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Introduction: Steady-state visual evoked potential (SSVEP) has emerged as 
a pivotal branch in brain-computer interfaces (BCIs) due to its high signal-
to-noise ratio (SNR) and elevated information transfer rate (ITR). However, 
substantial inter-subject variability in electroencephalographic (EEG) signals 
poses a significant challenge to current SSVEP frequency recognition. In 
particular, it is difficult to achieve high cross-subject classification accuracy in 
calibration-free scenarios, and the classification performance heavily depends 
on extensive calibration data.
Methods: To mitigate the reliance on large calibration datasets and enhance 
cross-subject generalization, we propose SSVEP time-frequency fusion network 
(SSVEP-TFFNet), an improved deep learning network fusing time-domain and 
frequency-domain features dynamically. The network comprises two parallel 
branches: a time-domain branch that ingests raw EEG signals and a frequency-
domain branch that processes complex-spectrum features. The two branches 
extract the time-domain and frequency-domain features, respectively. 
Subsequently, these features are fused via a dynamic weighting mechanism and 
input to the classifier. This fusion strategy strengthens the feature expression 
ability and generalization across different subjects.
Results: Cross-subject classification was conducted on publicly available 
12-class and 40-class SSVEP datasets. We also compared SSVEP-TFFNet 
with traditional approaches and principal deep learning methods. Results 
demonstrate that SSVEP-TFFNet achieves an average classification accuracy 
of 89.72% on the 12-class dataset, surpassing the best baseline method by 
1.83%. SSVEP-TFFNet achieves average classification accuracies of 72.11 and 
82.50% (40-class datasets), outperforming the best controlled method by 
7.40 and 6.89% separately.
Discussion: The performance validates the efficacy of dynamic time-frequency 
feature fusion and our proposed method provides a new paradigm for 
calibration-free SSVEP-based BCI systems.
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1 Introduction

The brain-computer interface (BCI) enables direct interaction 
between human beings and external devices by decoding 
Electroencephalogram (EEG) signals, conveying users’ intentions 
without peripheral nerves or muscles (Wolpaw et al., 2000). The 
applications of BCI covers assisting paralyzed patients in 
operating equipment, controlling wheelchairs or robotic arms, 
assembly of industrial products and intelligent home control 
(Dong et al., 2022). EEG is the principal source for noninvasive 
BCI systems on account of its low cost, portability, and high 
temporal resolution (Abiri et  al., 2019). Steady-state visual 
evoked potential (SSVEP) (Nijboer et al., 2008), motor imagery 
(Ge et al., 2021) and P300 (Ang et al., 2008) are several common 
experimental BCI paradigms. In particular, SSVEP-based BCI has 
attracted significant attention due to the high information 
transfer rate, rich command set, and minimal training 
requirements (Zhang et al., 2022; Rostami et al., 2022), bringing 
promising applications in smart home control (Chai et al., 2020), 
clinical rehabilitation (Wang et  al., 2023), and assistive 
communication (Rezeika et al., 2018). Researchers believe that 
various neural networks distributed in the brain have their 
inherent resonant frequencies. Under resting state, these neural 
networks are all asynchronous with each other and are disordered, 
without any regularity. At this time, the EEG signals are 
spontaneous brainwaves. When a constant-frequency external 
visual stimulus is applied, the neural networks that are in phase 
with the stimulus frequency or its harmonics will resonate, 
resulting in significant sustained oscillatory response in the 
brain’s potential activity at the stimulus frequency and its 
harmonics, thereby generating the SSVEP signal (Zhou, 2008; 
Wang et al., 2020).

In SSVEP-based BCI systems, the primary task is to decode the 
user’s intention accurately by identifying the frequency of the 
attended visual stimulus through EEG processing (Liu et al., 2022). 
To enhance the reliability of SSVEP-BCI systems, a variety of 
frequency-recognition methods have been developed, spanning 
from traditional signal processing techniques to current deep 
learning approaches. However, most methods focus on single 
domain features, which decreases the recognition rate and 
information transfer rate (ITR). Additionally, there is a lack of 
model generalization in cross-subject scenarios. In this case, 
we propose the SSVEP time-frequency fusion network (SSVEP-
TFFNet) for SSVEP frequency recognition, an improved deep 
learning network fusing time-domain and frequency-domain 
features dynamically. The network consists of two parallel branches: 
a time-domain branch that ingests raw EEG signals and a 
frequency-domain branch that processes complex-spectrum 
features. The two branches extract the time-domain and frequency-
domain features separately. These features are fused via a dynamic 
weighting mechanism afterwards and input to the classifier.

The remainder of this paper is as follows: Section 2 reviews 
the related work. Section 3 describes the overall schematic and 
relevant theories, including the datasets and our proposed 
SSVEP-TFFNet model. Section 4 lists the results step by step. 
Section 5 discusses the effect of channel number, ablation 
analyses and model interpretability. Section 6 summarizes the 
full text.

2 Literature review

2.1 Traditional methods in SSVEP 
frequency-recognition

Early SSVEP frequency-recognition methods relied on fast 
Fourier transform (FFT) to convert EEG signals from time domain 
into frequency domain, identifying the stimulus frequency by 
detecting the spectral peak on a single EEG channel. However, this 
approach is highly susceptible to noise and requires relatively long 
time windows to achieve acceptable accuracy (Cheng et al., 2002). 
Subsequently, canonical correlation analysis (CCA) was introduced 
and widely utilized. CCA synthesizes reference sinusoidal signals at 
each candidate stimulus frequency, and computes the canonical 
correlation coefficients between multichannel EEG signals and each 
reference signal. The stimulus frequency with the highest canonical 
correlation coefficient is selected as the predicted frequency (Lin et al., 
2006). Apart from the fundamental frequency in SSVEP, harmonics 
can provide additional discriminative information. Filter bank CCA 
(FBCCA) was then introduced to decomposes the SSVEP into 
multiple sub-bands via a bank of bandpass filters and fuses 
fundamental and harmonic components afterwards to improve 
frequency detection performance (Chen et  al., 2015). Later, task-
related component analysis (TRCA) for SSVEP frequency recognition 
was adapted for the first time (Nakanishi et al., 2017). TRCA used 
each subject’s EEG as a template and maximized the covariance 
between trials to derive spatial filters that extracted task-related 
components. The classification accuracy achieved up to 89.83% in 
SSVEP-BCI systems. However, TRCA tends to produce redundant 
spatial filters for each stimulus and is not capable of fully exploiting 
temporal information. Accordingly, task-discriminant component 
analysis (TDCA) was proposed to further improve the performance 
under individual calibration (Liu et  al., 2021). However, these 
traditional methods are constrained by relying on single domain 
feature, which limits the capacity to capture high-level features. 
Consequently, during the classification of complex EEG signals, both 
the classification accuracy and the ITR are relatively low (Lei et al., 
2024). Especially, in cross-subject scenarios, substantial inter-subject 
variation in EEG characteristics leads to dramatic degradation of 
classification performance. Robust cross-subject SSVEP classification 
is critical for practical BCI deployment.

