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Introduction: Brain tumors present a significant threat to human health,

demanding accurate diagnostic and therapeutic strategies. Traditional manual

analysis of medical imaging data is inefficient and prone to errors, especially

considering the heterogeneous morphological characteristics of tumors.

Therefore, to overcome these limitations, we propose MAUNet, a novel 3D brain

tumor segmentation model based on U-Net.

Methods: MAUNet incorporates a Spatial Convolution (SConv) module, a

Contextual Feature Calibration (CFC) module, and a gating mechanism to

address these challenges. First, the SConv module employs a Spatial Multi-

Dimensional Weighted Attention (SMWA) mechanism to enhance feature

representation across channel, height, width, and depth. Second, the CFC

module constructs cascaded pyramid pooling layers to extract hierarchical

contextual patterns, dynamically calibrating pixelcontext relationships by

calculating feature similarities. Finally, to optimize feature fusion efficiency,

a gating mechanism refines feature fusion in skip connections, emphasizing

critical features while suppressing irrelevant ones.

Results: Extensive experiments on the BraTS2019 and BraTS2020 datasets

demonstrate the superiority of MAUNet, achieving average Dice scores of

84.5 and 83.8%, respectively. Ablation studies further validate the effectiveness

of each proposed module, highlighting their contributions to improved

segmentation accuracy. Our work provides a robust and efficient solution for

automated brain tumor segmentation, offering significant potential for clinical

applications.
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1 Introduction 

Brain tumors are major diseases that threaten human health 
and life. There are many brain tumor patients worldwide, and the 
number of patients is increasing every year (Zarenia et al., 2025). 

As the most intricate organ in the human body, the 
brain demands extraordinary accuracy in tumor diagnosis and 
therapeutic interventions, owing to its highly complex anatomical 
organization and functional diversity. Brain neoplasms are broadly 
categorized into benign and malignant types. Although low-
grade tumors, including specific gliomas and meningiomas, exhibit 
slow proliferation rates, they retain the potential to undergo 
malignant transformation. Conversely, malignant brain tumors like 
glioblastoma present a considerable threat to patient safety due to 
their highly invasive nature and rapid growth (Rehman et al., 2023; 
Zhou, 2023). 

Magnetic Resonance Imaging (MRI) is essential for diagnosing 
and managing brain tumors, as it can precisely capture details 
about the internal composition of the tumors and structural 
changes in adjacent tissues. MRI employs multiple imaging 
sequences to elucidate multiple pathologic features of brain tumors. 
Furthermore, multimodal strategies provide complementary data 
by extracting features from multiple viewpoints, compared to 
single-modal techniques, thereby enhancing the representation of 
data and the dierentiation capabilities of neural networks (Luo 
et al., 2021; Zhou et al., 2023). 

However, with the dramatic increase in medical imaging data, 
traditional methods that rely on manual interpretation and tracking 
of brain tumors are increasingly shown to be ineÿcient and 
prone to error. Misdiagnosis is especially likely to occur when the 
same patient may have complex and diverse tumor presentations 
(Gencer and Gencer, 2025). This deficiency is further highlighted 
in such cases. To address this challenge, modern medicine is 
actively pursuing automated approaches, with significant emphasis 
on leveraging Artificial Intelligence (AI) capabilities (Ishaq et al., 
2025). In recent years, Deep Learning (DL) has gained significant 
traction within the research community due to its notable 
advantages. A series of computer-aided diagnostic systems based on 
DL have been developed, which are used for image segmentation 
of various diseases, eectively enhancing diagnostic accuracy and 
eÿciency (He et al., 2023; Cox et al., 2024). 

In computer vision, Convolutional Neural Networks (CNNs) 
have demonstrated outstanding performance, especially for 
medical image analysis (Kshatri and Singh, 2023; Sharma et al., 
2024; Budd et al., 2021; Sachdeva et al., 2024). The core of 
CNN is the convolutional operation. Convolutional layers 
comprise numerous convolutional filters that execute convolutions 
on incoming data utilizing a sliding window approach. In 
addition to normal convolutions, the broad category of CNNs 
encompasses many convolution processes, including dilated, 
depthwise separable, and group convolutions. These operations 
facilitate the improvement of feature extraction accuracy, 
minimize computational resource demands, or accomplish both 
goals concurrently. Dilated convolution, a particular variant of 
convolution operation in CNNs, contrasts with regular convolution 
in that the kernel examines the input image at a predetermined 
scale (Chen et al., 2018). In dilated convolutions, there is spacing 
between the convolution kernels, allowing them to skip certain 

pixels as they cover the image, thereby expanding the receptive 
field. Dilated convolutions enable the expansion of the receptive 
field without altering the image resolution, making it possible to 
extract more valuable information from the images. 

