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Edge AI implements neural networks directly in electronic circuits, using either
deep neural networks (DNNs) or neuromorphic spiking neural networks (SNNs).
DNNs offer high accuracy and easy-to-use tools but are computationally
intensive and consume significant power. SNNs utilize bio-inspired, event-
driven architectures that can be significantly more energy-efficient, but they
rely on less mature training tools. This review surveys digital and analog edge-AI
implementations, outlining device architectures, neuron models, and trade-offs
in energy (J/OP), area (μm2/OP), and integration technology.
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1 Introduction

Neuromorphic computing emerged in the 1990s as a complement to von Neumann
architectures, exploring bio-inspired neural systems. With the rise of Internet of Things
(IoT) applications, neural networks (NNs) are increasingly implemented directly in
hardware, known as edge AI. Choosing the right NN architecture is nontrivial: while
hardware design is driven by power, area, and speed, NN performance depends on training
methods, architecture, and hyperparameters.

Deep neural networks (DNNs) have achieved remarkable success (Li et al., 2022),
leveraging backpropagation with optimizers such as SGD and Adam. Supported by
mainstream libraries like TensorFlow (Hope et al., 2017), they are accessible but
computationally intensive and not suitable for edge AI. Such a solution presents an energy
efficiency consideration in terms of the number of floating operations per second (i.e.,
Eeff in W/FLOPS), and it is often implemented in cloud computing. More efficient edge
implementations exist in microcontrollers, such as TinyOL (Ren et al., 2021), TinyTL
(Cai et al., 2020), MCUNet (Lin et al., 2020), STM32N6 (El-Ouazzane, 2024), if model
compression and limited accuracy are considered. Such solutions enable frugal AI with
milliwatt-level power.

Spiking neural networks (SNNs) bridge artificial and biological intelligence on low-
power devices (Shrestha et al., 2022). State-of-the-art digital implementations include
SpiNNaker (Furber et al., 2014), TrueNorth (Debole et al., 2019), and Loihi 2 (Orchard
et al., 2021). Learning rules such as spike-time-dependent plasticity (STDP) in Gautam
and Kohno (2021) support bio-inspired applications, but neuromorphic chips remain
niche due to cost and availability. Analog SNNs mimic biological neurons with excellent
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energy efficiency, down to fJ/SOP in Danneville et al. (2019), but
face challenges in depth, silicon integration, reliability, and training
tools compared to digital solutions.

The widespread topic discussion and the variety of
experimental conditions are a challenge for a systematic literature
review. This review compares digital and analog edge-AI
approaches, focusing on neuron models, device architectures, and
trade-offs in energy (J/OP), area (μm2/neuron), and integration
technology. As benchmarks remain fragmented, we highlight
challenges and opportunities across both domains. To the best of
the author’s knowledge, this review is the first work comparing NN
solutions of neuromorphic circuits for edge AI, converging both
points of view.

2 Deep neural network

Conventional neural network (NN) architectures consist of
recurrent, convolutional, pooling, and fully connected layers
selected to solve classification, regression, or generative problems.
They are highly effective for regression, classification, clustering,
modeling, segmentation, control or decision-making, generative,
and ranking or recommendation problems. Depending on the
architecture and the problem, many names have been used to
describe the NN. Indeed, an NN is made up of neurons, and the
most common mathematical model of neurons is the McCulloch
and Pitts (Li et al., 2022). Perceptron models were developed,
including learning capabilities for such neurons. Feedforward and
backpropagation algorithms became popular in NN training while
using SGD and tailored loss functions. According to Li et al. (2022),
challenges such as local optima, overfitting, gradient vanishing,
and gradient exploding were responsible for the paradigm shift
to DNNs. DNNs are characterized by (i) multiple hidden layers
and (ii) layer-wise pre-training. Thus, the name DNN has become
the most widely used term in the literature to describe a layered
computational model composed of multiple interconnected layers
of neurons capable of extracting and representing complex patterns
from input data.

DNNs leverage different activation functions [f (·)] to express
the complex non-linear capabilities of a neuron. Common f (·)
functions are sigmoid, hyperbolic tangent, Swish, Mish, and
rectified linear unit functions, along with their variations. The
data input (xi) is multiplied by synaptic weights (ωi,j), which are
trainable variables in an NN, and then a bias (bj) is added to
represent the internal state of neuron (j). The data output (yj) of
layer i is mathematically described as yi = f

(∑
xi · ωi,j + bj

)
.

