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Spatial group independent component analysis (sgr-ICA) is widely used in
resting-state fMRI to identify intrinsic connectivity networks (ICNs). While
lower-order decompositions reveal large-scale networks, higher-order models
provide finer granularity but have been limited by small sample sizes. In
this study, we applied sgr-ICA with 500 components to more than 100,000
subjects with rsfMRI to generate a robust fine-grained ICN template. Using
this template, we examined whole brain functional network connectivity (FNC)
in 502 individuals with schizophrenia and 640 typical controls and compared
the findings with a lower order multiscale template. The 500-component
template yielded a large set of reliable ICNs, particularly in the cerebellar
and paralimbic regions, and revealed schizophrenia-related dysconnectivity
patterns that were not detected at larger spatial scales. Specifically, we observed
hypoconnectivity between the cerebellar and subcortical domains (basal ganglia
and thalamus) and hyperconnectivity between the cerebellar domain and the
visual, sensorimotor and higher cognitive domains. These results demonstrate
that very high-order ICA can capture distinct fine-grained ICNs, improving
the detection of disease-related connectivity differences and enriching current
multiscale ICN templates. The derived ICNs can serve as a valuable reference
for future studies and potentially enhance the clinical utility of rsfMRI in
psychiatric research.

KEYWORDS

independent component analysis (ICA), resting-state fMRI (rsfMRI), granular intrinsic
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1 Introduction

1.1 High-order ICA and functional brain
atlases

Models of brain communication in functional neuroimaging
often rely on the assumption that temporal dependencies in
neurophysiological data reflect functional connectivity (Friston,
2011). Independent component analysis (ICA), a widely used
multivariate method, plays a crucial role in uncovering the
functional organization of the brain (Calhoun et al.,, 2001b). ICA
is a blind source separation technique that decomposes data
into maximally independent components (Calhoun and Adali,
2012). Within neuroimaging research, it has proven valuable for
identifying functional networks or intrinsic connectivity networks
(ICNs) (Calhoun et al.,, 2001b). Two primary ICA-based approaches
have been employed to estimate functional entities in the brain
(Iraji et al., 2022b). The first involves performing ICA on individual
subjects followed by clustering to identify shared patterns across
samples (Esposito et al., 2005; Calhoun et al., 2001a). While
this approach accounts for individual variability, it is susceptible
to challenges like inter-individual differences, variations in data
acquisition, and the dynamic nature of brain function. The second,
more robust method involves a group-level ICA framework, which
creates shared functional entities across a cohort and subsequently
back-reconstructs these patterns for individual subjects (Calhoun
et al., 2008). This approach has become a cornerstone for clinical
and large-scale studies due to its reliability and consistency in
capturing functional connectivity patterns across populations (Iraji
et al., 2022b; Mirzaeian et al., 2024; Rashid et al., 2014).

Earlier studies employing group-level ICA focused on low-
order models (20-45 components) that identified large-scale
networks, such as default mode and salience networks (Beckmann
et al., 2005; Calhoun et al., 2001b; Iraji et al., 2016). However,
the inherent complexity of brain networks suggests the presence
of smaller, functionally distinct subnetworks embedded within
these large-scale systems (Kiviniemi et al., 2009a); hence, Higher
order ICA (75-200 components) has been employed to identify
such fine-grained ICNGs, providing a more detailed representation
of the brain’s functional architecture (Mirzaeian et al., 2024;
Abou Elseoud et al., 2009; Kiviniemi et al., 2009b; Allen et al.,
2011; Iraji et al,, 2022a). Although some studies have explored
even higher model orders (e.g., 500 or 1,000 components), they are
often applied to small datasets, highlighting the need for further
extension to improve robustness and generalizability (Iraji et al.,
2019).

The advent of population-level neuroimaging has introduced
massive datasets with terabytes of high-resolution brain images,
enabling researchers to uncover the neural underpinnings of
individual differences (Iraji et al., 2022b). Large datasets improve
the reliable estimation of ICNs and functional patterns by
enhancing statistical power, reducing noise, and capturing more
representative brain connectivity, which enables the derivation of
robust, generalizable ICNs that better reflect individual and group
differences. Such large-scale data requires efficient dimensionality
reduction techniques to extract meaningful representations while
managing computational challenges. Functional brain atlases,
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derived from these datasets, provide a structured framework
to summarize complex connectivity patterns into image-derived
phenotypes, which are critical for characterizing brain networks
(Varoquaux and Craddock, 2013; Miller et al., 2016). Data-driven
atlases from large datasets extracted from fMRI capture functional
organization and individual variability and enhance reliability
by improving statistical robustness and reducing noise (Jensen
et al., 2024b). Among these, high-dimensional ICA-based atlases
effectively delineate spatially continuous and functionally specific
regions, making them valuable for studying brain connectivity.

