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Nicotine, recognized as the principal addictive component in tobacco, is 

mechanistically linked to its interaction with neuronal nicotinic acetylcholine 

receptors (nAChRs). nAChRs are ligand-gated ion channels composed of five 

transmembrane subunits, with the α4 β2 receptor subtype being the most 

common in the brain, playing a crucial role in the behavioral effects of 

nicotine. When nicotine binds to α4 β2 nAChR, it significantly enhances the 

firing rate and burst firing of dopamine neurons in the brain, thereby activating 

the mesolimbic dopamine system. This system promotes the formation of 

nicotine addiction in the early stages of addiction through rewarding sensory 

stimulation and associative learning. The α4 β2 nAChR subunit has been 

identified as the principal subtype implicated in the pathogenesis of nicotine 

addiction. However, other nAChRs subtypes also play important roles in the 

onset and maintenance of nicotine addiction. Understanding the relationship 

between nicotine addiction and nAChR subtypes is crucial for fully uncovering 

the neurobiological mechanism behind its addictive properties and lays the 

foundation for developing more targeted smoking cessation strategies. 
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Highlights 

• This review delineates the subtype-specific roles of nAChRs—such as α4β2, α6β2 
∗ , 

and α5-containing subtypes—in mediating nicotine rewards and aversion via 
distinct neural circuits. 

• The VTA-NAc pathway is recognized for its dopaminergic mechanisms 
underlying rewards, whereas the MHb-IPN circuit is implicated in nicotine 
aversion through glutamatergic and GABAergic signaling. 

• Genetic variants like CHRNA5 rs16969968 and stoichiometric dierences among 
nAChR subtypes are identified as critical determinants of individual susceptibility 
to nicotine dependence. 
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• Integrating multi-system neurotransmitter interactions— 
including dopamine, glutamate, GABA, and GLP-1—oers a 
more comprehensive model of nicotine addiction that extends 
beyond traditional rewards pathways. 

1 Introduction 

Nicotine is the primary active component in tobacco products 
that causes addiction. Nicotine exerts both strong rewards and 
aversive eects in the central nervous system through its interaction 
with nicotinic acetylcholine receptors (nAChRs) (Maskos et al., 
2005; Picciotto et al., 1998; Tolu et al., 2013). This process not only 
endows nicotine with high pharmacological activity in addiction 
but also complicates the mechanisms of its physiological and 
pathological eects resulting from direct or indirect activation of 
multiple intracellular signaling pathways. Nicotinic acetylcholine 
receptors are ligand-gated ion channels composed of five subunits, 
each containing an extracellular ligand-binding domain and four 
transmembrane regions (Le Novère et al., 2002; Lindstrom, 1997). 
In mammals, nAChRs subtypes are highly diverse, such as the most 
common α4β2 heteropentamer and α7 homopentamer in the brain 
(Maskos et al., 2005; Wooltorton et al., 2003). A comprehensive 
understanding of nAChR function is essential for analyzing the 
mechanisms of nicotine addiction. On one front, the elucidation 
of dynamic regulatory mechanisms governing nAChR structural 
plasticity and functional modulation promises to yield a more 
comprehensive understanding of molecular addiction processes. 
On another front, research into the distribution of nAChRs and 
their systemic impacts will help elucidate the broader physiological 
consequences of nicotine addiction. This review synthesizes current 
evidence on the relationship between nicotine addiction and 
nAChRs, and clarify the neurobiological basis of nicotine addiction. 

2 Neurobiological basis of nicotine 
addiction 

The rewarding mechanism of nicotine addiction exhibits 
complex biphasic regulatory characteristics, where the dynamic 
equilibrium between positive reinforcement (such as euphoria) 
and negative regulation (such as aversive reactions) constitutes the 
neurobiological basis for the formation of addictive behaviors. The 
rewarding eects of nicotine typically manifest as sensations of 
“lightheaded euphoria” or “excitement” post-consumption, while 
aversive eects are reflected in discomfort reactions such as nausea 
and dizziness (Corrigall et al., 1992; Koob, 1992; Villanueva et al., 
1989). The balance of these eects is closely associated with 
individual-specific factors, including dosage, personal sensitivity, 
and tolerance development. The addictive properties of nicotine 
are predominantly mediated by the integration of interactive 
signaling processing rewards and aversion across multiple brain 
regions. As the central hub of the mesolimbic dopamine system, 
dopaminergic neurons in the ventral tegmental area (VTA) form 
critical neural circuits through their projections to the nucleus 
accumbens (NAc) and prefrontal cortex, constituting the neural 