2.2 Deep learning methods in SSVEP 
frequency-recognition

Over the past decade, deep learning have achieved significant 
progress in biosignal analysis (LeCun et al., 2015). Because of the 
ability to learn representations in an end-to-end manner, deep neural 
networks have been gradually applied to EEG analysis in recent years 
(Roy et al., 2019; Lawhern et al., 2018). Regarding the characteristics 
of SSVEP signals, researchers have designed various neural networks.

Time domain features are usually extracted in SSVEP analysis. 
EEGNet is a compact convolutional neural network (CNN) that 
employed depthwise separable convolutions to automatically extract 
discriminative features from multichannel SSVEP time-domain 
signals (Waytowich et al., 2018). EEGNet required no subject-specific 
calibration and demonstrated superior cross-subject adaptability 
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compared to traditional methods. Time-domain-based CNN (tCNN) 
was proposed to model the temporal dynamics of SSVEP signals via 
one-dimensional time-domain convolutions (Ding et al., 2021). Later, 
the filter bank tCNN (FB-tCNN) was further proposed. FB-tCNN 
could process multiple band-pass sub-bands in parallel and fuse their 
discriminative information, making it effective for frequency 
recognition especially with short time windows. SSVEPNet integrated 
one-dimensional convolutions with a long short-term memory 
(LSTM) network to enhance temporal modeling (Pan et al., 2022). 
This model incorporated spectral normalization and label-smoothing 
regularization to mitigate overfitting, achieving the classification 
accuracies of 84.45 and 84.22% on the four-class and twelve-
class datasets.

Apart from time domain features, frequency domain features are 
taken advantage of in SSVEP analysis as well. CNN trained on 
complex spectrum features (C-CNN) was designed (Ravi et al., 2020). 
It is a shallow convolutional network focused on frequency-domain 
feature extraction. The raw EEG signals were first transformed by FFT, 
and the resulting real and imaginary components were concatenated 
as network input. Thence, both amplitude and phase were captured 
and rich spectral details were maintained with low computational cost.

Deep learning methods utilizing features from different domains 
are gradually made use of for SSVEP recognition. An effective data-
augmentation technique called EEG mask encoding (EEG-ME) was 
introduced to mitigate overfitting (Ding et al., 2024). EEG-ME masked 
portions of the EEG so as to encourage the network to learn more 
robust features and improve generalization. In order to model the 
spatial-topological structure of EEG signals more effectively, a 
network integrated a temporal feature extractor, a spatial topology 
converter and a multigraph subspace module (TSMNet) was presented 
for SSVEP classification (Deng et  al., 2025). The proposed model 
realized the classification accuracies of 84.76 and 73.95% on two 
publicly available datasets.

Although these deep learning approaches have made progress to 
some extent, undeniable inter-subject variability in EEG signals, 
stemming from factors such as age, sex, and lifestyle (Liu et al., 2024; 
Huang et al., 2023), still provokes low classification accuracy and poor 
generalization in calibration-free and cross-subject scenarios. A 
higher accuracy usually depends on collecting subject-specific 
calibration data to train the models. However, EEG acquisition is 
usually laborious and time-consuming, limiting the practical 
applicability of SSVEP-BCI systems (Chiang et al., 2019). Meantime, 
current methods tend to learn features exclusively in either time 
domain or frequency domain. Time-domain based approaches focus 
on capturing temporal dynamics but may fail to extract stable spectral 
characteristics. Frequency-domain based methods utilize only static 
spectral information and overlook time-varying properties of signal 
(Singh and Krishnan, 2023).

To achieve robust performance across different subjects, there is 
a need to extract effective features and transfer learned recognition 
patterns to new users. In this paper, we propose the SSVEP time-
frequency fusion network (SSVEP-TFFNet) for SSVEP frequency 
recognition. SSVEP-TFFNet comprises two parallel feature-extraction 
branches: a time-domain branch that processes raw EEG signals and 
a frequency-domain branch that operates on complex-spectrum 
features. Outputs from both branches are fused via a dynamic 
weighting mechanism. The fused features are fed into two fully 
connected layers to perform frequency classification.

3 Materials and methods

3.1 Experimental paradigm and 
preprocessing

Dataset A, 12JFPM (Nakanishi et al., 2015), comprises EEG signals 
recorded from 10 subjects with normal or corrected-to-normal vision. 
Each subject was exposed to 12 distinct visual-stimulus frequencies. 
Stimuli were displayed on a 27-inch LCD monitor (60 Hz refresh rate) 
arranged in a 4 × 3 grid. Frequencies ranged from 9.25 Hz to 14.75 Hz in 
0.50 Hz increments, and phases were initialized at 0 and increased by 0.5π 
per stimulus. Each subject completed 15 sessions and each session 
contained 12 trials presented in random order, i.e., one trial per target 
frequency. When each trial began, a red square appeared at the target 
location for 1 s, during which subjects were instructed to fixate on the 
target. Subsequently, all stimuli flashed for 4 s simultaneously. Subjects 
were asked to minimize eye blinks during this interval to reduce 
Electrooculogram (EOG) artifacts. EEG signals were recorded using a 
BioSemi ActiveTwo system at 2048 Hz via eight Ag/AgCl electrodes 
positioned over the occipital region (PO7, PO3, POz, PO4, PO8, O1, Oz, 
and O2). All data were downsampled to 256 Hz. A fourth-order 
Butterworth bandpass filter between 6 Hz and 80 Hz was made use of to 
reserve the effective component of SSVEP. Given the visual-evoked 
latency, epochs were extracted 0.135 s after the stimulus began.