Furthermore, attention mechanisms are regarded as a 
reliable method for enhancing visual tasks and have been 
extensively utilized in medical imaging (Chen Y. et al., 2023; 
Dutta et al., 2024; Shamshad et al., 2023; Sun et al., 2024). 
Attention mechanisms are generally divided into three primary 
types: self-attention mechanism, spatial attention mechanism, 
and channel attention mechanism. Among these, the channel-
oriented variant emphasizes the significance of feature relevance 
across the channel axis in visual data. This type of attention 
mechanism allows networks to concentrate more on feature 
channels with higher information content, thereby enhancing 
the model’s representational capacity. The spatial attention 
mechanism emphasizes the significance of feature maps in the 
spatial dimension, identifying which portions of a picture are 
more pertinent for a particular activity. By amplifying the features 
of important areas while suppressing those of less importance, 
the network’s expressive power can be improved. Self-attention 
mechanism, also known as internal attention, is a core concept 
within the Transformer model. It enables the consideration of 
all positions within a sequence to compute the representation 
of that position, rather than processing information locally as 
convolutions do. The channel and spatial attention mechanisms 
are typically regarded as supplementary elements that augment 
feature representation within convolutional neural networks. 
Conversely, the self-attention mechanism serves as the core 
component of the Transformer architecture, capturing global 
dependencies through the recalibration of each element in the 
feature map. 

Although U-Net-based medical image segmentation 
architectures have achieved notable progress, they still exhibit 
several inherent limitations. First, the predominantly local 
receptive field of standard convolutions insuÿciently models 
both cross-channel and long-range spatial dependencies. For 
example, Zhou and Zhu (2023) limits the Transformer module to 
the bottleneck, whereas the encoder still stacks vanilla 3 × 3 × 3 
convolutions, thereby precluding explicit modeling of global 
channel interactions. Similarly, Guan et al. (2022) proposed the 
AGSE-VNet model, in which the SE module only calculates first-
order channel statistics without calibrating the spatial dimension. 
Second, multi-scale contextual fusion remains inadequate. Wang 
et al. (2023) and Peng and Sun (2023) adopted a single expansion 
rate or dual-scale convolution, but failed to generate dense 
receiving field coverage. Finally, skip-connection-based feature 
fusion tends to inject redundant information, diminishing feature 
discriminability. For instance, Li et al. (2022) directly connected 
encoder-decoder features of the same scale without gating or 
attention-based filtering, which might have impaired the accurate 
assessment of tumor cores and increased the false alarm rate. To 
overcome these challenges, we propose MAUNet, a 3D U-Net 
variant enhanced with mixed attention mechanisms corresponding 
to these three limitations. Moreover, Contemporary convolutional 
networks leverage the Squeeze-and-Excitation (SE) module and 
the Eÿcient Channel Attention (ECA) module, which primarily 
focuses on inter-channel interactions (Li et al., 2022; Hu et al., 
2020). The Convolutional Block attention module (CBAM) 
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improves feature representation through collaborative integration 
of channel and spatial dimension information (Wang et al., 2020). 
However, CBAM considers the overall relationship across the 
entire spatial domain. It is essential to recognize that contextual 
discrepancies during feature extraction may unintentionally 
incorporate extraneous information or inadequately deliver 
semantic indicators. Feature misalignment predominantly arises 
from iterative downsampling, resulting in spatial discordance 
between the output (such as features or predictions) and the input 
image (Woo et al., 2018a). In this paper, the MAUNet model is 
constructed, which addresses these issues by introducing spatial 
multi-dimensional convolution (SMDConv) and Context Feature 
Calibration (CFC). Our contributions are delineated as follows: 

• The MAUNet architecture advances 3D brain tumor 
segmentation through innovative mixed-attention 
U-Net modifications. 