substrate for nicotine’s rewarding eects (Clarke et al., 1988; 
Corrigall et al., 1994; Nisell et al., 1996). 

2.1 Rewarding mechanisms in nicotine 
addiction 

The core pathological mechanism of nicotine addiction 
involves the rewards modulation system of the mesolimbic 
pathway. This system generates positive reinforcement signals 
primarily through dopaminergic transmission within the 
mesolimbic circuit, mediated by dynamic interactions between 
the ventral tegmental area (VTA) and the nucleus accumbens 
(NAc).(Fu et al., 2003; Mansvelder and McGehee, 2000; Rice 
and Cragg, 2004; Schwartz et al., 1984). Research has suggests 
that nicotine produces rewarding eects not through a single 
neurotransmitter system, but through the integrated actions of 
dopaminergic, GABAergic, glutamatergic systems and atypical 
rewarding pathways, which together facilitate spatiotemporally 
specific neuroplastic adaptations (Wooltorton et al., 2003; Grieder 
et al., 2019; Mansvelder et al., 2002). This multidimensional 
regulatory mechanism explains how nicotine induces rapid 
addiction. 

As a high-aÿnity agonist of nicotinic acetylcholine receptors 
(nAChRs), nicotine directly activates VTA dopamine neurons 
through β2 subunit-containing receptors, inducing Na+/Ca2+ 

influx that causes membrane depolarization. This enhances the 
firing frequency of dopaminergic neurons and triggers transient 
surges of dopamine release in the NAc. This process is completely 
abolished in β2 subunit knockout mice, confirming its role as 
the molecular basis of rewarding eects (Maskos et al., 2005; 
Picciotto et al., 1998; Tolu et al., 2013; Dani and Bertrand, 
2007; De Biasi and Dani, 2011; Mao et al., 2011; Pidoplichko 
et al., 1997). Nicotine not only directly acts on dopaminergic 
neurons, but also transiently enhances GABAergic neurons’ 
inhibitory drive on dopaminergic neurons by binding to nAChRs 
within GABAergic neurons in the VTA (Wooltorton et al., 2003; 
Grieder et al., 2019; Mansvelder et al., 2002). In the initial 
stage, nicotine activates GABAergic interneurons through α4β2-
nAChRs, increasing their spontaneous discharge frequency and 
thereby augmenting inhibitory inputs to dopaminergic neurons; 
However, with rapid receptor desensitization, the GABAergic 
inhibitory eects attenuate following sustained exposure, forming 
a “disinhibition-excitation potentiation” delayed reinforcement 
pattern. This temporal dissociation characteristic may underlie 
the dual-phase reinforcement properties of nicotine rewards. Due 
to the rapid desensitization of α4β2 nAChRs, when exposed to 
sustained low concentrations of nicotine, the GABAergic drive 
gradually diminishes over time, thereby relieving inhibition on 
dopaminergic neurons and ultimately enhancing their excitability. 
This phenomenon regulates the activity states of VTA dopamine 
neurons through dual mechanisms, playing a critical role in the 
process of nicotine-induced rewarding eects (Mansvelder et al., 
2002; Yan et al., 2019). In the context of long-term eects, 
presynaptic α7nAChRs further promote the long-term excitability 
of dopaminergic neurons by enhancing glutamatergic inputs (Mao 
et al., 2011; Ostroumov and Dani, 2018; Pidoplichko et al., 2004). 
The combination of enhanced synaptic input and removal of 
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inhibitory constraints constitutes a critical step in the initiation of 
nicotine addiction. 