We recently analyzed a large dataset of over 100,000 subjects
using multi-model order ICA, ranging from 25 to 200 components,
to develop the multiscale NeuroMark functional atlas of the
brain (Iraji et al., 2022b). Subsequently, the functional atlas was
refined, organized, and labeled, with each network described
using terminology familiar to cognitive and affective neuroscience,
resulting in NeuroMark-fMRI-2.2 (Jensen et al., 2024b). Building
upon this foundation, we extend the ICA framework by
implementing a group-level ICA at model order 500 on the same
dataset to extract a replicable and reliable set of fine-grained ICNs.
This extension results in a new template named NeuroMark-fMRI-
500, which offers enhanced granularity and provides additional
functional insights beyond those captured in NeuroMark 2.2.

1.2 Schizophrenia

Schizophrenia is a complex psychiatric disorder that impacts
thinking, emotions, and daily functioning (Bowles, 2013). It
is diagnosed based on a combination of symptoms, as there
is no single test for the condition. The primary symptoms
include positive symptoms such as hallucinations, delusions, and
disorganized speech or behavior, and negative symptoms like lack
of motivation, blunted affect, and emotional withdrawal, along with
significant social difficulties (Bowles, 2013; Davies, 1988; Rekhi
et al., 2019). Schizophrenia profoundly affects brain function by
disrupting normal network connectivity, leading to patterns of
hypo- and hyper-connectivity and reducing the brains ability to
integrate and process information efficiently (Harikumar et al,
2023; Menon et al.,, 2022). For example, dysconnectivity between
the motor cortices and cerebellar areas is a typical feature observed
in schizophrenia (Walther et al., 2017). Additionally, dysfunction
in the triple network, which includes the central executive
network, the default mode network, and the salience network,
has been implicated in the disorder, with their interactions often
being deficient in schizophrenia (Menon, 2019, 2011; Mirzaeian
et al,, 2024). Although diverse methods, such as graph theory
(Shahhosseini and Miranda, 2022), decomposition techniques,
and seed-based analyses (Yu et al, 2012), have been used to
study abnormal functional integration across brain circuits in
schizophrenia, sgr-ICA has played a crucial role in identifying
and characterizing schizophrenia-related patterns of functional
connectivity. For instance, multiscale ICA, which investigates
functional sources across multiple spatial scales, has uncovered sex-
specific differences in schizophrenia (Iraji et al., 2022a). Similarly,
Telescopic ICA, a novel method employing a recursive ICA strategy
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that leveraged information from larger ICNs to guide the extraction
of smaller ICNs, revealed significant associations in the posterior
cortex and precuneus regions linked to auditory hallucinations
in individuals with schizophrenia (Mirzaeian et al., 2024). Using
higher orders in ICA, which involves analyzing a large number
of fine-grained components, allows for the identification of more
subtle and complex brain network interactions, shedding light on
changes in functional connectivity associated with schizophrenia
(Iraji et al., 2022b, 2019).

In this study, we analyze functional network connectivity
(FNC) from 1,142 subjects, including typical controls (TC) and
individuals with schizophrenia (SZ), extracted using NeuroMark-
500 and its association with cognitive scores. Our results show
that NeuroMark-500 captures a relatively large number of ICNs
within the cerebellar area, revealing their strong hypoconnectivity
with subcortical-extended thalamic regions as well as subcortical-
basal ganglia regions, and hyperconnectivity with the sensorimotor
cortex. These findings underscore the cerebellums significant role
in brain function and its disruption in schizophrenia.

