale
ID-CNN block for each modality ¢, a trainable CLSy,;; vector
in R'E_similar to the approach advocated in ViT (Dosovitskiy
et al., 2020)—is randomly initialized and appended to the output
of the multi-scale 1D-CNN block along the time axis. Following
the methodology delineated in seminal work (Vaswani et al., 2017),
positional encodings are incorporated into the concatenated vector,
which is subsequently fed into the transformer encoder to discern
the relationships among all-time steps within the modality.

Given the input features X; of the Transformer encoder, self-
attention learns three representation matrices Wq € ]Rdqu, Wk €
R9*dk and Wy € R9*dv These matrices are utilized to derive
the query Q = X;Wgq, key K = X;Wk, and value V = X; Wy,
facilitating the computation of global attention as depicted by
the formula:

KT
attention = Softmax <Q> \% (1)

NCA
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FIGURE 2
The SingleSleepPlus architecture integrates raw single-channel EEG and EOG signals as input. Each modality’s features are independently extracted
using multi-scale 1D-CNN and transformer encoders, then fused via a cross-modal attention block. Sleep staging is subsequently accomplished
through the final classification layer.

TABLE 1 Details of the dataset used in our experiments.

Datasets w N1 N2 N3 REM
ISRUC-S3 1,674 1,217 2,616 2,016 1,066
(Percentage) 19.50% 14.17% 30.46% 23.47% 12.40%

From the output of each modality, only the vector
representation corresponding to the CLSp,;; vector is extracted.
This vector encapsulates all intra-modal temporal information.
Subsequently, the class token vectors from each modality’s output
are amalgamated and utilized as input to the cross-modal fusion
module. The cross-modal fusion module, akin to a simplified
transformer encoder, facilitates the exchange and fusion of class
information between modalities via self-attention. Finally, the
merged class tokens from each modality are combined with their
respective features and passed through a Feed-Forward Network
layer. This is followed by the integration of class tokens from each
modality to facilitate sleep staging.

3 Experiments
3.1 Dataset

To evaluate our proposed model, we utilized EEG and EOG
signals from the ISRUC-Sleep dataset (Khalighi et al, 2016),
comprising three subsets: ISRUC-S1, ISRUC-S2, and ISRUC-S3.
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ISRUC-S1 contains recordings from 100 subjects with various
sleep-related disorders, ISRUC-S2 includes recordings from 8
subjects with mild sleep problems across two sessions and dates,
and ISRUC-S3 comprises recordings from 10 healthy subjects.
For our analysis, we focused on the healthy subset, ISRUC-S3,
with subjects ranging in age from 30 to 58 years All recordings
followed the international 10-20 standard electrode placement.
Table 1 presents the number of epochs for each sleep stage. Each
recording consists of 19 channels, including EOG, EEG, EMG,
ECG, snore, and body position. The sampling rate for EOG, EEG,
and EMG signals is 200Hz. Our sleep staging utilized six EEG
channels (F3-A2, C3-A2, O1-A2, F4-Al, C4-Al, and O2-Al) and
two EOG channels (LOC-A2 and ROC-A1) from PSG recordings.
Annotations adhere to the AASM standard, encompassing five
sleep stages (WAKE, N1, N2, N3, REM), and are provided by
two professional experts. Importantly, our methodology utilizes
raw EEG signals without additional feature extraction, such as
conversion into time-frequency images. Additionally, no data
augmentation is applied during training, which ensures full
reproducibility of the results.

3.2 Evaluation criteria

We illustrate the model’s performance using various evaluation
metrics, including accuracy (ACC), macro-averaged Fl-score
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TABLE 2 Performance comparison among different channels.