The nicotine rewarding eect is further complicated by its 
direct regulation of dopamine release within the striatum. In the 
nucleus accumbens core and dorsal striatum, dopamine release 
is regulated by presynaptically expressed heteromeric nAChRs, 
particularly those mediated by receptors containing α6, α4, β2, 
and β3 subunits (Salminen et al., 2004; Zoli et al., 2002). Nicotine 
activates these receptors to physically enhance dopamine release 
while concurrently reducing basal dopamine levels. Although 
this rapid desensitization phenomenon appears paradoxical to 
the rewarding mechanism, it eectively enhances the signal-to-
noise ratio of dynamic rewarding signals by reducing background 
dopamine “noise,” thereby strengthening the coupling between 
nicotine rewarding and environmental cues (Rice and Cragg, 
2004; Threlfell and Cragg, 2011; Zhang et al., 2009). This signal 
optimization mechanism makes nicotine a particularly substance 
prone to induce addiction. 

Studies further reveal that nicotine’s rewarding eects are not 
limited to the regulation of the dopamine system. Nicotine can 
directly act on brain regions outside the mesolimbic dopamine 
system, such as the central linear nucleus and parabrachial 
nucleus, and manifests rewarding eects independent of dopamine 
through interactions with opioid receptors or other neuropeptides, 
suggesting a multi-system interactive rewarding integration 
mechanism (Ikemoto et al., 2006; Neugebauer et al., 2011; Trigo 
et al., 2009). 

In summary, the core of the nicotine rewarding mechanism 
lies in its profound impact on dopaminergic transmission 
in the mesolimbic system, achieved through complex direct 
and indirect pathways. Starting with high-aÿnity β2 subunit-
containing nAChRs, nicotine directly activates VTA dopamine 
neurons; concurrently, it enhances phasic dopaminergic signaling 
and optimizes the signal-to-noise ratio of rewarding signals by 
modulating GABAergic and glutamatergic inputs. These synergistic 
neuroregulatory mechanisms collectively establish nicotine as a 
substance with potent reinforcing properties, cementing its central 
role in addictive behaviors. 

2.2 Aversive effects of nicotine addiction 

The formation and maintenance of nicotine addiction 
fundamentally constitutes a neurobiological process involving 
dynamic interactions between rewarding and punishment 
mechanisms. Within this framework, punishment mechanisms 
exert critical constraining eects on nicotine-seeking behavior 
through negative reinforcement eects mediated by specific neural 
circuits. Recent studies have revealed that the medial habenula 
(MHb)-interpeduncular nucleus (IPN) pathway serves as the 
central hub mediating nicotine’s aversive eects (Fowler and 
Kenny, 2011; Jensen et al., 2015; Sartor et al., 2010). 

Through optogenetics, chemogenetics, and molecular imaging 
techniques, researchers have systematically elucidated the aversion 
signaling pathway mediated by α3/α5/β4 nicotinic acetylcholine 
receptors (nAChRs) within this neural circuit (Girod et al., 
2000; Grady et al., 2001, 2009; Ren et al., 2011). The high-
aÿnity binding of nicotine to α5 subunit-containing receptors 

on MHb neurons triggers Ca2+-dependent burst firing, which 
induces the axonal terminal release of glucagon-like peptide-
1 (GLP-1). This subsequently activates GLP-1 receptors in the 
IPN to promote cAMP production, significantly enhancing the 
excitability of glutamatergic neurons in the IPN (Hussain et al., 
2008; Sherafat et al., 2020; Tuesta et al., 2017). Studies on gene 
knockout mice have demonstrated that deletion of the α5 nAChR 
subunit significantly reduces nicotine’s aversive eects, enabling 
animals to tolerate higher doses of nicotine (Fowler et al., 2011). 
The missense mutation rs16969968 in the CHRNA5 gene results 
in the substitution of aspartic acid with asparagine at position 
398 of the encoded α5 subunit. This variant exhibits decreased 
sensitivity to nicotine agonists and reduced calcium permeability, 
substantially elevating the risk of nicotine addiction (Bierut, 2010; 
Breetvelt et al., 2012; Buczkowski et al., 2015; Liu et al., 2010). 