• The core of SMDConv is “Spatial Multi-dimensional 
Weighted Attention” (SMWA). It compresses the four 
dimensions of the feature map - channel, width, height, and 
depth - into two numbers, “mean + standard deviation”, and 
then fuses them with a 1 × 1 × K small convolution. Finally, 
it dynamically recalibrates the weights of each dimension to 
enhance the feature representation. 

• In the later stages, this architecture expands the receptive 
field through dilated convolutions and employs a CFC module 
that cascades self-attention pyramids to calibrate contextual 
features based on pixel-level contextual similarity. 

• The features fused through skip connections are not directly 
sent into SMDConvs. Instead, they first undergo processing 
through a gated attention mechanism to enhance key features 
while suppressing non-essential ones. 

• The empirical findings highlight the enhanced performance of 
our approach, while ablation studies validate the impact of key 
methodological choices. 

2 Related work 

Li et al. (2023) introduced the Fully Convolutional Network 
(FCN), which replaces the linear layers in the existing neural 
network architecture with convolutional layers for image 
segmentation. Although this model is eÿcient in semantic 
segmentation, its ability to recover spatial details is weak. The 
accuracy of the segmentation result is limited. Ronneberger 
et al. (2015) and Shelhamer et al. (2017) introduced the UNet 
architecture, a design that has seen widespread adoption within 
the field of medical image segmentation. This network’s encoder-
decoder framework has established a robust groundwork for 
subsequent advancements in segmentation networks, acting as a 
dependable reference for ongoing research endeavors. Although 
this architecture performs well with a small amount of data, its 
eective receptive field is limited and its global context modeling 
ability is weak, making it prone to errors in large-sized targets 
or complex backgrounds. Xu et al. (2023) and Ronneberger et al. 
(2015) introduced PHCU-Net, a two-layer UNet architecture for 
melanoma segmentation. The model integrates contextual and 

detailed features through dierent pathways: global branches 
utilize a hierarchical attention mechanism. In contrast, local 
branches capture fine-grained patterns via a convolutional neural 
network. In addition, CBAM attention is introduced in jump 
connections to enhance the feature representation. Nevertheless, 
this architecture has a large number of parameters, high training 
costs, and a strong reliance on device resources. Qian et al. (2024) 
and Xu et al. (2023) enhanced the UNet structure by integrating 
comprehensive skip paths to facilitate the seamless fusion of 
multi-scale features representations within the decoding network. 
This approach eÿciently collects detailed textures and extensive 
semantic content at all levels. It’s just that the computational cost 
is high. Furthermore, several scholars have introduced attention 
mechanisms to enhance the segmentation of brain MRI images, 
specifically targeting tumor areas (Qian et al., 2024). In their study 
on renal neoplasm analysis, Sitanaboina et al. (2023) and Vaswani 
et al. (2023) introduced an innovative 3D deep learning framework 
combining attention mechanisms with region-specific feature 
emphasis. The proposed architecture termed Attention 3D-CU-
Net, enhances segmentation precision by dynamically weighting 
critical anatomical regions while suppressing less relevant data. 
This approach achieves superior tumor boundary delineation 
in renal imaging through adaptive spatial focusing within its 
convolutional blocks. However, the model has a large number of 
parameters, high consumption of training resources, and high 
requirements for the computing platform and video memory. 
Pereira et al. (2019) and Sitanaboina et al. (2023) proposed a 
new feature calibration module called SegSE for medical image 
segmentation based on SE, capable of spatially adaptive feature 
calibration while considering inter-channel relationships. This 
segmentation model does not perform very well, with an average 
Dice of only 80.9%. Chen S. H. et al. (2023) and Pereira et al. (2019) 
addressed kidney tumor segmentation by combining a Global 
Local Attention Network with a deepened UNet architecture, 
developing the GL-UNet11 model. However, due to the deepening 
of network layers and the dual attention mechanism, the training 
time and computational cost have significantly increased, resulting 
in a relatively low deployment eÿciency. 