2 Materials and equipment

2.1 Data collection and data preparation

For this study, we relied on the same dataset and quality
control (QC) procedures as described in Iraji et al. (2022b), Jensen
et al. (2024b), and Du et al. (2020), without introducing any
modifications. These works explicitly address inter-site variability
and ensure consistent preprocessing and quality control across
all included data. Resting-state fMRI (rsfMRI) datasets were
used from 100,517 subjects, sourced from over twenty private
and public datasets. A complete list of these datasets, along
with details on accessing additional information, is provided in
Supplementary Section 1 in Iraji et al. (2022b). These datasets
originate from cohorts with varying sex and diagnosis ratios, age
distributions, and imaging protocols that differ in spatial and
temporal resolution. The QC criteria included (a) a minimum of
120 time points (volumes) in the rsfMRI time series, (b) mean
framewise displacement less than 0.25 mm, (c¢) head motion
transitions within 3° rotation and 3 mm translation in any
direction, (d) high-quality registration to an echo-planar imaging
template, and (e) spatial overlap between individual masks and the
group mask, including the top and bottom ten slices, exceeding
80%. These criteria were chosen for their feasibility across diverse
datasets (Iraji et al, 2022b). Applying these established QC
criteria resulted in 57,709 individuals (57.4 %) passing the QC
requirements, forming the QC-passed dataset. Data preprocessing
follows the procedures described in Iraji et al. (2022b), and
Du et al. (2020). When available, preprocessed data from a
given dataset were used; otherwise, preprocessing pipelines were
applied. The preprocessing steps included rigid body motion
correction, slice timing correction, and distortion correction, using
the FMRIB Software Library (FSL v6.0, https://fsl.fmrib.ox.ac.
ulk/fsl/fslwiki/) and the Statistical Parametric Mapping (SPM12,
https://www .filion.uclac.uk/spm/) toolboxes within the MATLAB
environment. Next, preprocessed subject data were warped into
the Montreal Neurological Institute (MNI) space using an echo-
planar imaging (EPI) template. This approach has been shown
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to outperform structural templates (Calhoun et al., 2017) when
distortion correction is unavailable or unfeasible, which was the
case for this study. Finally, subject data were resampled to 3 mm?
isotropic voxels and spatially smoothed using a Gaussian kernel
with a 6 mm full width at half-maximum (FWHM).

3 Method

3.1 Independent component analysis

We performed spatial Group-level ICA (sgr-ICA) using the
Group ICA Toolbox (GIFT) (Calhoun et al., 2001b; Iraji et al., 2020)
on data. The steps for sgr-ICA are as follows. First, we applied
variance normalization on voxel time courses and conducted
subject spatial principal components analysis (PCA) to retain the
principal components (PCs) with subject-level variance exceeding
95%. Next, we performed group spatial PCA by concatenating
subject PCs to further reduce the dimensionality of the data and
decrease the computational demands of sgr-ICA (Calhoun et al,,
2008). We used a memory-efficient subsampled time PCA (STP)
approach due to data size to calculate Group PCs (Rachakonda
et al., 2016). Next, we ran sgr-ICA using the Infomax algorithm
(Bell and Sejnowski, 1995) with model order 500, resulting in 500
fine scale components.

3.2 ldentifying replicable ICNs:
construction of the NeuroMark-500
template

We used 500 independent components to identify the set of
replicable fine-grained ICNs as NeuroMark-500 template. First, we
assessed the reliability and quality of the components using the
ICASSO index quality (IQ) (Himberg et al.,, 2004). Components
with IQ value below 0.80 were also excluded from further analysis.
Secondly, we evaluated the replicability of the components using a
split-half approach. We randomly split the QC-passed data into two
independent halves and applied sgr-ICA separately on each half,
resulting in 500 components per half. To identify the best-matching
components between the two halves, each 3D component image
was first masked to include only brain voxels and then reshaped
into a one-dimensional vector. Pearson correlation was computed
between these vectors, using the full sample as a reference, to
quantify spatial similarity. This procedure was repeated 50 times,
and components with an average similarity below 0.80 (Himberg
et al., 2004) across the 50 iterations were excluded.

By applying these two criteria we obtained a subset of
components that were replicable and reliable. Finally, to classify
components as ICNs, we applied the same procedure in Du
et al. (2020) and Iraji et al. (2022b), selecting components that
exhibited high spatial overlap with gray matter and low spatial
similarity to motion artifacts, ventricular signals, or other known
artifact patterns. For components located in cortical regions,
we additionally ensured that their peak activation was within
gray matter. Subcortical components, being smaller and often
surrounded by white matter or cerebrospinal fluid (CSF), were
instead evaluated using a general criterion requiring that they
be predominantly located within gray matter to avoid missing
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FIGURE 1

connectivity networks (ICNs), forming the NeuroMark-500 template.