To capture the discrepancy between a mathematical model’s
predictions and the observed data, a figure of merit reflecting the
model error is often referred to as an objective or a loss function.
The most commonly used loss functions are the mean squared
error, the mean absolute error, and the cross-entropy loss, applied
to binary, categorical, or logit-based probabilities. The use of an
optimization algorithm is the best solution to iteratively update the
set of ωi,j in a way that decreases the loss over time (or epoch).

Lemma 1. If ŵ1 = ŵ0 −γ∇F(ŵ0), where ∇F(ŵ0) is the gradient of
F evaluated at ŵ0, then for a small enough γ ,

F(ŵ0) ≥ F(ŵ1).

While convergence to the global minimum is guaranteed for convex
functions, optimization in non-convex settings (e.g., typical in
DNNs) may lead to convergence on local minima. Nevertheless, in
practice, such solutions are often sufficient, as demonstrated by the
remarkable empirical success of DNNs.

Unlike full-batch gradient descent, which computes gradients
using the entire dataset, SGD estimates gradients using mini-
batches, typically comprising 50 to 500 samples. While smaller
mini-batches reduce computation time per update, they introduce
higher variance in gradient estimates, leading to fluctuations
in the objective function. These fluctuations, though potentially
destabilizing, can aid convergence in non-convex landscapes by
helping the optimizer escape shallow local minima. As a result,
mini-batch SGD has become standard in DNN training. A critical
hyperparameter is the learning rate, which governs the step size
along the negative gradient. If set too high, the optimizer may
diverge; if too low, convergence may be excessively slow.

The Adam algorithm is a gradient-based optimization
algorithm that improves upon standard SGD by incorporating
momentum and adaptive learning rates. Unlike SGD, which
applies a single global learning rate, Adam maintains per-
parameter learning rates that adapt during training based on
estimates of the first and second moments (i.e., the mean and
uncentered variance) of the gradients. This allows Adam to
efficiently handle sparse gradients and noisy data. Moreover, it is
more stable and converges faster, especially in high-dimensional,
non-convex optimization. As a result, Adam often requires less
hyperparameter tuning and performs well out of the box across a
wide range of deep learning tasks.

Cloud computing implementation of DNNs is outside the
scope of this review, and learning TensorFlow is a great
reference for delving into this subject, as in Hope et al.
(2017). Considering edge computing implementation, DNNs
can be implemented in graphics processing units (GPUs),
microcontrollers, and field-programmable gate arrays (FPGAs).
GPUs are commonly used to accelerate deep learning processes,
where NNs are online trained through hardware accelerators
(Rothmann and Porrmann, 2022). They are the main solution, as
area costs are low and deployment solutions are fully compatible
with both cloud computing environments. GPU-accelerated
architectures ensure NN scalability, high-performance processing,
and efficient resource utilization. The main drawback is power
consumption, which ranges from hundreds of watts to thousands
of watts. Tiny machine learning and frugal AI architectures
are a fast-growing research area committed to democratizing
deep learning for all-pervasive microcontrollers (Ren et al.,
2021). The challenges are the power, memory, and computation
limitations of microcontrollers. However, such solutions are based
on batch/offline settings, and they support only the NN’s inference
on microcontrollers. FPGAs provide flexible, distributed on-chip
memory resources, such as LUT-based distributed RAM and
dedicated memory. These resources enable the design of domain-
specific architectures, resulting in high computational speed, less
data movement, and improved energy efficiency compared to
microcontrollers (Rothmann and Porrmann, 2022). The literature
shows that FPGA-based implementations can achieve performance
gains comparable to those of GPU-based implementations for
the specific workloads tested. Nevertheless, microcontrollers
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remain a popular low-cost, low-power solution for hardware-
friendly NNs.

Cai et al. (2020) have researched memory-efficient on-device
learning solutions for microcontroller implementation. The work
of Cai et al. (2020) proposes to freeze the weights while only
learning the bias modules, which reduces the storage required
for the intermediate activations. Lin et al. (2020) has proposed
a system-model co-design framework that enables deep learning
on off-the-shelf microcontrollers. The proposal is a two-stage
neural architecture search capable of handling the tiny and diverse
memory constraints. Ren et al. (2021) have proposed a novel
system called TinyOL, including incremental online on-device
learning capabilities. Supervised and unsupervised setups were
tested, validating the effectiveness and feasibility of the approach.
The STM32 microcontroller is a common choice in the literature,
and that’s why ST Microelectronics has been personally involved
in edge-AI research. El-Ouazzane (2024) have presented the novel
architecture STM32N6 and the associated tool set (CubeAI). Such a
solution provides similar AI performance to a quad-core processor
with an AI accelerator, but at one-tenth the cost and one-twelfth
the power consumption. Jouni et al. (2025a) has proposed a design
framework capable of synthesizing a fully analog solution of a
Multi-Layer Perceptron using TensorFlow tools and physics-
informed models from post-layout transistor-level behavior. Such
publications highlight that co-design is mandatory to address the
trade-off between silicon area and energy efficiency for a specific
NN architecture and training tools.