Brain tumor segmentation research has increasingly focused 
on hybrid architectures merging U-net frameworks with attention 
mechanisms. Wang et al. (2023) and Qian et al., 2024 validated 
the performance of Transformer-based frameworks in this 
area with their TransBTS model. Meanwhile, Zhou and Zhu 
(2023) developed a framework incorporating uncertainty-aware 
attention fusion for enhanced segmentation accuracy. Their 
methodology commenced with a primary UNet generating initial 
tumor delineations. Subsequent analysis focused on probabilistic 
reliability assessment of these outputs through uncertainty 
quantification. These uncertainty-enhanced visualizations were 
combined with source data and processed through a secondary 
UNet architecture to refine the final segmentation. Although the 
model improves the segmentation accuracy through Bayesian 
uncertainty estimation and multi-attention fusion mechanism, 
its multi-stage training and multiple MC sampling significantly 
increase the computational cost and inference time. Wang et al. 
(2023) and Chen S. H. et al. (2023) developed GAM-Net, an 
innovative framework designed for brain tumor segmentation 
that leverages gradient information. This model features a 
Dual Convolutional Encoder (DCE) to capture more impactful 

Frontiers in Neuroscience 03 frontiersin.org 

https://doi.org/10.3389/fnins.2025.1682603
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1682603 October 3, 2025 Time: 19:27 # 4

Chen et al. 10.3389/fnins.2025.1682603 

characteristics from input data. By integrating a gradient pathway, 
GAM-Net adeptly exploits the encoded features through its 
DCE and introduces a Gradient-Oriented Decoding (GOD) 
mechanism. This GOD structure utilizes gradient information 
to improve the delineation precision of tumor margins in the 
brain. This architecture increases the occupation of video memory, 
consumes longer training time, and thus places higher demands 
on computing resources. Sobhaninia et al. (2023) and Wang et al. 
(2023) introduced a multi-scale cascaded multi-task framework. 
This model adopted a U-shaped architecture for its design. For 
the classification task, an integrated feature aggregation module 
was employed to boost the precision in distinguishing tumor types. 
Notably, their approach demonstrated outstanding results when 
evaluated on the Chen dataset. Although this framework performs 
well in segmentation and classification accuracy, it has a complex 
structure, a long training time (28 h), and relies on ROI pre-
detection. The overall process is relatively heavy, which is not 
conducive to rapid deployment. Guan et al. (2022) introduced 
an innovative AGSE-VNet framework aimed at segmenting brain 
tumors. In this model, they incorporated SE components into 
the encoding stage and Attention-Guided (AG) filters within the 
decoding phase. The SE blocks were designed to amplify significant 
channel-wise features while diminishing less relevant ones through 
analyzing inter-channel dependencies, thus boosting segmentation 
precision. Meanwhile, the AG filters employed attention-based 
strategies to refine edge detection, eectively filtering out noise and 
extraneous data, which further refined the delineation accuracy. 
The performance of this model is not good, with an average 
Dice of 74% on the BraTS 2020 dataset. Li et al. (2022) and 
Sobhaninia et al. (2023) presented a CGA U-Net approach 
for brain tumor delineation, merging category-specific attention 
mechanisms with the original U-Net design. The Supervised 
Attention Module (SAM) forms the core of this framework, 
which leverages long-range dependencies in feature maps to 
achieve superior accuracy and computational stability without 
compromising eÿciency. Furthermore, the researchers designed 
a novel intra-class pixel update mechanism. This technique 
improves feature representations by combining semantic cues 
from pixels with matching labels, consequently enhancing the 
model’s capacity to analyze contextual connections among same-
class pixels. This model relies on a manually set number of 
categories. When the number of tumor categories increases, its 
generalization is limited. Peng and Sun (2023) introduced the AD-
Net framework for brain tumor segmentation by leveraging dual-
scale convolutional features to isolate channel-specific information 
and dynamically modulating weights via trainable parameters. 
They further incorporated a deep supervision mechanism to 
enhance model robustness. The average Dice of the three items in 
the BraTS20 validation set is 82%. 

It is evident from the discussion that U-Net oers a 
practical architecture for segmenting medical images. Nonetheless, 
several considerations remain crucial for enhancement. Initially, 
employing elementary convolutional layers alone for feature 
extraction does not suÿciently emphasize the spatial and 
channel-specific characteristics of images. Moreover, depending 
exclusively on convolution operations tends to prioritize local 
details while overlooking broader contextual information. Lastly, 
directly transmitting integrated features to the decoder via 
skip connections may result in unnecessary duplication and 

diminished feature clarity. To tackle these challenges eectively, 
the MAUNet model has been introduced. The MAUNet model 
eectively enhances the multi-scale feature expression and global 
context modeling capabilities of three-dimensional brain tumors 
in multimodal MRI by introducing a spatial multi-dimensional 
weighted attention mechanism, a cascaded pyramid context feature 
calibration module, and gated jump connections. At the same 
time, the segmentation accuracy has been improved and redundant 
information has been suppressed. The proposed model solves the 
problems raised above. 