Analysis pipeline: Data from 100,512 subjects underwent preprocessing and quality control (QC), resulting in 57,709 subjects passing QC. Spatial
Group-level Independent Component Analysis (sgr-ICA) was then applied to generate 500 independent components (ICs). The QC-passed dataset
was randomly split into two halves, and sgr-ICA was applied to each half to independently generate 500 ICs. This process was repeated
independently 50 times. Next, through component matching and selection, 131 stable and reliable ICs were identified and labeled as intrinsic

reliable components. Based on these, 131 ICNs were identified
as NeuroMark-fMRI-order-500 template. The identified ICNs
are categorized into domain and subdomain labels according
to NeuroMark 2.2 template (Jensen et al., 2024b) using spatial
similarity measured by Pearson correlation. The overall workflow
of the proposed method is illustrated in Figure 1.

After establishing these replicable ICNs, we leveraged them to
study their application in FNC and group comparisons between TC
and SZ.

3.3 Clinical applications: functional
connectivity alterations (HC vs. SZ),
reliability assessments, cognitive
associations

We utilized the BSNIP dataset (Tamminga et al., 2013;
Clementz et al, 2021) for further analysis, which comprises
1,142 subjects, including TC and SZ. Participants underwent the
Structured Clinical Interview for the Diagnostic and Statistical
Manual of Mental Disorders IV (DSM-IV), and assessments were
conducted while participants were clinically stable.

To estimate subject-specific independent components and
time courses, we employed multivariate-objective optimization
ICA with reference (MOO-ICAR), using the NeuroMark-500
components derived from sgr-ICA as spatial priors. The group-
level sgr-ICA provides a robust and replicable template of
functional networks across the population, ensuring stability
and consistency. MOO-ICAR leverages this template to extract
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subject-specific components while minimizing artifacts, effectively
capturing individual variability (Du and Fan, 2012). This two-
step strategy balances group-level reliability with subject-level
specificity and is computationally efficient for large datasets,
making it more practical than alternatives such as Independent
Vector Analysis with Gaussian-Laplacian (IVA-GL). We then
applied time course cleaning procedures, including detrending and
despiking, to eliminate drifts, sudden fluctuations, and residual
artifacts (Braun et al,, 2011; Yaesoubi et al, 2015). Finally, we
computed static FNC (sFNC) matrices by calculating pairwise
correlations between the cleaned time courses of different brain
domains across the entire dataset (Jafri et al., 2008; Allen et al.,
2011).

To statistically assess group differences in sFNC between TC
and SZ, first, we applied a linear regression model to regress out
potential confounding factors, including age, sex, scanning site, and
mean framewise displacement. Next, we conducted two-sample
t-tests on the cleaned sFNC to compare the TC and SZ groups.

To evaluate the reliability and stability of the group comparison
results, we performed two complementary analyses. First, we
randomly split the data into two non-overlapping subsets
and independently conducted regression and group comparison
analyses on each subset, resulting in two t-statistic maps. We
then computed the Pearson correlation between these maps. This
process was repeated for 20 iterations to assess the reliability
of the detected group differences across different random data
partitions. Second, to evaluate the stability of the findings, we
randomly sampled 80% of the dataset and performed regression
and group comparison analyses to generate a t-statistic map. We
then computed the Pearson correlation between this map and the
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one derived from the full dataset. This procedure was also repeated
for 20 iterations, providing a measure of the consistency of the
group comparison results across random subsamples.
Additionally, we evaluated the relationships between cleaned
SENC and cognitive performance measures using Pearson
correlation coefficient. We removed group effects by demeaned
both cleaned sFNC and cognitive scores to ensure that the
observed associations reflect relationship between variables
rather than being skewed by group-level variations. Cognitive
performance was measured using standardized z-scores from the
Brief Assessment of Cognition in Schizophrenia (BACS) (Keefe
et al., 2004).This analysis enabled us to explore how functional
connectivity differences relate to distinct cognitive domains.

3.4 ICN comparison: NeuroMark-500 vs.
NeuroMark 2.2

We compared ICNs from the NeuroMark-500 with ICNs from
NeuroMark 2.2. NeuroMark 2.2 is a reliable and replicable multi-
spatial-scale ICNs template using sgr-ICA with order ranging from
25 to 200. We performed comparisons based on spatial map size,
component distribution across functional domains, and the ability
to capture group differences. ICN size was defined by the number
of voxels exhibiting z-scored intensity values greater than 1.96
(Z > 1.96). To evaluate the ability to capture group differences,
we extracted subject-specific time courses of NeuroMark 2.2 ICNs
from the same dataset used in our group comparison analysis and
applied an identical methodological pipeline to both approaches,
ensuring a consistent and direct comparison.