Dataset B, BETA (Liu et al., 2020), consists of EEG signals recorded 
from 70 healthy subjects exposed to 40 distinct visual-stimulus 
frequencies. Stimuli were arranged in a keyboard-like layout and 
presented on a 27-inch LED monitor with a 60 Hz refresh rate. 
Frequencies ranged from 8 Hz to 15.8 Hz in 0.2 Hz increments and 
phases were initialized at 0 and advanced by 0.5 π for each frequency. Each 
subject completed four sessions, each comprising 40 trials in which the 40 
target stimuli were presented in random order. Each trial began with a 
0.5 s visual cue, followed by synchronous flashing of all targets. The 
flashing lasted 2 s for the first 15 subjects and 3 s for the remaining 55 
subjects. The trail ended with a 0.5 s rest. EEG data were acquired with a 
SynAmps2 system at 1,000 Hz from 64 channels configured according to 
the international 10–10 system. A built-in notch filter removed 50 Hz 
power frequency interference, and signals were subsequently 
downsampled to 250 Hz. Unlike Dataset A, all EEG signals in Dataset B 
were collected in a non-shielded environment to reflect real-world 
conditions. The computational cost of leave-one-subject-out cross-
validation (LOSOCV) increases rapidly as the number of subjects grows. 
As a result, expanding the number of subjects not only requires an 
enhancement in the total number of validated subjects, but also doubles 
the training time for each subject, which prolongs the experimental 
period significantly. Taking other research (Ravi et al., 2020; Pan et al., 
2022) into consideration as well, we eventually chose 35 subjects in the 
analysis. In the meantime, to avoid posterior bias caused by subjective 
selection, we  adopted a deterministic and performance independent 
selection rule: The top 35 subjects were selected based on the original 
index of the dataset, rather than screening based on results or individual 
characteristics. In this paper, EEG signals from nine electrodes over the 
parieto-occipital region (Pz, PO3, PO5, PO4, PO6, POz, O1, Oz, and O2) 
were analyzed. Preprocessing comprised a fourth-order Butterworth 
bandpass filter between 7 Hz and 64 Hz, and epochs were extracted 0.13 s 
after stimulus started.

Dataset C, Benchmark (Wang et al., 2017), gathers SSVEP-BCI 
recordings of 35 healthy subjects focusing on 40 characters flickering 
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at different frequencies (8–15.8 Hz with an interval of 0.2 Hz). For each 
subject, the experiment consisted of 6 blocks. Each block contained 40 
trials corresponding to all 40 characters indicated in a random order. 
Each trial started with a visual cue (a red square) indicating a target 
stimulus. The cue appeared for 0.5 s on the screen. Subjects were asked 
to shift their gaze to the target as soon as possible within the cue 
duration. Following the cue offset, all stimuli started to flicker on the 
screen concurrently and lasted 5 s. After stimulus offset, the screen was 
blank for 0.5 s before the next trial began, which allowed the subjects 
to have short breaks between consecutive trials. Each trial lasted a total 
of 6 s. To facilitate visual fixation, a red triangle appeared below the 
flickering target during the stimulation period. In each block, subjects 
were asked to avoid eye blinks during the stimulation period. To avoid 
visual fatigue, there was a rest for several minutes between two 
consecutive blocks. EEG data were acquired with a sampling rate of 
1,000 Hz. The amplifier frequency passband ranged from 0.15 Hz to 
200 Hz. Sixty-four channels covered the whole scalp of the subject and 
were aligned according to the international 10–20 system. To remove 
the common power-line noise, a notch filter at 50 Hz was applied in 
data recording. A fourth-order Butterworth bandpass filter between 
7 Hz and 64 Hz was utilized as well. Event triggers generated by the 
computer to the amplifier and recorded on an event channel 
synchronized to the EEG data. The continuous EEG data was 
segmented into 6 s epochs (500 ms pre-stimulus, 5.5 s post-stimulus 
onset). The epochs were subsequently downsampled to 250 Hz. 
Similarly, EEG signals from nine electrodes over the parieto-occipital 
region (Pz, PO3, PO5, PO4, PO6, POz, O1, Oz, and O2) were analyzed.

3.2 The proposed module

The proposed SSVEP-TFFNet model consists of following parts: 
input module, time domain feature extraction branch (Temporal Net, 
TempNet), frequency domain feature extraction branch (Spectral Net, 
SpecNet), and feature fusion and classification modules, as displayed 
in Figure 1. Through the dual-feature extraction branch, the model is 
able to capture the complementary features of time domain and 
frequency domain from SSVEP signals efficiently, and fuse them 
adaptively to improve the classification accuracy.

3.2.1 Input module
For time-domain branch, we input the preprocessed EEG signals 

directly. For frequency-domain branch, we first apply FFT to transform 
the time-domain signals into frequency domain signals. FFT can be 
expressed as Equation 1:

	 ( ) ( ) ( )   = +   FFT Re FFT jIm FFTx x x 	 (1)

where x denotes the preprocessed time-domain data, and j is the 
imaginary unit. Re and Im represent the real and imaginary parts of 
the FFT result, respectively. For the frequency-domain data, there are 
two approaches to convert it into model input, namely the magnitude 
spectrum magX  and the complex spectrum compX  (Ravi et al., 2020), 
as shown in Equations 2 and 3:

	 ( ){ } ( ){ }   = +   
2 2

Re FFT FFTmagX x Im x
	

(2)

	 ( ) ( )   =    Re FFT FFTcompX x Im x‖ 	 (3)

where the magnitude spectrum magX  is computed as the sum of 
squares of the real and imaginary parts at each frequency point, 
considering the amplitude only and ignoring phase. In comparison, 
the complex spectrum compX  concatenates the real and imaginary 
parts, containing both amplitude and phase information. Early studies 
have suggest that phase information plays an important role in 
decoding SSVEPs (Pan et al., 2011). Therefore, we took compX  as the 
input to the frequency-domain feature extraction branch. The input 
to the frequency-domain branch, specI , can be defined as Equation 4:

	

( ) ( )
( ) ( )
( ) ( )

( ) ( )

        
       

        
 =
 
 
 
 
        

1 1

2 2

3 3

Re FFT ,Im FFT

Re FFT ,Im FFT

Re FFT ,Im FFT
.
.
.