The IPN acts as a relay station for aversive signals, regulating 
downstream neural activity through dual projection pathways: 
its GABAergic fibers directly inhibit cholinergic neurons in 
the laterodorsal tegmental nucleus (LDTg), while glutamatergic 
projections activate an NMDA receptor-dependent negative 
regulatory network within the VTA (Ables et al., 2017; Dautan 
et al., 2016; Lima et al., 2017; Liu et al., 2022; Quina et al., 2017; 
Wolfman et al., 2018). Optogenetics experiments demonstrate 
that specific activation of the IPN→LDTg GABAergic pathway 
induces robust place avoidance behavior, while inhibition of this 
pathway completely abolishes the aversive eects of high-dose 
nicotine (Wolfman et al., 2018; Alderson et al., 2005; Ishibashi 
et al., 2009; Maskos, 2008). The LDTg reduces glutamatergic 
input strength to VTA dopamine neurons through GABAB 
receptor-mediated presynaptic inhibition mechanisms, establishing 
functional antagonism against the rewarding system (Melani et al., 
2019). This bidirectional regulation manifests behaviorally as dose-
dependent biphasic eects: low-dose nicotine induces reward via 
VTA dopaminergic activation, while high-dose nicotine elicits 
aversion through the MHb-IPN-LDTg pathway, with the critical 
dose threshold being regulated by α5 subunit expression levels. 

Besides regions like the VTA and the MHb-IPN pathway, 
the process of nicotine addiction also involves a range of other 
brain areas and related neurotransmitter systems. For example, the 
insular cortex is a key region in regulating nicotine intake and 
seeking behavior. Damage to this area can significantly reduce an 
individual’s craving for nicotine, making it a potential target for 
withdrawal and relapse interventions (Naqvi et al., 2007). Other 
studies have shown that certain cortical areas of brain, such as 
the prefrontal cortex and basolateral amygdala, are essential in 
strengthening the memory and relapse in the addiction process 
by integrating rewarding and emotional information (Forget 
et al., 2010; Kodas et al., 2007; Le Foll et al., 2008). Thus, 
nicotine is not merely a rewards-promoting substance that simply 
activates nAChRs, but rather a complex modulator capable of 
dynamically regulating dopamine, glutamate, GABA, and other 
neurotransmitters. 

Overall, the integration of rewarding and aversive signals in the 
process of nicotine addiction depends on the dynamic interactions 
of multiple brain regions and neural circuits. The VTA-NAc 
pathway dominates the rewarding mechanism, while the MHb-
IPN pathway regulates the aversive eect. At the same time, other 
regions of the brain, such as the insular cortex, also play a significant 
role in nicotine addiction and withdrawal (Figure 1). 
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FIGURE 1 

The mechanisms of nicotine rewards and aversion. 

FIGURE 2 

Schematic representation of nicotine’s effects. 

3 Core mechanistic roles of nAChRs 
in nicotine addiction 

As pivotal members of the ligand-gated cation channel 
superfamily, nicotinic acetylcholine receptors (nAChRs) serve 
as the cornerstone of nicotine addiction neurobiology, with 
the complexity of their molecular architecture and functional 
modulation forming its fundamental basis (Le Novère et al., 
2002; Lindstrom, 1997). Since the groundbreaking discovery 

of acetylcholine as a neurotransmitter by Dale (1935), 
our understanding of nAChRs has evolved from a simple 

neuromuscular junction signaling apparatus to a molecular nexus 
mediating cross-system neural plasticity (Changeux, 2020; Hulme 