3 Spiking neural network

Neuromorphic circuits have gained significant attention in
the literature as a potential bio-inspired solution for SNNs. In
contrast to the MacCulloch and Pitts neuron model found in
DNN implementations, SNNs seek biologically plausible and more
complex mathematical models of neurons. Common choices are
Hodgkin-Huxley (HH), Morris-Lecar (ML), Izhikevich, Resonate-
and-Fire (R&F), Leaky Integrate-and-Fire (LIF), and Integrate-
and-Fire (I&F), ordered from the most biologically inspired
and complex to the simplest. In contrast with DNNs, SNN
offers notable improvements in power efficiency and latency
across various computational tasks. This is due to their event-
driven and asynchronous nature, where processing elements
communicate via spikes and consume energy only when active.
Additionally, SNNs integrate memory and computation, thereby
minimizing data transfer bottlenecks. Their spike-based (i.e.,
time- or rate-related) encoding can carry more information than
traditional representations.

SpiNNaker (Furber et al., 2014) is one of the first projects
to address the implementation of a large-scale SNN with 1,000
LIF neurons. Truenorth (Debole et al., 2019) takes brain-inspired
processors to another level with 1 million LIF neurons and up
to 256 million configurable synapses. Loihi 2 (Orchard et al.,
2021) supports user-defined neuron models via programmable
microcode, allowing for custom dynamics, including Izhikevich,
R&F, or LIF. A single Loihi 2 chip supports up to 1 million neurons
and roughly 120 million synapses, while multi-chip systems, such
as Intel’s Hala Point, support billions of neurons and synapses.

However, digital neuromorphic circuits do not natively support
biologically plausible models such as HH or ML. Another limitation
is on power consumption, which makes them good competitors
to cloud computing but not efficient enough for edge computing.
Moradi et al. (2018) have proposed a hybrid analog/digital solution
for I&F neuron models with asynchronous digital circuits, event-
addressing traffic, and limited power consumption. Recently, Leone
et al. (2025) has introduced a scalable edge-AI using a low-cost
and low-power FPGA, also equipped with an RISC-V subsystem
for flexible and reconfigurable SNN, theoretically supporting up to
65,000 neurons and 19 million synapses.

Analog neuromorphic circuits are usually spiking resonators,
which are excited or inhibited by a control variable (i.e., current or
voltage). Spiking rate and time (or phase) encoding are obtained
from the physical phenomena of such a resonator. A decade of
research was conducted before (Indiveri et al., 2011) consolidated
the most common building blocks and techniques used to
implement neuromorphic circuits. The Indiveri et al. (2011)’s
experimental results from LIF and HH models have demonstrated
the feasibility of ultra-low-power analog solutions, challenging
digital ones in terms of higher energy efficiency. Sourikopoulos
et al. (2017) have innovated on ML neuron design, highlighting the
trade-off between speed and energy efficiency. The proposed ML
(Sourikopoulos et al., 2017) and later LIF (Danneville et al., 2019)
models have enabled a higher firing pattern operation, being one
of the first publications on energy efficiency in the fJ/SOP range.
Besrour et al. (2022) has designed a LIF neuron using conventional
28 nm technology, and the achieved performance evidences a
promising solution for large-scale analog SNN. An edge solution
using analog SNN is proposed by Jouni et al. (2023b), where an RF
neuromorphic spiking sensor with an SNN of ML or LIF neurons
is capable of recognizing the orientation of a transmitter.