Re FFT ,Im FFT

CH CH

CH CH

CH CH

spec

CHn CHn

x x

x x

x x
I

x x
	

(4)

where 1CHx , 2CHx , 3CHx , CHnx  mean the EEG data from different 
channels, and n is the number of channels. In this study, the frequency 
resolution of the FFT was fixed at 0.2 Hz. We extracted the real and 
imaginary parts of frequency components from each channel between 
7 Hz and 64 Hz, resulting in two vectors of length 285. These two 
vectors were concatenated into a feature vector of length 570. Thence, 

specI  could be viewed as a matrix of size CHn × 570.

3.2.2 TempNet module
In TempNet, we adopted parallel convolutional paths to extract 

time-spatial cooperative features. In the spatial–temporal path, a C × 1 
spatial convolution was first applied along the channel dimension, 
followed by a 1 × 10 one-dimensional convolution along the temporal 
dimension. C represents the number of channels of the EEG signals. 
In contrast, the temporal–spatial path applied a 1 × 10 convolution 
along the temporal dimension first, and then performed a C × 1 
spatial convolution. Each convolution operation was followed by 
BatchNorm2d and PReLU activation, and Dropout was added at the 
end of each path to suppress overfitting. The outputs of the two paths 
were summed to achieve an initial fusion of temporal features, which 
were then fed into a bidirectional one-dimensional convolution layer 
that applied convolution kernels of size 3  in both forward and 
backward directions. The results of both directions were summed and 
passed through a 1 × 1 convolution to generate the final temporal 
features. Finally, AdaptiveAvgPool was taken advantage of adjust the 
dimensions of temporal features to match that of the frequency-
domain features for subsequent fusion. The detailed parameters of 
TempNet are listed in Table 1.

3.2.3 SpecNet module
In SpecNet, we also designed two parallel convolutional paths to 

fully dig frequency-spatial cooperative features. The spectral-spatial 
path first applied a 1 × 10 one-dimensional convolution along the 
spectral dimension to extract local fine-grained frequency features. 
Next, it used a C × 1 spatial convolution to fuse information across 
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channels. The spatial-spectral path first conducted a C × 1 spatial 
convolution along the channel dimension to capture inter-channel 
cooperative information, and then applied a 1 × 10 one-dimensional 
convolution along the spectral dimension to further refine the fused 
spatial features. Subsequently, both paths employed a 1 × 35 
one-dimensional convolution to capture larger-scale spectral context, 
and their outputs were summed to form the integrated frequency-
domain representation. Each convolutional operation was 
immediately followed by BatchNorm2d and PReLU activation, with 
dropout applied at the end of each path. To enhance the model’s ability 
to discriminate key frequency bands, a channel-attention module was 

introduced on the fused output. It first obtained channel descriptors 
via global average pooling and global max pooling. Then, it used two 
1 × 1 convolutions and a Sigmoid mapping to dynamically weight 
each channel, thus improving the reliability of effective feature 
representations. The detailed parameters of SpecNet are given in 
Table 2.

3.2.4 Feature fusion and classification
During feature fusion, we first computed attention weights at each 

position of the time and frequency domain features using two fully 
connected layers followed by a Softmax function. These attention weights 

FIGURE 1

The framework diagram of our proposed model. (a) The schematic diagram of SSVEP-TFFNet. (b) Network of the channel-attention module. (c) 
Network of the feature fusion module.
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were then utilized to perform a weighted summation of the time and 
frequency domain features. The fused features were flattened and passed 
through a two-layer fully connected classification network. The first layer 
compressed the high-dimensional features into a lower-dimensional 
space linearly, followed by LayerNorm, PReLU activation, and Dropout 
to enhance expression capacity and suppress overfitting. The second 
layer mapped the hidden representation linearly to a U-dimensional 
category space. Through normalization and regularization, this design 
preserved nonlinear expressiveness while improving training stability 
and model generalization. The detailed parameters are given in Table 3.

We chose LOSOCV on the public datasets to evaluate the cross-
subject generalization ability of the model. Specifically, in each round 
of experiments, the data from one subject were taken as the test set, 
and the data from the other subjects were selected for training, until 
the data of each subject were used once as the test set. All deep learning 
models were implemented in PyTorch. Previous studies (Pan et al., 
2022; Miyato et al., 2018) have shown that spectral normalization helps 
improve the performance of SSVEP model. Therefore, we introduced 
this regularization technique into our proposed model. In our 
network, spectral normalization was applied to each convolutional 
layer and fully connected layer. Specifically, to enforce K-Lipschitz 

continuity on the weight matrix W, the minimum of K is ( )σ λ= 1W
, where λ1 is on behalf of the largest singular of TW W . Thus, aiming at 
constraining W  to satisfy 1-Lipschitz continuity and stabilize the 
network training process, we adjusted all elements of W  as Equation 5:

	
( ) ( )σ

=SN
WW W
W 	

(5)

In this study, we did not conduct a large-scale hyperparameter 
search. Instead, we adopted parameter settings based on experience 
and common practices to ensure a stable training process and the 
completion of all comparative experiments within a reasonable time. 
In other words, the parameter selection was “experience-driven” 
rather than the result of fine-tuning. This avoids masking the inherent 
advantages and disadvantages of the methods due to excessive 
parameter tuning and is more in line with the practical application 
scenarios. During training, the cross-entropy loss function was 
utilized and the optimizer was Adam. The initial learning rate was 
0.001, the dropout rate was set to 0.5, and the number of epochs was 
150. For Dataset A, the L2 regularization coefficient was set to 0.0001 

TABLE 1  Parameters of TempNet.