et al., 1990). nAChRs are composed of five subunits (α and 

β subunits) assembled into a pentameric structure, forming a 

central water-filled ion channel. To date, nine α subunits (α2–α10) 
and 3 β subunits (β2–β4) have been identified. These subunits 
combine in various configurations to form functionally diverse 
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receptor subtypes, with the α4β2 and α7 subtypes being the 
most representative in the central nervous system (CNS). As 
an exogenous agonist, nicotine binds with high aÿnity to the 
ligand-binding site within the extracellular domain of receptors, 
triggering conformational changes that open ion channels. This 
facilitates transmembrane flow of Na+ , K+ , and Ca2+ , inducing 
cell membrane depolarization and activating downstream signaling 
cascades (Figure 2) (Changeux, 2018; McKay et al., 2007). nAChRs 
are ubiquitously distributed across virtually all anatomical brain 
regions, including presynaptic and postsynaptic membranes, 
axonal terminals, and somatic compartments. Within the brain, 
nAChRs demonstrate remarkable heterogeneity, with distinct 
subtypes executing specialized functional roles in specific brain 
regions. For instance, α4β2 receptors are widely distributed in 
the VTA, NAc, and prefrontal cortex, playing a central role in 
regulating dopamine release and reinforcement learning (Maskos 
et al., 2005; Picciotto et al., 1998). In contrast, α7 receptors are 
primarily localized in dopaminergic neurons and participate in 
modulating long-term potentiation of glutamatergic neurons 
(Wooltorton et al., 2003; Mansvelder et al., 2002). Within the VTA, 
dopaminergic neurons exhibit highly heterogeneous expression 
of nAChR subtypes, predominantly α4β2 and α6β2β3 complexes. 
Activation of these receptors enhances burst firing in dopaminergic 
neurons, increases dopamine release in the nucleus accumbens, 
thereby forming rewarding signals for external stimuli such as 
nicotine (Lindstrom, 1997; Exley et al., 2011). On the other hand, 
in the MHb, the α5, α3, and β4 subtypes similarly play negative 
regulatory roles in nicotine uptake and aversive eects (De Biasi 
and Salas, 2008; Sheÿeld et al., 2000). This bidirectional regulatory 
mechanism reflects the integrative role of nAChRs within complex 
interregional brain networks. 

The rewarding mechanism of nicotine addiction is closely 
linked to the subtype-specific functions and molecular diversity 
of nicotinic acetylcholine receptors (nAChRs), the core of which 
lies in the spatiotemporal regulation of neurotransmitter release 
by distinct nAChR subtypes within the mesolimbic dopamine 
system. As the most abundant subtype in the central nervous 
system, the stoichiometric ratio dierences between (α4β2)2β2 

and (α4β2)2α4 of α4β2 nAChR determine receptor sensitivity 
and functional characteristics toward nicotine: The (α4β2)2β2 

subtype exhibits high agonist aÿnity, whereas the (α4β2)2α4 

subtype demonstrates 3–4-fold enhanced activation eÿcacy 
despite lower aÿnity, establishing a dual regulatory paradigm 
of “high-aÿnity” and “high-eÿcacy” (Gotti et al., 2009). Gene 
knockout experiments confirm that deletion of α4 or β2 subunits 
completely blocks nicotine-induced burst firing of VTA dopamine 
neurons and dopamine release in the nucleus accumbens, while 
mice expressing hypersensitive α4 mutants exhibit exaggerated 
rewarding responses to low-dose nicotine (Maskos et al., 2005; 
Picciotto et al., 1998; Mameli-Engvall et al., 2006; McGranahan 
et al., 2011; Naudé et al., 2016; Peng et al., 2017; Tapper 
et al., 2004). Pharmacological studies further reveal that the 
α4β2 

∗ nAChR partial agonist varenicline significantly reduces 
nicotine self-administration by competitively inhibiting nicotine 
binding and attenuating dopamine release. Concurrently, dihydro-
β-erythroidine (DHβE), a selective antagonist of β2 nAChR, 
also inhibits nicotine addiction (Coe et al., 2005; Ivanová and 
Greenshaw, 1997; Reperant et al., 2010). The upregulation of 
α4β2 receptor expression in VTA GABAergic neurons shows 

TABLE 1 Major nicotinic acetylcholine recepto (nAChR) subtypes and 
their roles in nicotine addiction. 