Although SNNs offer a variety of learning algorithms, the
efficient and well-established SGD learning algorithms from
TensorFlow are not directly applicable. To overcome these
limitations, Rioufol et al. (2023) has revisited the ML neuron
from Sourikopoulos et al. (2017) in a novel way, able to deal
with SNN limitations in deep learning through well-established
algorithms. Such an ANN2SNN algorithm uses a non-spiking
ANN, which is trained and then converted into an SNN. Wei et al.
(2024) has developed the ANN2SNN conversion maps to train
DNN activations into SNN firing rates or use backpropagation
through time to directly optimize SNN temporal dynamics through
surrogate gradients. Since there is no concept of time in ANNs, the
ANN2SNN algorithm lacks temporal dependency, whereas both
backpropagation through time (BPTT) and STDP algorithms are
highly related to the timing of spike firing (Wei et al., 2024). The
most widely used tool for SNN training is STDP due to its biological
plausibility as a learning rule through the temporal correlation
of events (Gautam and Kohno, 2021). STDP is a robust learning
rule for SNNs, enabling on-chip unsupervised learning (Sun et al.,
2022) and yielding excellent results in digital implementations.
Nevertheless, Jouni et al. (2023a) has shown that noise significantly
affects spike occurrence time in analog implementations due to
transistor noise sources. Such work has suggested that the spiking
rate could be a better metric in terms of noise immunity, while
learning through spike timing may turn ωi,j into a random variable,
degrading SNN accuracy.

Frontiers in Neuroscience 03 frontiersin.org

https://doi.org/10.3389/fnins.2025.1676570
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


M. Ferreira et al. 10.3389/fnins.2025.1676570

The lack of mainstream tools and the limitations in spike-
timing representation led some authors to look for mathematical
modeling solutions to represent ML and LIF behaviors as a non-
linear f (·) comparable to RELU or sigmoid. Soupizet et al. (2023)
have made an effort in considering physically informed f (·) in
a synthesis framework based on TensorFlow, which revealed
a mutually exclusive trade-off between deep learning and ultra-
low power. Recently, Bossard et al. (2024) has demonstrated
how the use of noise modeling in physically informed analog
neuron models could improve SNN training and minimize the
accuracy drop under noise. Moreover, Ferreira et al. (2025)
have revealed how noise optimization of neuromorphic circuits
could induce a stochastic resonance phenomenon, which may
improve SNN performance under specific conditions. Khacef et al.
(2023) have highlighted the trade-offs in neuron models, synaptic
plasticity schemes, learning, and neural computation, providing
a valuable survey on neuromorphic circuits and SNN training.
Jouni et al. (2025b) have introduced an energy-efficient received-
signal-strength SNN classifier for a 360◦ range and a 10◦ angular
resolution relying on ML neurons and a customized training
framework based on TensorFlow.

4 Discussion

When implementing edge AI, designers often must choose
between DNNs and SNNs. This decision involves balancing
power consumption, hardware area, computational speed, and
ease of training. Figure 1 illustrates the qualitative advantages
and disadvantages of DNN and SNN implementations. DNNs
are commonly deployed on general-purpose electronic circuits
and process continuous-time signals, whereas SNNs require
application-specific electronics, often called neuromorphic
processing units (NPUs), to handle discrete-time signals. DNN
operations depend on floating-point multiply-accumulate (MAC)
units, which require large digital circuits (i.e., memory), whereas
SNNs have neuron model units implemented in either digital or
analog circuits. As a result, DNNs offer high-speed computation
at the expense of significant power consumption and area
requirements. Each SNN design is tailored to its spike model,
limiting standardization and the availability of benchmarks.

DNNs benefit from well-established training algorithms,
making them relatively easy to train. Ultimately, DNNs can
autonomously learn hierarchical features from raw input data,

FIGURE 1

Neural network design trade-offs: a comparison between DNN and SNN architectures.
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TABLE 1 Literature comparison of neuromorphic circuits for edge-AI neural networks.

References Device
architecture

Impl. model Energy eff.
(J/OP)

Area eff.
(μm2/OP)

Tech.

Indiveri et al. (2011)∗
Analog HH 4 p NA 0.6 μm

Sourikopoulos et al. (2017)∗
Analog ML simpl. 4 f 35 65 nm

Moradi et al. (2018)∗
Mixed I&F 17 p 8.8 0.18 μm

Espeholt et al. (2018)†

Digital GPU MAC 27 p 53.3 16 nm

Spanò et al. (2019)∗
Digital FPGA MAC 6.6 n 11.5 40 nm

Danneville et al. (2019)∗
Analog LIF 2 f 31 65 nm

Debole et al. (2019)∗
Digital NPU LIF 26 p 0.079 28 nm

Lin et al. (2020)∗
Digital STM32F7 MAC 3.3 n NA 90 nm

Ren et al. (2021)∗
Digital Arduino Nano
33BLE

MAC 11.5 n NA 90 nm

Orchard et al. (2021)∗
Digital NPU
NPU

Izhikevich,
R& F or I&F

23.6 p 0.029 14 nm

Besrour et al. (2022)†

Analog LIF 1.2 f 34 28 nm

Jouni et al. (2023b)†

Analog ML, or LIF 65.5 f 123.4 55 nm

Rioufol et al. (2023)†

Analog ML bio 10 f 104.76 55 nm

El-Ouazzane (2024)†

Digital STM32N6 MAC 330 p NA 16 nm

Jouni et al. (2025a)†

Analog MPL 1.19 f 49.2 55 nm

Leone et al. (2025)∗
Digital FPGA I&F 62 p 80 40 nm

Jouni et al. (2025b)†

Analog ML 1.83 n NA 55 nm

Measurements ∗ ; Simulations † .