3 Proposed method 

Presented here is a novel U-architecture-based 3D brain 
tumor segmentation model, namely MAUNet, which integrates 
several attention mechanisms to improve segmentation accuracy. 
Subsequently, this section elaborates on the core framework of the 
model, its constituent elements, and the employed loss functions. 

3.1 MAUNet structure 

Figure 1 depicts the structural design of MAUNet. The 
encoder of MAUNet primarily consists of three SMDConv modules 
and three downsampling layers, whereas the decoder comprises 
three SMD Conv modules and three upsampling layers. Each 
SMDConv module has two convolutional layers and a spatial 
multidimensional weighted attention (SMWA) module, the latter 
being the core part. MAUNet leverages four imaging modalities 
of brain tumors as input, processed via a convolutional module 
featuring a 5 × 5 filter and 32 feature maps. Within the 
encoder, each successive layer doubles its feature channels while 
employing a 2 × downsampling factor. At the MAUNet model’s 
base, two dilated convolution layers and two CFC modules exist. 
Dilated convolutions are frequently utilized in convolutional neural 
networks to augment the model’s receptive field. The CFC modules 
are employed to calculate the similarity between pixels and context, 
which strengthens the integration of contextual information in 
the model. Within the decoder stage, the skip-connected fused 
features undergo gated attention processing prior to being fed into 
the feature sampling module. The gating operation is performed 
by a sigmoid function, which maps any real-valued input to the 
open interval (0, 1). its output can be interpreted as a retention 
probability. In MAUNet, the sigmoid converts channel-wise scores 
produced by an MLP into weights in the range [0, 1]: values 
approaching 1 indicate that the corresponding channel–spatial 
features are important and should be preserved, whereas values 
approaching 0 lead to their suppression. Therefore, the gating 
mechanism softly selects features that propagate by skipping 
connections, allowing important information to pass through while 
reducing the passage of redundant information, rather than forcibly 
discarding them. By integrating a gated attention mechanism, the 
model dynamically prioritizes and focuses on critical regions within 
the input data, enhancing its ability to capture salient features. By 
learning the distribution of attention, the model acquires better 
generalization capabilities, performing well even on unseen data. 
Downsampling involves max-pooling techniques to condense the 
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FIGURE 1 

MAUNet structure. 

model, decrease the parameter count, and filter feature maps 
to preserve pertinent information, whereas upsampling applies 
trilinear interpolation. 

3.2 Spatial multi-dimensional weighted 
attention 

Spatial multi-dimensional weighted attention was conceived 
based on (Woo et al., 2018b) and (Yu et al., 2023). Figure 2 depicts 
the SMWA architecture, which integrates two attention modules: 
channel-based weighting and spatial feature enhancement. 
The former assigns dynamic weights to feature channels, 
emphasizing their relative significance, while the latter refines 
spatial dependencies across the input data. Consequently, the 
processed features exhibit variations along the channel dimension, 
emphasizing important channels while suppressing less relevant 
ones. The input features undergo individual processing by both 
the channel attention mechanism and the spatial attention 
mechanism. This attention module for channels incorporates an 
average pooling layer, a maximum pooling layer, and a Multilayer 
Perceptron (MLP). Given an input feature f ∈RC×D×H×W , where 
C represents the channel count, D the depth, H the height, and 
W the width of the spatial feature map, the processed features are 
presented through the channel attention mechanism, as shown in 
Equation 1. 

fc = sigmoid(MLP(Avgpool(f )) + MLP(MaxPool(f ))) ⊗ f (1) 

here, the operator ⊗ signifies broadcast Hadamard product, 
while fc corresponds to the output features from the channel 
attention mechanism, with fc∈RC×D×H×W . To derive compact 

spatial descriptors, dual pooling operations (average and max) 
are applied to input feature map f, producing f cavg ∈RC×1×1×1 

and f cmax∈RC×1×1×1 . These compressed representations are 
concatenated and fed into a multilayer perceptron (MLP), after 
which a sigmoid activation normalizes the outputs to yield the final 
channel-wise attention coeÿcients weightc. Multiplying weightc 

with the original feature f yields the channel-attended features f c, 
whereby dierent channels are assigned varying weights according 
to their importance. 