4 Results
4.1 ICN results

Based on the criteria outlined in Section 3.2, we identified 131
reliable ICNs extracted from NeuroMark-500. Figure 2a presents
the spatial maps of these ICNs, organized into domains and
subdomains according to the NeuroMark 2.2 template. Among
these, 27 ICNs were classified within the cerebellar domain. The
higher cognitive and paralimbic domains also exhibited substantial
contributions, with 23 and 22 ICNs, respectively.

Figure 2b presents the stability index, which quantifies the
spatial similarity of each ICN generated from 2 half split across
50 iterations. This metric provides insight into the consistency of
ICN identification and reflects the robustness of the analysis. The
results indicate that the stability index for all ICNs exceeds 0.80,
demonstrating high reproducibility. ICNs within the visual domain
exhibited the highest stability (>0.95), followed by those in the
cerebellar, sensorimotor, and triple-network domains, which also
showed strong stability.

4.2 Clinical application results

Figure 3 presents the sFNC matrix and the group comparison
analysis between cohorts using the NeuroMark-500 template
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from the BSNIP sample. The sENC heatmap displays pairwise
correlations between ICN time courses, providing a detailed
view of functional connectivity patterns across all subjects. The
accompanying group comparison plot illustrates the cleaned
sENC differences between TC and SZ, based on the statistical
approach described in Section 3.3. The group comparison
analysis reveals both hyperconnectivity and hypoconnectivity
patterns in the SZ group relative to TC. Notably, there is
pronounced hypoconnectivity between the cerebellar domain
and both the subcortical-extended thalamic and subcortical-
basal ganglia regions. Conversely, the SZ group exhibits
significant hyperconnectivity between the cerebellar domain
and sensorimotor, insular-temporal, and temporoparietal sub-
domains. Additionally, the thalamic region shows significant
increased connectivity with sensorimotor, insular-temporal, and
temporoparietal areas, highlighting widespread alterations in
cross-sub-domain functional integration.

To evaluate the robustness of the group comparison analysis,
we assessed both stability and reliability. The stability analysis,
performed by comparing t-statistic maps derived from random
80% subsets against the full dataset for 20 iterations, yielded a
mean Pearson correlation of 0.97, indicating highly consistent
results across sub-samples. The reliability analysis, based on
comparing t-statistic maps from two non-overlapping halves of
the dataset across 20 iterations, resulted in a mean correlation
of 0.80, demonstrating high reproducibility of the detected
group differences.

Figure 4 illustrates the correlations between cleaned sFNC
and cognitive performance after regressing out diagnostic effects
from both variables. The connectograms display highly significant
Pearson correlations (p < 0.005), with p-values corrected for
multiple comparisons using the false discovery rate (FDR) method.
Cognitive measures include overall cognition, verbal memory,
working memory, and processing speed. The correlation analysis
shows a generally consistent pattern for all cognitive associations.
The plots exhibit a significant positive association between
sENC in subcortical-extended hippocampal and subcortical-
basal ganglia with cerebellar domain, indicating that strong
connectivity in these regions supports cognitive function.
Conversely, cerebellar-sensorimotor, thalamic-sensorimotor and
thalamic-insular temporal, and thalamic-frontal is negatively
correlated with the same cognitive measures, suggesting that
increasing connectivity between these networks may be linked to
cognitive impairments.

4.3 Comparison of ICNs from
NeuroMark-500 vs. NeuroMark 2.2

Figure 5a compares the ICNs generated using the NeuroMark-
500 with ICNs produced by NeuroMark 2.2, focusing on the
number of ICNs identified within each brain domain and
ICN size. The analysis reveals that ICNs derived from the
NeuroMark-500 are in general smaller in size across all brain
domains. Additionally, NeuroMark-500 approach identifies a
greater number of ICNs across cerebellar, visual, paralimbic,
subcortical and higher cognitive domain. This combination of
smaller ICN sizes and an increased number of ICNs highlights
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(a) Visualization of intrinsic connectivity networks (ICNs) from NeuroMark-500
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FIGURE 2

(a) Representation of 131 spatial maps of ICNs from NeuroMark-500 for each of the seven domains and 14 subdomains- labeling based on based on
NeuroMark 2.2 template: cerebellar (CB), visual-occipitotemporal (VI-OT), visual-occipital (VI-OC), paralimbic (PL), subcortical extended
hippocampal (SC-EH), subcortical-extended thalamic (SC-ET), subcortical-basal ganglia (SC-BG), sensorimotor (SM), higher cognition-insular
temporal (TC-IT), higher cognition-temporoparietal (HC-TP), higher cognition-frontal (HC-FR), triple network-central executive (TN-CE), triple
network-default mode (TN-DM), and triple network-salience (TN-SA). The spatial maps of ICs are thresholded with a z-score of 1.96 (p-value < 0.05).
(b) Spatial stability of the 131 ICNs from NeuroMark-500, evaluated across 50 split-half iterations.

the NeuroMark-500 capacity to achieve finer granularity in brain
network parcellation.