nAChR 
subtype 

Main brain 
regions 

Primary 
role 

Nicotine-
related 
effects 

α4β2 VTA, NAc, 
cortex, 

hippocampus 

Core mediator 

of rewards 
High-aÿnity 

binding; drives 
dopamine 

release 

α6β2* (± β3) VTA DA 

neurons, 
striatum 

Enhances 
dopamine 

signaling 

High sensitivity 

to nicotine; α6 or 

β3 KO abolishes 
nicotine intake 

motivation 

α5 MHb–IPN, 
striatum 

Modulates 
aversion and 

intake 

CHRNA5 

variants 
(rs16969968) 

increase 

dependence risk; 
regulates dose 

control 

α7 Cortex, 
hippocampus, 

VTA 

Cognition, 
plasticity, minor 

role in rewards 

Low-aÿnity; 
enhances 

glutamatergic 

inputs; limited 

role in nicotine 

self-
administration 

α3β4 MHb–IPN Mediates 
aversive eects 

Contributes to 

withdrawal and 

aversion at 
higher nicotine 

doses 

high correlation with nicotine addiction susceptibility. Positron 
emission tomography (PET) studies demonstrate a positive 
correlation between α4β2 receptor density and withdrawal diÿculty 
in smokers, indicating its central role in the dynamic regulation 
of addiction progression (Brody et al., 2004). The functional 
dierentiation of α6β2 

∗ nAChR subtypes within the mesolimbic 
system further enriches the complexity of nicotine rewarding 
mechanisms. The α6 subunit exhibits specific expression in VTA 
dopamine neurons and their striatal terminals, co-assembling with 
the β3 subunit to form high calcium permeability complexes: 
(α6β2)2β3 and (α4β2)(α6β2)β3 (Salminen et al., 2004; Zoli et al., 
2002). These receptors demonstrate significantly higher nicotine 
sensitivity compared to other subtypes. Notably, α6 knockout 
mice exhibit abolished motivation for nicotine intake in both 
acute nicotine self-administration and two-bottle choice paradigms 
(Bagdas et al., 2019; Liu et al., 2012). The β3 subunit serves as 
an auxiliary component of α6-containing receptors, enhancing 
nicotine’s regulation of striatal dopamine release by promoting 
receptor maturation and membrane localization (Gotti et al., 
2009; Moen et al., 2021). Knockout of the β3 subunit reduces 
α6 receptor expression in the striatum and attenuates nicotine-
induced dopamine release, while allelic variations in the CHRNB3 
gene cluster show significant association with nicotine addiction 
risk (Bierut et al., 2007; Gotti et al., 2005; Thorgeirsson et al., 
2010; Wen et al., 2016). The α5 subunit incorporates into α4β2 

receptors as a non-ligand-binding auxiliary subunit, forming 
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(α4β2)2α5 complexes that exhibit enhanced calcium permeability 
compared to classical α4β2 receptors and demonstrate resistance to 
agonist-induced desensitization (Chatterjee et al., 2013). The loss-
of-function mutation (D398N) at the CHRNA5 gene rs16969968 
locus increases nicotine addiction risk by reducing receptor calcium 
permeability, while VTA dopamine neurons in α5-knockout mice 
exhibit attenuated responsiveness to nicotine (Kuryatov et al., 2008; 
Morel et al., 2014; Sciaccaluga et al., 2015; Tapia et al., 2007). 
The α5 receptor primarily regulates dopamine release in the dorsal 
striatum, demonstrating spatial dierentiation from α6 

∗ receptor 
function in the nucleus accumbens. This anatomical specificity 
may explain nicotine’s dierential regulation of distinct behavioral 
paradigms (Exley et al., 2012). In contrast, α7 homomeric nAChRs 
play a relatively limited role in nicotine rewarding mechanisms. 
Although it mediates enhanced glutamatergic inputs to the 
VTA, α7 knockout mice exhibited no behavioral dierences in 
nicotine self-administration and conditioned place preference tests. 
Only female individuals showed reduced nicotine intake during 
chronic oral administration (Bagdas et al., 2019; Pons et al., 
2008). While methyllycaconitine (MLA) demonstrates eÿcacy in 
attenuating nicotine self-administration behaviors, its non-selective 
pharmacological actions coupled with null results observed in 
α7-nAChR knockout models collectively suggest a dissociation 
from canonical α7-mediated pathways in eliciting this behavioral 
modulation (Bryant et al., 2002; Markou and Paterson, 2001; Salas 
et al., 2007). 