After processing through channel attention, the features 
f c, are further optimized by the spatial single-dimensional 
weighted attention module, producing the features fs. Figure 2 
illustrates the SMWA applies the same weighting method to 
the spatial dimensions D, H, and W. The compression stage 
of the spatial attention mechanism combines both max- and 
average-pooling operations, along with components C and P. The 
excitation component comprises convolutional layers, P, a sigmoid 
function, and element-wise multiplication through broadcasting. 
To illustrate the operation of the spatial attention module, consider 
the D-dimensional branch as an example. Firstly, f c undergoes 
compression. The format of f c is transformed, resulting in the 
feature f sd∈RD×C×H×W . This feature f sd is then fed into both the 
max pooling and average pooling layers, yielding the compressed 
features f ∈RD×1×1×1 . Therefore, the input of the compressed part 
f c can be expressed by Equation 2. 

f 
 

sd = [AvgPool(permute(fc)), MaxPool(permute(fc))] (2) 

In this case, the permute function represents the transformation 
of the feature data. 

The compressed feature, denoted as f, is subsequently fed 
into the excitation component. Initially, f undergoes a data 
format transformation to produce f ” sd. Subsequently, f ” sd 
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FIGURE 2 

SMWA block. 

traverses a convolutional layer where, unlike standard designs, the 
dimensions of the convolutional kernel are designated as (1, 1, k), 
as demonstrated in Equation 3. 

f 
 

sd = 
KX 

x=1 

W(x) × permute(f 
 

sd(x)) (3) 

The spatial features of the D branch, after passing through the 
spatial attention module, yield an output that belongs to the space 
fsdout∈RC×D×H×W . The above formulation can be expressed by 
Equation 4. 

fsdout = permute(sigmoid(permute(f 
 

sd )) ⊗ permute(fc)) × W0 

(4) 
Similarly, the output characteristics of the H and W branches 

can be calculated using Equations 5 and 6. 

fshout = permute(sigmoid(permute(f 
 

sh )) ⊗ permute(fc)) × W1 

(5) 

fswout = permute(sigmoid(permute(f 
 

sw)) ⊗ permute(fc)) × W2 

(6) 
here, W0, W1 and W2 represent learnable parameters designed 

to dynamically optimize weighting for spatial features across 
dimensions D, H and W. Ultimately, the automatic weighting 
fusion within the spatial attention mechanism generates the 
features as shown in Equation 7. 

fs = fsdout + fshout + fswout (7) 

3.3 Context feature calibration 

The CFC approach is utilized to resolve the problem of pixel 
context mismatch (Woo et al., 2018a), as depicted in Figure 3. 

CFC employs a cascaded pyramid pooling structure, an eective 
technique to capture multi-scale contextual features within visual 
data. This hierarchical configuration ensures that pooling outputs 
across diverse resolutions are iteratively integrated, enabling 
the extraction of comprehensive contextual representations with 
reduced computational overhead. Through this architecture, the 
model gains the ability to interpret both localized and holistic 
contextual dependencies at varying granularities–a critical factor 
for distinguishing nuanced boundaries and intricate details among 
distinct categories. 

The CFC module eÿciently captures multi-scale contextual 
information through the Cascaded Pyramid Pooling (CPP) block, 
which is implemented using three parallel max-pooling layers. 
Given a feature map x∈RC×D×H×W , it is first reduced to 
Q∈RC  

×D×H×W convolutional layer, where C’ is set to be less 
than the original number of channels C. Subsequently, the CPP 
block extracts multi-scale contexts Z∈RC×M from Q, with M 
representing the total number of output features across all scales. 
Following this, Z is processed through two convolutional layers 
to generate two forms of contextual representations K and V, 
belonging to RC  

×M and RC×M , respectively. Then, we employ 
cosine similarity to measure the similarity between each pixel 
feature vector and its contextual features. This metric focuses 
solely on vector directional consistency within the normalized 
feature space, thereby eectively capturing semantic associations. 
Its output ranges from [−1, 1], providing numerically stable input 
to subsequent softmax layers and ensuring the reliability of weight 
distributions. It calculates the aÿnity A∈RN×W between the pixel 
and the context through matrix multiplication and the softmax 
function, where N = D × H × W, and the aÿnity between the i-th 
pixel and the j-th context is represented by Ai,j, which is calculated 
according to the Equation 8. 