eliminating the need for manual feature engineering. Nevertheless,
training DNNs requires significant computational resources,
including powerful GPUs and substantial memory. Their layered
architectures rely on standard activations and can be limited by
memory bandwidth. DNNs often require large, labeled datasets
for effective training, which may not be available or adaptable
for dynamic input streams. Moreover, DNNs exhibit robustness
to noise and distortion in the input data, making them effective
in real-world applications. In this context, the opaque nature of
the decision-making process poses a challenge for creating reliable
and explainable DNNs. DNNs can handle large-scale datasets and
complex models, leveraging architectural versatility and scalability
for improved accuracy. However, this is not without the risk of
overfitting, considering the hyperparameters applied.

SNNs mimic the temporal dynamics and spike-based
communication of biological neurons, enabling more realistic
neural modeling. They are typically implemented on neuromorphic
circuits, which have computation and memory on the same node
(i.e., theoretically unlimited memory bandwidth). Analog and
digital neuromorphic implementations face trade-offs between
scalability, variability, and programmability. These neuromorphic
circuits provide significant reductions in power and area compared
to traditional DNNs. However, their computational speed is
usually slower due to the asynchronous and event-based nature
of spike communication. Effective learning algorithms for SNNs,
like STDP, are less developed and more difficult to implement
than SGD-based algorithms for DNNs. Compared to DNNs,
SNNs currently lack standardized benchmarks and widespread
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practical applications. This encourages the development of
tailored, physics-informed datasets for SNN evaluation. SNNs
can model complex dynamics with low-power neuron models,
especially suitable for sparse, event-driven, and spike-based
applications, leading to potential energy savings and reduced
redundant processing.

Figure 1 summarizes the major trade-offs discussed in the radar
chart. See Figure 1 and the cited literature for detailed energy-area
comparisons. Table 1 quantifies the figures of merit available in the
literature. Energy efficiency is evaluated during NN inference, while
power consumption is measured and normalized by the number of
operating points (OP). Area efficiency is obtained from fabricated
chip or layout estimations, normalized to the complexity of the NN
model (i.e., number of neurons). One may observe that smaller
technology nodes lead to better efficiency; this trend is consistent
with Moore’s Law.

Analog architectures have a significant advantage in energy
efficiency, consuming at least 1,000 times less power compared
to digital ones in Sourikopoulos et al. (2017), Danneville et al.
(2019), Besrour et al. (2022), Rioufol et al. (2023), and Jouni
et al. (2025b). This advantage is due to weak inversion (sub-
threshold) biasing, which is unavailable in digital solutions.
Considering analog solutions, area efficiency may be ultimately
limited at 30 μm2 by the relatively uniform capacitance density
across integration technologies, like Sourikopoulos et al. (2017),
Danneville et al. (2019), and Besrour et al. (2022). Digital
architectures instead are not limited by the same factors
and scale better in smaller nodes, like in Debole et al.
(2019) and Orchard et al. (2021). DNNs developed in general-
purpose electronics have lower device costs (development and
production) than SNN competitors. Besides, edge-AI requirements
are addressed by such hardware, like the Arduino Nano
33BLE from Ren et al. (2021) or the FPGA from Leone
et al. (2025). Therefore, DNNs deliver superior computational
performance and development convenience. They are limited by
memory size and bandwidth while consuming more energy and
silicon area.

SNNs provide a promising alternative for ultra-low-power
and compact designs, although at the cost of slower operation
and training complexity. The choice between these architectures
presents a major trade-off in edge AI system design. In
scenarios where fast response and robust training pipelines are
essential, DNNs are often preferred. Conversely, for power-
constrained or bio-inspired applications, SNNs offer compelling
advantages. Computing and memory for SNNs are located
within the same node, which requires a paradigm shift from
von Neumann to neuromorphic computing. Indeed, SNNs will

require problem-specific solutions. Frugal AI methods and physics-
informed datasets are promising, since current general NN
architectures lack SNNs.
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