Layer Layertype Kernal Stride Out Shape Options

Input 1 (C, T)

Spatio-Temporal Conv

Conv2d (C,1) (1,1) 16 (1, T) BtachNorm2d → PReLU

Conv2d (1,10) (1,2) 32 (1, [(T-10)/2] + 1) BtachNorm2d → PReLU

Dropout dropout rate = 0.5

Temporal-Spatio Conv

Conv2d (1,10) (1,2) 16 (C, [(T-10)/2] + 1) BtachNorm2d → PReLU

Conv2d (C,1) (1,1) 32 (1, [(T-10)/2] + 1) BtachNorm2d → PReLU

Dropout dropout rate = 0.5

Squeeze 32 ([(T-10)/2] + 1)

BiCNN

Conv1d 3 1 32 ([(T-10)/2] + 1) padding = 1

Conv1d 3 1 32 ([(T-10)/2] + 1) padding = 1, Reverse

Conv1d 1 1 32 ([(T-10)/2] + 1) BatchNorm1d → PReLU

Dropout dropout rate = 0.5

AdaptiveAvgPool 32 (124)

TABLE 2  Parameters of SpecNet.

Layer Layertype Kernal Stride Out Shape Options

Input 1 (C,570)

Spatio-Spectral 

Conv

Conv2d (C,1) (1,1) 16 (1,570) BtachNorm2d → PReLU

Conv2d (1,10) (1,2) 32 (1,281) BtachNorm2d → PReLU

Conv2d (1,35) (1,2) 32 (1,124) BtachNorm2d → PReLU

Dropout dropout rate = 0.5

Spectral-Spatio 

Conv

Conv2d (1,10) (1,2) 16 (C,281) BtachNorm2d → PReLU

Conv2d (C,1) (1,1) 32 (1,281) BtachNorm2d → PReLU

Conv2d (1,35) (1,2) 32 (1,124) BtachNorm2d → PReLU

Dropout dropout rate = 0.5

Channel attention 32 (1,124)

Squeeze 32 (124)
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and the batch size was set to 32. For Dataset B, the L2 regularization 
coefficient was 0.001 and the batch size was 128.

We made use of different batch sizes and L2 regularization 
coefficients for Dataset A and Dataset B mainly on account of the 
differences between two datasets: Dataset A has smaller scale and 
lower noise. Accordingly, a smaller batch size and weaker L2 were 
adopted to ensure the model has sufficient update flexibility. Dataset 
B and C have a larger sample size, more classes, and higher noise 
levels. Thus, a larger batch size was used to stabilize gradient 
estimation, and a stronger L2 was applied to suppress overfitting. 
This differentiated configuration is not the result of individual 
dataset-specific tuning but a reasonable empirical setting based on 
the scale and characteristics of the datasets. We  fixed a set of 
uniform parameters for each dataset and kept them unchanged in 
all leave-one-subject-out experiments on one dataset, without 
adjusting them for individuals or specific experimental conditions. 
This ensures the fairness of the comparison.

Model performance is evaluated by classification accuracy and 
ITR. Accuracy is defined as Equation 6:

	
=

lP
m	

(6)

where l means the number of correctly classified samples and m 
denotes the total number of samples. ITR measures the system 
efficiency. It accounts not only for accuracy but also for recognition 
speed and the number of classes. ITR (bits/min) is calculated as 
Equation 7, reflecting the information the BCI can transmit per 
second (Wolpaw et al., 2002).

	
( ) − = + + − × − 

2 2 2
1 60log log 1 log

1
PITR G P P P

G T 	
(7)

where G is the number of stimulus targets, P means the accuracy, 
and T represents the length of time window. A high ITR indicates that 
the system delivers faster response speed while maintaining accuracy, 
which is critical for practical BCI applications.

4 Results

To validate the effectiveness of our proposed method, 
we compared it with other principal methods: FBCCA, TRCA, TDCA, 
EEGNet, CCNN, FBtCNN, and SSVEPNet. All methods were 
evaluated on Dataset A and B, and the average classification accuracy 
contained mean ± standard deviation.

4.1 Results on Dataset A

The LOSOCV was employed to evaluate the performance of each 
method under different time windows. Tables 4, 5 give the average 
classification accuracy and ITR for five time windows (epochs): 0.4 s, 
0.6 s, 0.8 s, 1.0 s, and 1.2 s. As the time window length increases, the 
classification accuracy of all methods improves, as longer windows 
accumulate more SSVEP information. In contrast, shorter time windows 
provoke lower SNRs, making feature extraction more challenging. 
Meanwhile, ITR does not increase linearly with accuracy improvements. 
ITR is jointly influenced by accuracy and time window length. Results 
illustrate that SSVEP-TFFNet outperforms all controlled approaches 
across all time windows. Specifically, under the 0.4 s time window, our 
method achieves an average accuracy of 59.11%, outperforming TDCA 
(47.17%), EEGNet (56.06%), FBtCNN (50.56%) and SSVEPNet 
(55.67%) by 11.94, 3.05, 8.55 and 3.44%, respectively. As the time 
window increases from 0.4 s to 1.2 s, the accuracy of our method rises 
from 59.11 to 89.72%. Under the longest window (1.2 s), our method 
surpasses CCNN (85.22%) by 4.50%, TDCA (80.56%) by 9.16%, classical 
TRCA (81.17%) by 8.55%, and the FBtCNN (80.94%) by 8.78%. In terms 
of ITR, SSVEP-TFFNet also achieves the best performance across all 
time windows. Particularly, under the shortest window (0.4 s), our 
method reaches the highest ITR of 197.52 bits/min, exceeding SSVEPNet 
(178.42 bits/min), TDCA (132.13 bits/min) and FBtCNN (144.73 bits/
min) by 19.10 bits/min, 65.39 bits/min and 52.79 bits/min separately. As 
the time window extends to 0.6 s and 0.8 s, although the accuracy grows 
to 68.89 and 79.61%, the ITR decreases to 177.94 bits/min and 174.36 
bits/min. When extending the window to 1.0 s and 1.2 s, the ITR further 
drops down to 159.61 bits/min and 144.59 bits/min, respectively.

4.2 Results on Dataset B

Similarly, we took advantage of LOSOCV. Since Dataset B was 
collected in a non-electromagnetically shielded environment, the 
noise level is substantially higher than that of Dataset A. We conducted 
preliminary experiments within a time window of 0.6 s, and raised the 
window length longer (0.8 s, 1.0 s, and 1.2 s). Tables 6, 7 manifest the 
classification accuracy and ITR of each method under different time 
windows. It is clear that all methods (including our proposed method 
and controlled method) had dramatically lower classification 
accuracies under 0.6 s time window. Considering the significant 
decrease in accuracy caused by short windows and the fact that the 
overall information transmission rate is not better than that under 
0.8 s window, the results under shorter window has limited practical 
applications. As a consequence, we finally focused on time windows 
of 0.8 s and above in subsequent experiments.