10.3389/fnins.2025.1670124

Dataset Channel Overall metrics Class-wise MF1
MF1 Sens. N1 N2 N3
F3-A2 75.30 66.85 68.61 93.65 89.73 4756 75.93 86.51 3453
F4-Al 72.96 63.25 6421 93.03 90.48 4081 76.25 82.30 26.43
C3-A2 77.16 71.61 74.14 94.43 9251 4755 75.95 88.57 53.49
C4-Al 76.79 69.98 72.76 94.26 91.80 39.00 78.29 88.68 52.14
01-A2 72.34 66.73 70.87 93.14 89.07 38.14 66.23 75.86 64.36
02-Al 70.75 63.25 64.59 92.49 86.85 34.16 71.48 78.26 45.47
F3-A2 & LOC*-A2 80.01 76.87 78.55 94.96 90.83 52.70 78.47 88.74 73.64
F3-A2 & ROC*-A1 78.30 73.13 74.78 94.47 91.39 4621 77.00 90.33 60.70
ISRUC.S3 F4-Al & LOC-A2 77.70 73.45 75.03 94.43 89.13 50.03 78.35 88.93 60.79
F4-A1 & ROC-Al 77.44 71.81 74.31 94.39 91.27 42.83 74.81 88.63 61.49
C3-A2 & LOC-A2 80.28 75.49 76.64 95.02 9232 48.14 80.16 90.12 66.69
C3-A2 & ROC-Al 79.37 72.51 73.13 94.67 92.84 47.52 78.82 88.19 55.20
C4-A1 & LOC-A2 81.50 77.15 78.10 95.32 91.17 53.37 81.55 89.46 70.20
C4-A1 &ROC-Al 78.58 74.56 76.35 94.65 90.86 51.17 78.04 87.52 6521
01-A2 & LOC-A2 77.91 73.11 75.11 94.45 88.03 45.06 77.82 88.52 66.11
01-A2 & ROC-A1 75.96 72.01 74.48 93.96 89.77 47.22 74.63 82.12 6631
02-Al & LOC-A2 78.61 72.34 73.47 94.42 88.69 39.86 80.33 86.95 65.85
02-A1 & ROC-A1 71.76 64.72 65.66 92.72 87.88 46.58 72.20 71.55 45.40

*LOC-A2: Left eye movements; ROC-A1: Right eye movements. The Al and A2 are placed in the left and right ear-lobes. The bold values indicates the best experimental results.

(MF1), sensitivity (Sens.), and specificity (Spec.). ACC provides a
straightforward measure of the proportion of correctly predicted
samples out of the total sample count. MF1, representing the
harmonic mean of precision (Pr) and recall (Re), holds particular
importance in imbalanced multi-classification tasks like sleep
staging. Below are the equations for each evaluation metric:

z| =
.MK

ACC = TP; 2
i=1
1 K 2 x Pr; x Re;
MFl = — )y == 3
K ; Pr; 4+ Re; 3
L 1 K TP;
Sensitivity = — _— (4)
K = TP; + FN;
K
1 TN;
Specificity = — _— 5
pecificity = — Z IN & P (5)

1

where True Positives (TP;), False Positives (FP;), and True
Negatives (TN;) denote the correct or incorrect categorizations for
the i-th class. Pr; = TP;/(TP; + FP;) and Re; = TP;/(TP;+ FN;). N
denotes the total number of samples, while K indicates the number
of sleep stage classes. Furthermore, we utilized class-specific F1-
score (class-specific MF1) to assess the model’s performance. This
metric treats each sleep stage as the positive class while regarding
the other four stages as the negative class. The class-specific MF1
is calculated akin to binary classification, as depicted in Equation 3,
without any averaging.

Frontiersin Neuroscience

3.3 Training setup

For network training, we employed the Adam optimizer
with a learning rate of 0.001, setting f1 and B2 to 0.9 and
0.999, respectively. A batch size of 32 was used during training.
Categorical cross-entropy served as the loss function for the 5-class
classification task, where the class weights were defined as 1, 2, 1,
1, 2, corresponding to Wake, N1, N2, N3, and REM, respectively,
to address the data imbalance. Regarding the transformer encoder
and cross-modal fusion module, we maintained 8 attention heads
and 128 hidden units in the feed-forward layer. The PyTorch
framework was utilized for model implementation, and training
was conducted on an Nvidia 3090 GPU equipped with 24 GB
of memory.