Figure 5b compares the group comparison results between
TC and SZ from NeuroMark-500 vs. NeuroMark 2.2. The plot
shows that the two approaches exhibit a generally consistent
pattern, which provides additional support for the validity
and interpretability of the results obtained using NeuroMark-
500 framework. However, notable differences are observed
in the paralimbic and cerebellar domains, where the results
extracted from NeuroMark-500 reveals stronger and more
widespread diagnostic effects—particularly in connections between
the cerebellar and sensorimotor domains, and between the
paralimbic and cerebellar domains. The results also indicate that

Frontiersin Neuroscience

three brain domains—cerebellar, subcortical, and sensorimotor—
demonstrate diagnostic associations with multiple other brain
domains. Specifically, the cerebellar domain shows significant
hypoconnectivity with the subcortical domain, higher cognitive
networks, and the triple network. Additionally, a significant
hypoconnectivity is observed between the higher cognitive
and sensorimotor domains. On the other hand, significant
hyperconnectivity involving the cerebellar domain is observed
with the visual, sensorimotor, and higher cognitive domains. The
sensorimotor domain also exhibits significant hyperconnectivity
with the subcortical domain.

Figure 6 presents two representative examples highlighting
the capability of NeuroMark-500 to capture finer-grained brain
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(TN-SA).

Clinical application results of ICNs from NeuroMark-500 for 1,142 subjects in the BSNIP dataset. (a) Heatmap of sFNC between ICNs, showing
averaged pairwise correlations between time courses of different brain domains. (b) Group comparison of cleaned sFNC (TC vs. SZ) using
NeuroMark-500: The lower triangle represents — log(p-value) x sign(t-value), while the upper triangle highlights connectivity with p-values < 0.05.
P-values are FDR corrected. Blue indicates hypoconnectivity in the SZ, while red represents hyperconnectivity in the SZ. Labels: cerebellar (CB),
visual-occipitotemporal (VI-OT), visual-occipital (VI-OC), paralimbic (PL), subcortical extended hippocampal (SC-EH), subcortical-extended thalamic
(SC-ET), subcortical-basal ganglia (SC-BG), sensorimotor (SM), higher cognition-insular temporal (HC-IT), higher cognition-temporoparietal (HC-TP),
higher cognition-frontal (HC-FR), triple network-central executive (TN-CE), triple network-default mode (TN-DM), and triple network-salience
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networks and provide more detailed insights into the functional
patterns of the SZ group, compared to the larger scale ICNs
used in NeuroMark 2.2. In each example, we selected one ICN
from NeuroMark 2.2 and identified its correspondence into two
distinct ICNs from NeuroMark-500 using Pearson correlation of
spatial maps.

In Example 1, the sensorimotor ICN (ICN 63) from NeuroMark
2.2 showed spatial correlations of 0.73 and 0.55 with two
sensorimotor ICNs (ICN 93 and ICN 94, respectively) from
NeuroMark-500. In Example 2, the subcortical-basal ganglia ICN
(ICN 52) from NeuroMark 2.2 exhibited the highest spatial
similarity with ICNs 77 and 79 from NeuroMark-500, with
correlation coeflicients of 0.61 and 0.59, respectively. These
spatial maps visually and quantitatively confirm that increasing
the ICA model order allows a single ICN to branch out into
multiple more localized components, thereby revealing more
detailed functional brain organization. We also examined diagnosis
association between cohorts across the corresponding ICNs.
The NeuroMark-500 revealed additional significant diagnostic
associations that were not captured by NeuroMark 2.2. In both
examples, ICNs derived from NeuroMark-500 capture significant
diagnostic effects within the paralimbic domain that are not
detected using the NeuroMark 2.2 template. Additionally, the
number of connectivity pairs showing significant group differences
is higher when using the finer-grained ICNs from NeuroMark-
500 compared to the coarser, large-scale ICNs, highlighting
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the benefits of increased spatial resolution in detecting subtle
group effects.