TABLE 3  Parameters of the feature fusion and classification.

Structure Layer Kernal Stride Out Shape Options

Feature fusion 32 (124)

MLP

Flatten 3,968

Linear 198 LayerNorm→PReLU

Dropout dropout rate = 0.5

Linear K
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SSVEP-TFFNet performs best across all time windows. Under the 
0.8 s time window, our method achieves an accuracy of 56.62% which 
is 9.83, 9.91 and 11.39% higher than TDCA (46.79%), SSVEPNet 
(46.71%) and FB-tCNN (45.23%), respectively. As the window 
increases to 1.0 s and 1.2 s, the accuracy rises to 65.73 and 72.11% 
further. Explicitly, under the 1.2 s time window, our method surpasses 
CCNN (64.71%) by 7.40%, TDCA (56.64%) by 15.47%, FBtCNN 
(55.52%) by 16.59%, and EEGNet (62.52%) by 9.59%, revealing better 
performance. In the light of ITR, our method performs best as well 
across all time windows. For the 0.8 s and 1.0 s windows, the ITR 
reaches 164.75 bits/min and 165.59 bits/min, exceeding TDCA 

(124.19 bits/min and 117.24 bits/min) by 40.56 bits/min and 48.35 
bits/min, surpassing FBtCNN (117.60 bits/min and 112.63 bits/min) 
by 47.15 bits/min and 52.96 bits/min, and exceeding SSVEPNet 
(123.46 bits/min and 126.26 bits/min) by 41.29 bits/min and 39.33 
bits/min separately. At the 1.2 s time window, although the ITR 
decreases to 158.60 bits/min slightly, it still outperforms FB-tCNN 
(107.17 bits/min), TDCA (110.71 bits/min), and TRCA (87.76 bits/
min) by 51.43 bits/min, 47.89 bits/min and 70.84 bits/min 
dramatically, reflecting superior information transmission capability.

4.3 Results on Dataset C

We took advantage of LOSOCV as well. Tables 8, 9 display the 
classification accuracy and ITR of different methods under different 
time windows. It is undeniable that SSVEP-TFFNet still performs 
best. Under the 0.8 s time window, our method achieves an accuracy 
of 70.76% which is 15.57 and 32.52% higher than TDCA (55.19%) 
and FB-tCNN (38.24%), respectively. As the window increases to 
1.0 s and 1.2 s, the accuracy rises to 77.37 and 82.50%. Under the 
1.2 s time window, our method surpasses CCNN (75.61%) by 6.89% 
and EEGNet (74.55%) by 7.95%, revealing better performance. In 
the light of ITR, our method performs best as well across all time 
windows. For the 0.8 s and 1.0 s windows, the ITR reaches 
228.95bits/min and 210.86 bits/min, exceeding FBtCNN (91.78 
bits/min and 123.48 bits/min) by 137.17 bits/min and 87.38 bits/
min separately. At the 1.2 s time window, although the ITR 

TABLE 4  Mean classification accuracy (%) across subjects for different methods under different time window lengths on Dataset A.

Method Length of time (s)

0.4 0.6 0.8 1 1.2

FBCCA 17.44 ± 6.24 29.89 ± 12.35 44.56 ± 18.53 59.39 ± 22.50 67.17 ± 23.28

TRCA 49.17 ± 20.32 60.44 ± 24.45 69.33 ± 26.49 75.50 ± 26.48 81.17 ± 21.86

TDCA 47.17 ± 19.80 56.83 ± 24.64 66.89 ± 25.22 75.94 ± 23.77 80.56 ± 20.42

EEGNet 56.06 ± 19.32 65.50 ± 20.44 74.89 ± 19.36 80.39 ± 18.10 85.67 ± 15.21

CCNN 52.28 ± 17.28 63.17 ± 21.32 75.06 ± 21.32 81.22 ± 19.80 85.22 ± 17.43

FBtCNN 50.56 ± 17.26 61.00 ± 21.75 70.72 ± 22.45 76.50 ± 22.75 80.94 ± 21.00

SSVEPNet 55.67 ± 20.43 68.22 ± 22.85 76.44 ± 22.46 82.83 ± 19.65 87.89 ± 15.61

Ours 59.11 ± 19.76 68.89 ± 22.03 79.61 ± 20.38 85.39 ± 17.90 89.72 ± 13.74

TABLE 5  Mean ITR (bits/min) across subjects for different methods under varying time window lengths on Dataset A.

Method Length of time (s)

0.4 0.6 0.8 1 1.2

FBCCA 12.08 ± 12.36 33.24 ± 29.67 58.52 ± 46.33 81.99 ± 52.73 86.13 ± 49.85

TRCA 143.04 ± 89.67 143.51 ± 83.87 140.32 ± 79.66 132.01 ± 70.37 122.63 ± 54.93

TDCA 132.13 ± 85.28 129.19 ± 82.20 129.88 ± 74.52 130.38 ± 65.38 119.29 ± 51.32

EEGNet 178.26 ± 104.49 159.66 ± 81.70 153.59 ± 68.74 140.31 ± 55.38 131.39 ± 42.81

CCNN 153.90 ± 83.51 150.46 ± 80.93 156.07 ± 71.80 144.91 ± 59.49 131.79 ± 47.55

FBtCNN 144.73 ± 82.95 141.87 ± 79.65 140.42 ± 70.51 131.20 ± 63.43 121.12 ± 53.07

SSVEPNet 178.42 ± 108.74 175.93 ± 93.50 163.47 ± 77.82 150.85 ± 60.86 139.50 ± 45.11

Ours 197.52 ± 110.75 177.94 ± 92.16 174.36 ± 72.77 159.61 ± 59.05 144.59 ± 41.46

TABLE 6  Mean classification accuracy (%) across subjects for different 
methods under different time window lengths on Dataset B.