4 Results

4.1 Comparison among different channels

To investigate the impact of different EEG channels on
the performance of single-channel EEG sleep staging models,
experiments were conducted using various channels, as detailed in
Table 2. The Al and A2 lobe represent the left and right reference
lobe placed on the earlobes, respectively, while F3 and F4 denote
lobes from the left and right frontal lobes. Similarly, C3 and C4
correspond to lobes from the left and right central lobes, and O1
and O2 indicate lobes from the left and right occipital lobes. From
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the experimental results, it is evident that C3 and C4 achieved the
highest performance, with accuracies of 77.16% and 76.79%, and
MF]I scores of 71.61% and 69.98%, respectively, outperforming the
other four channels. Furthermore, the frontal lobe channels (F3 and
F4) exhibited superior performance compared to the occipital lobes
channels, indicating that the occipital lobe channels performed the
poorest among all six channels. This suggests that selecting occipital
lobe channels for single-channel EEG sleep staging tasks may not
be optimal, implying that results from central lobe channels are
more reliable, followed by frontal lobe channels, while occipital lobe
channels exhibit the lowest reliability.

However, while the central lobe channels generally achieve
the highest classification accuracy overall, it does not imply that
they consistently perform best in all sleep stages. As shown
in Table 2, each channel exhibits variations in classification
performance across different sleep stages. Specifically, the frontal
lobe channels demonstrate the best identification performance for
the N1 stage, while the central lobe channels exhibit relatively
good classification efficacy for the N2 and N3 stages, and the
occipital lobe channels provide more reliable identification for the
REM stage. Therefore, when conducting specific analyses targeting
particular sleep stages, selecting channels that demonstrate optimal
performance in capturing features relevant to the corresponding
sleep stage, rather than those with the best overall performance,
yields more reliable results.

4.2 Limitations of single-channel EEG
model

To investigate the limitations of single-channel EEG in sleep
staging, we enhanced the performance by introducing EOG
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modality information and compared it with the performance of
the single-channel EEG to analyze the performance of the single-
channel EEG sleep staging model in identifying each sleep stage.
As shown in Table 2, the overall accuracy of the model increased
by 4.71% and the MF1 increased by 7.17% after adding the
EOG modality (for C4-Al channel). The main reason for this
improvement is the enhancement of the classification performance
for the REM stage, which is prominently demonstrated in the
example results depicted in Figure 3. Meanwhile, the N1 stage
also experienced a noticeable improvement, while the impact on
other sleep stages was relatively minor. This is mainly because the
eye movement information during the N1 and REM sleep stages
provides significant complementary information, and the scoring
rules for the N1 and REM stages also include definitions related
to EOG. This indicates that SingleSleepPlus accurately captures
information from EEG and EOG and successfully integrates the
information from both modalities. It also suggests that the single-
channel EEG sleep staging model still needs improvement in
recognizing REM and N1 stages, especially in capturing features
related to the REM stage. However, it demonstrates relatively stable
performance in the N3 sleep stage, showing a relatively high level
of reliability.

5 Conclusion and future work

The reliability analysis of portable wearable single-channel EEG
sleep staging approaches for home use scenarios is crucial for
objectively assessing sleep quality. However, there is currently a lack
of study in this field. To address this gap, in this paper, we propose
two different models to investigate the reliability of single-channel
EEG in sleep staging. On one hand, we analyze the differences in
reliability among channels in single-channel sleep staging tasks. On
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the other hand, we study the reliability of single-channel EEG sleep
staging methods in identifying features of different sleep stages.

In future research, we will investigate more channels to provide
a more systematic and comprehensive reliability analysis of single-
channel EEG sleep staging methods, thus laying the groundwork
for wearable sleep staging applications.
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