5 Discussion

This study demonstrates the efficacy of higher order ICA for
resting-state fMRI data, identifying 131 ICNs with high granularity.
The high reproducibility of ICNs, as evidenced by a stability index
exceeding 0.80 across 50 runs, underscores the robustness of this
method. Our findings highlight the prominent involvement of the
cerebellum, with 27 out of 131 networks spatially overlapping with
this region. Although, historically understudied in neuroimaging
research, emerging studies have established the cerebellum as a
major hub in the brain’s functional circuitry (Kawabata et al., 2022;
Schmahmann, 2018; Dong et al., 2022), more recently, subregions
in the cerebellum have been established as having specialized
roles in integrating and processing information (Kawabata et al.,
2022; Schmahmann, 2018; Dong et al., 2022). The relatively large
number of ICNs we identified within the cerebellum underscores its
significant role in brain function and lends further support toward
future research aiming to explore the functional contributions of
the cerebellum in cognition.

Beyond the cerebellum, our results also reveal a notable
enrichment of ICNs within the paralimbic domain, with 22
ICNs classified under this category. The paralimbic domain,
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Associations between cognitive scores and cleaned sFNC from NeuroMark-500. The connectograms highlight Pearson correlation coefficients
between cleaned sFNC and cognitive measures including overall cognition, verbal memory, working memory, and processing speed—showing
significant correlations (p < 0.005). p-values are FDR corrected.
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(a) Comparison of ICNs derived from NeuroMark-500 and NeuroMark 2.2
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(b) Group comparison of cleaned SENC (TC vs. SZ) using NeuroMark-500 vs NeuroMark 2.2
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FIGURE 5

Comparison of ICNs derived from NeuroMark-500 and NeuroMark 2.2. (a) Spatial map sizes and ICNs distribution across brain domains. (b) Group
comparison of sENC (TC vs. SZ) using NeuroMark-500 vs. NeuroMark 2.2: Positive side indicates hypoconnectivity in the SZ, while negative side
represents hyperconnectivity in the SZ.
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Example 1: Spatial Maps

Example 1: TC-SZ Functional Connectivity Differences

Example 2: Spatial Maps

Example 2: TC-SZ Functional Connectivity Differences

I NeuroMark 2.2: ICN-63
10 I NeuroMark-500: ICN-93
B NeuroMark-500: ICN-94

Significant Differences

CB VI PL SC
Brain Domain

FIGURE 6

Barplot illustrates the number of significant functional network connections showing group differences between TC and SZ from the group
comparison analysis. Each example compares an ICN from NeuroMark 2.2 with its two most spatially similar ICNs derived from NeuroMark-500. The
NeuroMark-500 decomposition reveals finer-grained ICNs and identifies additional significant group differences highlighting its enhanced sensitivity
for capturing clinically relevant connectivity alterations. Red represents spatial maps from NeuroMark 2.2, blue and green show spatial maps from
NeuroMark-500, yellow is overlap between red and green, magenta is overlap between red and blue, white is overlap between all three.

B NeuroMark 2.2: ICN-52
I NeuroMark-500: ICN-77
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Significant Differences
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Brain Domain

SM HC TN

centered around regions adjacent to limbic structures—including
the entorhinal cortex, medial temporal lobe, and temporal pole—is
known to support a wide range of higher-order cognitive functions
such as emotion regulation, memory, language, and learning
(Juarez et al., 2013; Kiehl, 2006). The substantial number of ICNs
identified within the paralimbic domain emphasizes its critical role
in overall brain function and further motivates future investigations
into its specific contributions to cognition. Crucially, our group
comparison analysis in Figure 6 revealed significant differences
between TC and SZ cohort specifically within the paralimbic and
subcortical domains—differences that were not detected using the
NeuroMark 2.2 template. This finding highlights the added value of
higher order ICA, which enables the extraction of more focal ICNG,
thereby increasing sensitivity to subtle alterations in functional
connectivity.

Additionally, our comparison of sENC between TC and SZ
using NeuroMark 2.2 and NeuroMark-500 as more fine scale
ICNs reveals that, while the overall pattern remains similar, a key
distinction arises in the hippocampus subdomain. The NeuroMark-
500 appears to enhance the separation of the hippocampus
from neighboring regions. In contrast, the larger ICNs may
capture effects influenced by adjacent structures, particularly the
thalamus. This suggests that increased granularity may offer a
more precise delineation of functional networks, which could be
critical for accurately characterizing the role of the hippocampus in
psychopathology-related connectivity alterations.