Method Length of time (s)

0.6 0.8 1.0 1.2

FBCCA 25.54 ± 10.53 40.07 ± 15.28 52.88 ± 18.12 61.84 ± 18.45

TRCA 28.48 ± 17.20 38.21 ± 20.44 44.00 ± 22.90 47.93 ± 23.89

TDCA 38.82 ± 18.83 46.79 ± 21.28 52.09 ± 22.55 56.64 ± 22.96

EEGNet 40.12 ± 20.29 49.93 ± 22.78 56.79 ± 22.98 62.52 ± 22.80

CCNN 38.09 ± 18.02 49.16 ± 21.53 57.55 ± 22.82 64.71 ± 22.34

FBtCNN 37.57 ± 18.59 45.23 ± 20.48 50.95 ± 21.54 55.52 ± 22.58

SSVEPNet 37.09 ± 19.12 46.71 ± 20.89 54.86 ± 22.53 60.62 ± 22.99

Ours 45.82 ± 19.33 56.62 ± 21.95 65.73 ± 22.84 72.11 ± 21.92
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decreases to 193.18 bits/min slightly, it still outperforms FB-tCNN 
(114.94 bits/min) and TDCA (145.79 bits/min) by 78.24 bits/min 
and 47.39 bits/min dramatically, reflecting superior information 
transmission capability.

5 Discussion

Results indicate that shorter time windows exist significant 
merits in high ITR applications, while longer windows are more 
suitable in high classification accuracy scenarios. Our proposed 
method captures multi-channel spatial features and fuses temporal 
and spectral characteristics effectively. It outperforms classical 
methods (FBCCA and TRCA) and leading deep learning models 

(EEGNet, CCNN, FB-tCNN, and SSVEPNet) in classification 
accuracy consistently, while also achieving superior ITRs. To 
better understand the proposed model and assess its potential 
applications, we consider and discuss three key factors. Firstly, in 
view of the portability and computational complexity, we varied 
the number of channels and evaluated the model’s performance. 
Secondly, we  performed an ablation study to assess the 
contribution of each module quantitatively. Third, we  utilized 
visualization techniques to reveal the distinctiveness of the 
features, thereby enhancing the model’s interpretability during 
decision-making process.

5.1 The influence of the number of 
channels

Reducing the number of EEG channel plays an essential role for 
portable devices, which not only simplifies the configuration 
procedure but also improves wearing comfort (Minguillon et  al., 
2017). Meanwhile, it reduces the learning cost of users and enhances 
user experience (Craik et al., 2023). Figures 2, 3 illustrate the impact 
of different channel numbers (Dataset A: 3, 6, and 8 channels; Dataset 
B: 3, 6, and 9 channels) on the classification accuracy and ITR of each 
method under a fixed time window length (1.0 s). The exact numerical 
results are given in Supplementary material. Thereinto, Dataset B was 
chosen as an example of 40-class dataset. The results show that as the 
channel number increases, both the accuracy and ITR of all methods 
rise, indicating that more channels bring richer spatial features and 
thus better the performance of frequency recognition. More 
importantly, our proposed dual-branch network outperforms all 
controlled methods under all channel numbers. Even if we select data 
from only 3 channels, our proposed method maintains superior 
performance. Taking Dataset A as an example, SSVEP-TFFNet 
achieves an accuracy of 68.61% which is 8.89 and 7.28% higher than 
that of TRCA (59.72%) and SSVEPNet (61.33%), respectively. Notably, 
the performance of SSVEP-TFFNet with only 3 channels exceeds that 
of other methods using 6 channels. In Dataset A, it outperforms 
TRCA (61.89%) and SSVEPNet (66.67%) with 6 channels. In Dataset 
B, it surpasses CCNN (48.77%) and EEGNet (48.02%) with 6 channels. 
The findings reveal the preferable feature expression capability of our 
dual-branch structure under channel-limited scenarios, demonstrating 
its practicability in different channel configurations.

TABLE 7  Mean ITR (bits/min) across subjects for different methods under varying time window lengths on Dataset B.

Method Length of time (s)

0.6 0.8 1.0 1.2

FBCCA 60.93 ± 40.58 94.27 ± 53.97 116.14 ± 58.96 122.79 ± 53.83

TRCA 78.67 ± 75.84 92.47 ± 76.04 92.51 ± 71.25 87.76 ± 64.42

TDCA 123.92 ± 90.67 124.19 ± 83.16 117.24 ± 73.36 110.71 ± 64.55

EEGNet 131.78 ± 101.81 138.10 ± 90.48 133.30 ± 76.50 127.90 ± 64.81

CCNN 119.65 ± 83.29 133.47 ± 85.56 135.73 ± 76.45 134.42 ± 66.15

FBtCNN 117.99 ± 88.06 117.60 ± 78.17 112.63 ± 69.51 107.17 ± 61.77

SSVEPNet 116.49 ± 91.85 123.46 ± 82.15 126.26 ± 74.75 122.33 ± 65.79

Ours 157.94 ± 98.75 164.75 ± 90.65 165.59 ± 80.32 158.60 ± 68.56

TABLE 8  Mean classification accuracy (%) across subjects for different 
methods under different time window lengths on Dataset C.

Method Length of time (s)

0.8 1.0 1.2

TRCA 46.73 ± 26.44 54.37 ± 27.76 57.48 ± 27.71

TDCA 55.19 ± 21.24 64.33 ± 21.49 68.68 ± 20.43

EEGNet 63.71 ± 20.95 70.56 ± 21.04 74.55 ± 20.57

CCNN 62.30 ± 21.49 71.19 ± 20.20 75.61 ± 21.22

FBtCNN 38.24 ± 19.59 54.08 ± 22.40 58.23 ± 22.72

Ours 70.76 ± 20.25 77.37 ± 19.91 82.50 ± 17.24

TABLE 9  Mean ITR (bits/min) across subjects for different methods under 
varying time window lengths on Dataset C.