In conclusion, the molecular structure, diverse combinations, 
widespread distribution, and functional variety of nAChRs 
collectively underpin their central role in nicotine addiction 
(Table 1). 

4 Discussion 

This article provides a detailed overview of the mechanisms 
underlying nicotine addiction and the roles of various nicotinic 
acetylcholine receptor (nAChR) subtypes in this process. 
Nevertheless, the mechanisms of nicotine addiction remain 
only partially understood. As discussed above, most studies 
have concentrated on α4, α5, α6, α7, and β2 nAChR subunits 
(Braunscheidel et al., 2024; Gu et al., 2019; Huang et al., 2022, 2025; 
Jackson et al., 2017; Rigotti et al., 2023; Sakkiah et al., 2020; Yang 
et al., 2023), whereas others—such as α3 (Icick et al., 2020), which 
is densely expressed in the mHb—have received far less attention. 
Evidence indicates that allelic variations in the CHRNA3 gene, 
which encodes the α3 subunit, are associated with an elevated risk 
of nicotine addiction, although the precise mechanisms remain 
unclear (Elayouby et al., 2021). Therefore, future mechanistic 
studies should not only focus on well-studied subunits but also 
expand to include understudied nAChRs, thereby enabling a more 
comprehensive understanding of how nicotine induces addiction. 

In addition, emerging technologies are reshaping our 
understanding of nicotine addiction. For example, omics 
approaches are playing an increasingly significant role in 
mechanistic studies. Several groups have applied single-nucleus 
transcriptomics (snRNA-seq) to ventral tegmental area (VTA) 
neurons and glial cells across three stages—pre-addiction, 
addiction, and post-addiction—yielding deeper insights into 

nicotine-induced changes (Fan et al., 2024). Looking ahead, 
single-cell ATAC-seq (Kimbrough et al., 2021; Jackson et al., 2024), 
spatial transcriptomics (Scott et al., 2024), proteomics (Lee et al., 
2021), and metabolomics (Lian et al., 2024) are expected to further 
advance nicotine addiction research. These methods can unravel 
molecular mechanisms across multiple levels: epigenetic regulation 
(gene switching), spatial organization (regional and cellular 
interactions), protein function (receptors and signaling pathways), 
and metabolic states (energy balance and neurotransmission). 
Integrating multi-omics data will enable construction of a 
complete causal chain—from chromatin remodeling → gene 
transcription → protein function → metabolic alterations → 
behavioral phenotypes. This systems-level framework will provide 
valuable resources for identifying biomarkers and therapeutic 
targets, ultimately laying the groundwork for personalized 
smoking cessation strategies. 

5 Conclusion 

Nicotine addiction arises from the diversity and dynamic 
regulation of nAChR subtypes, which shape the balance between 
rewards and aversion in mesolimbic circuits. Recent evidence 
highlights the critical role of α4β2 and α7 receptors in modulating 
dopamine release through subtype-specific stoichiometry and 
calcium permeability, while α5-containing assemblies have been 
identified as genetic determinants of addiction vulnerability. At 
the same time, the MHb–IPN pathway, mediated by α3α5β4 

receptors, has been increasingly recognized as a central hub for 
aversive modulation, expanding the traditional dopamine-centered 
framework. Technological advances in single-cell transcriptomics 
and spatial multi-omics now allow unprecedented resolution 
of subtype distribution and plasticity. This review argues 
that future research should integrate molecular, circuit, and 
behavioral perspectives, with emphasis on cell-type–specific 
receptor dynamics, adaptive plasticity under dierent nicotine 
exposure conditions, and individual genetic risk factors. Taken 
together, these insights suggest that nAChR subtype heterogeneity 
is not only fundamental to the mechanisms of nicotine addiction 
but also provides a foundation for precision strategies in 
smoking cessation. 
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