Moreover, our results reveal strong hypoconnectivity within
subcortical regions and the cerebellar, along with hyperconnectivity
in sensorimotor-cerebellar areas. These connectivity disruptions
align with prior studies reporting similar dysconnectivity patterns
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in schizophrenia (Jensen et al., 2024a; Hwang et al., 2021; Yan et al.,
2023), reinforcing the critical role of subcortical and cerebellar
dysfunction in the disorder. This underscores the need for more
targeted investigations into these regions and their contributions to
schizophrenia-related network alterations.

Our findings further suggest that schizophrenia-related
cognitive deficits are closely linked to altered subcortical and
cerebellar connectivity. The observed hypoconnectivity within
thalamic, basal ganglia, and cerebellar may indicate impaired
integration of these key subcortical structures with the rest of
the brain, potentially disrupting executive function, attention,
and motor coordination. Given that these regions play a vital
role in cognitive control and memory, their reduced connectivity
may contribute to widespread cognitive impairments observed
in schizophrenia (Mana et al, 2024). Moreover, the positive
correlation between subcortical-cerebellar connectivity and
cognitive scores suggests that stronger functional interactions
between these areas benefit cognitive performance. This finding
aligns with previous research emphasizing the role of the thalamus
and basal ganglia in cognitive regulation (Barch and Ceaser, 2011;
Silver and Feldman, 2005). Conversely, hyperconnectivity between
CB and SM networks was negatively correlated with cognitive
function, which may reflect a compensatory but inefficient
mechanism (Mana et al., 2024). Excessive sensorimotor-cerebellar
engagement may interfere with higher cognitive functions rather
than enhance them, mirroring prior findings linking disrupted
CB-SM interactions to cognitive deficits in schizophrenia
(Schmahmann, 2018). Overall, these results reinforce the idea
that schizophrenia is characterized by widespread dysconnectivity
across subcortical, cerebellar, and sensorimotor networks. Distinct
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patterns of hypo- and hyperconnectivity appear to play a crucial
role in cognitive dysfunction, highlighting the complex interplay
between brain network disruptions and schizophrenia-related
cognitive deficits.

This study opens several avenues for future research and
has some important limitations to consider. First, NeuroMark-
500 is based on a single high-model-order decomposition, which
enables the extraction of a large number of fine-grained ICNs
but does not yet leverage a multi-model-order framework. In
contrast, the NeuroMark 2.2 template utilizes a multi-model-
order ICA strategy, combining components derived from different
lower model orders. There is significant promise in developing
a unified network template that merges these two approaches.
Such a combined template could capitalize on the strengths of
both—capturing large-scale, robust networks as well as subtle,
focal ICNs—offering a more comprehensive and flexible tool
for mapping brain functional architecture in both typical and
clinical populations. Second, while this work demonstrates the
feasibility of a model order of 500, future research should
explore even higher model orders to further refine network
granularity, provided that sufficiently large datasets and rigorous
validation procedures are employed to ensure robustness and
reproducibility. Third, the observed modular organization within
the sFNC matrix involving the cerebellar domain suggests the
possible existence of sub-domains within this region. Future studies
should examine this structure in greater depth and aim to classify
the cerebellar domain into distinct, functionally meaningful sub-
domains. Moreover, our analyses are limited to static FNC, which
assumes that connectivity patterns remain constant throughout the
scan. Because brain connectivity is inherently dynamic, temporal
fluctuations may provide additional insights into schizophrenia-
related network alterations. Incorporating dynamic FNC analyses
could help capture time-varying connectivity patterns and better
characterize transient network states. Finally, although higher-
order ICA appears effective in detecting subtle connectivity
differences, it remains unclear how well these patterns predict
clinical outcomes or cognitive impairments in schizophrenia.
Validation with larger, independent, and longitudinal datasets will
be necessary to establish the clinical relevance and translational
value of these findings.

6 Conclusion

This study demonstrates the power of fine-grained ICNs
from large resting-state fMRI datasets in understanding brain
functions. By applying a 500-component ICA model to an
extensive dataset of over 58,000 individuals, we achieved 131
highly reproducible and spatially refined ICNs of the brain
and introduced NeuroMark-500. Furthermore, our analysis of
sENC in schizophrenia revealed distinct patterns of hypo-
and hyperconnectivity, particularly within subcortical, cerebellar,
and sensorimotor regions, highlighting their critical role in
schizophrenia-related cognitive deficits. These findings suggest
that NeuroMark-500 can serve as a valuable template for future
neuroimaging studies, with potential clinical applications in
psychiatric research.
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