Method Length of time (s)

0.8 1.0 1.2

TRCA 129.88 ± 103.48 129.91 ± 91.99 117.11 ± 78.60

TDCA 157.70 ± 88.60 159.09 ± 75.89 145.79 ± 62.28

EEGNet 195.27 ± 91.75 182.91 ± 76.89 165.95 ± 65.13

CCNN 189.30 ± 92.85 184.70 ± 74.51 170.21 ± 66.61

FBtCNN 91.78 ± 69.15 123.48 ± 72.86 114.94 ± 63.45

Ours 228.95 ± 93.21 210.86 ± 77.34 193.18 ± 58.15
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5.2 Ablation analysis

To evaluate the effectiveness of our dual-branch feature 
fusion structure, we conducted ablation studies on Datasets A 
and B. Thereof, Dataset B was selected as an example of 40-class 
dataset. Specifically, we compared the classification accuracy and 
ITR across three models: (1) the model incorporating only time-
domain feature extraction branch, (2) the model utilizing only 
frequency-domain feature extraction branch, and (3) the 
complete model with both branches. The experiments were 
performed under different time window lengths, as displayed in 
Figures 4, 5. In Dataset A, the accuracy of the complete model 
under a 0.4 s time window is 59.11% which is 7.55% higher than 

that of the model with only time domain feature extraction 
branch. The overall accuracy is also 1.89% higher than the 
accuracy of the model with only frequency domain feature 
extraction branch. In a 0.8 s window, the accuracy of the complete 
model reaches 79.61% which is 8.33% higher than that of the time 
domain feature extraction branch and 2.00% higher than that of 
the frequency domain feature extraction branch. In Dataset B, the 
accuracy of the complete model under a 1.2 s window is 72.11% 
which is 17.61% higher than that of the model with only time 
domain feature extraction branch. The overall accuracy is 1.86% 
higher than the accuracy of the model with only frequency 
domain feature extraction branch as well. These results reveal 
that our dual-feature extraction branch fusion structure is 

FIGURE 2

Classification accuracy and ITR of various methods on Dataset A with a 1.0 s time window under different channels; error bars represent the standard 
deviations. (a) Classification accuracy. (b) ITR.

FIGURE 3

Classification accuracy and ITR of various methods on Dataset B with a 1.0 s time window under different channels; error bars represent the standard 
deviations. (a) Classification accuracy. (b) ITR.
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competent to learn and fuse time domain and frequency domain 
features adaptively, enhancing the expression of signals and 
suppressing noise effectively. In this case, the classification 
accuracy and robustness of the model are able to be improved 
considerably in cross-subject SSVEP decoding task (Figures 4, 5).

5.3 Feature visualization analysis

We employed t-distributed stochastic neighbor embedding 
(t-SNE) to visualize the high-level features extracted by deep learning 
model in two dimensions, thereby reflecting their distributions 
indirectly in raw high-dimensional space (Maaten and Hinton, 2008). 
Inasmuch as Dataset B and C contain relatively excessive target 

frequencies for clear visualization, the analysis was conducted on 
Dataset A only using a fixed 1 s time window. Taking Subject #8 as an 
example, the comparison of SSVEP-TFFNet with SSVEPNet, CCNN, 
FB-tCNN, and EEGNet are depicted in Figures 6a–e. Each scatter 
denotes one test trial. There are 12 frequency classes and each class is 
composed of 15 trials. The t-SNE map shows our method exhibits 
obvious intra-class cohesion and inter-class separation: samples from 
the same class cluster tightly, while different classes are obviously 
isolated. By comparison, SSVEPNet achieves intra-class compactness 
but many scatters of different classes converge towards the center, 
indicating poor separation. FB-tCNN and EEGNet both illustrate 
intra-class dispersion and insufficient inter-class distance. CCNN 
demonstrates clear inter-class isolation but displays loose intra-
class distribution.

FIGURE 4

Results of the ablation study on Dataset A. The x-axis indicates the time window lengths, and the error bars represent the standard error. (a) 
Classification accuracy. (b) ITR.

FIGURE 5

Results of the ablation study on Dataset B. The x-axis indicates the time window lengths, and the error bars represent the standard error. (a) 
Classification accuracy. (b) ITR.
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We further aggregated the features of all 10 subjects (10 × 15 = 150 
samples per class) and displayed the overall t-SNE visualization results 
in Figure 7. The results imply that SSVEP-TFFNet still maintains clear 
intra-class aggregation and inter-class separation, and different classes 
are distributed independently in low-dimensional space. The category 
boundaries of SSVEPNet are further cluttered. EEGNet, CCNN and 
FB-tCNN all express a large overlap of features of different categories. 
The above comparison further verifies the discriminatory ability of our 
dual-branch network in cross-subject SSVEP frequency recognition, 
providing an intuitive explanation for its superior performance.

5.4 Limitations

In Dataset B, we analyzed the first 35 subjects determined by 
dataset index. While this selection rule avoids any performance-
driven selection bias and ensures reproducibility, it may potentially 
introduce a minor order-related bias if the publication order of 
subjects is correlated with hidden subject characteristics (such as age, 
gender, attention level, etc.). Therefore, the current results is 
interpreted as evidence on the fixed and reproducible 35-subject 
subset. Nevertheless, this limitation does not undermine our 
methodology. Our proposed approach demonstrates superior 
performance under the LOSO evaluation protocol.

6 Conclusion

To address the challenges of high data acquisition costs, limited 
cross-subject generalization, and the reliance of principal methods on 
single-domain features, we propose SSVEP-TFFNet, a dual-branch 

feature fusion network for SSVEP frequency recognition. This model 
extracts discriminative features from time and frequency domains 
independently and fuses them adaptively via a dynamic weighting 
mechanism, enhancing feature representation significantly. 
Evaluations on three public datasets demonstrate that SSVEP-TFFNet 
outperforms both traditional algorithms and mainstream deep 
learning models consistently in cross-subject classification accuracy 
and ITR, without requiring any subject-specific calibration. 
Furthermore, the model achieves relatively high recognition rates even 
with minimal channels. Ablation studies verify the efficacy of the dual-
branch fusion mechanism, while feature visualizations offer intuitive 
explanation into its superior discriminability. The characteristics of 
calibration-free and cross-subject lower the deployment threshold and 
usage cost of real-world BCI system. Effective channel selection 
enhances the portability of EEG acquisition devices and improves the 
wearing comfort. These are very beneficial for immersive operations 
in virtual reality (VR) environments or long-term use in daily 
assistive technologies.
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