Ai,j = 
exp(Qi · Kj)PM 

j=1 exp(Qi · Kj ) 
(8) 

Finally, matrix multiplication is executed with V and the 
transpose of A, represented as At , to derive the calibrated semantic 
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FIGURE 3 

The structure of CFC. 

context E∈RC×N . This is then reshaped back to its original 
dimensions of RC×D×H×W . Subsequently, E undergoes further 
refinement through the Context Recalibration (CRB), resulting in 
the generation of E’, defined by the following Equation 9. 

E 
= tanh(W2(W1(X + E))) · E + E (9) 

In this process, W1 and W2 represent the utilized 1 × 1 × 1 
and 3 × 3 × 3 convolutional layers, respectively. The tanh function 
is employed to eliminate redundant information and highlight 
beneficial details within the context. Finally, an element-wise 
addition is conducted on X and E’ to produce the final result 
Y∈RC×D×H×W , which is shown in Equation 10. 

Y = X + E (10) 

3.4 Loss function 

In DL, loss metrics serve as fundamental components that 
evaluate prediction accuracy by measuring deviations between 
estimated and true outcomes. These metrics numerically represent 
error magnitudes, guiding neural networks to refine their 
performance during training. A core objective of the learning 
phase involves iterative parameter optimization to reduce the 
loss metric, thereby enhancing alignment with training data. The 
backpropagation mechanism computes layer-wise gradients of 
these errors, enabling systematic error reduction. Subsequently, 
optimization algorithms employ gradient-based methods to 
iteratively update network parameters, driving the model toward 
optimal performance. 

To improve the model’s predictive accuracy, a combined loss 
function that integrates Binary Cross Entropy (BCE) and Dice loss 
is adopted, as shown in Equation 11: 

lloss = α × lbce + β × ldice (11) 

here, α and β are hyperparameters indicating the weights of lbce 

and ldice, which are set to 1 and 0.5, respectively. 
In medical imaging applications such as tumor delineation, 

class imbalance frequently arises due to the limited spatial 
occupancy of pathological structures relative to surrounding 

tissues. This imbalance manifests as a pronounced disproportion 
between foreground regions (e.g., lesions) and background pixels, 
complicating model optimization (Sudre et al., 2017). To tackle this 
issue, the Dice loss function, which is based on the Sørensen-Dice 
coeÿcient, is extensively used in segmentation tasks. Unlike cross-
entropy, which operates on pixel-wise probability distributions, 
this loss quantifies spatial overlap between model predictions and 
ground truth annotations, thereby prioritizing underrepresented 
target areas. Specifically, the coeÿcient evaluates congruence across 
two sets: the algorithm-generated segmentation mask and expert-
annotated reference data. By emphasizing region-based similarity 
over pixel-level accuracy, the Dice loss mitigates bias toward 
dominant classes while enhancing sensitivity to subtle anatomical 
features. Equation 12 displays its mathematical expression. 

ldice = 1 − 
2 × |A ∩ B| 

|A| + |B| 
(12) 

here, A represents the ground truth brain tumor region, while 
B corresponds to the predicted region. 

4 Results and discussion 

4.1 Datasets and parameter settings 

This study utilizes two publicly accessible and reputable brain 
tumor segmentation datasets, BraTS2019 and BraTS2020 (Bakas 
et al., 2017, 2019; Menze et al., 2015), to assess the proposed model. 
As a global initiative, the Brain Tumor Segmentation Challenge 
(BraTS) focuses on advancing automated glioma segmentation 
through curated datasets. This competition accelerates the research 
and development of segmentation algorithms by providing 
standardized resources for benchmarking. These datasets include 
multimodal MRI scans from patients, specifically T1, T1ce, T2, 
and FLAIR images. All images have undergone standardization and 
resizing to a consistent dimension of 155 × 240 × 240, which aids in 
algorithm development and comparison. In addition, each instance 
has a segmentation mask manually annotated by a domain expert 
to identify several tumor regions. In this study, the original brain 
tumor images sized at 155 × 240 × 240 were resized to the standard 
dimension of 160 × 240 × 240. Subsequently, these images were 
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TABLE 1 The parameter settings of the network. 

Parameters Value 

Initial learning rate 0.0001 

Batch size 1 

Optimizer Adam 

Epoch 100 

Random seed 41 

further segmented into five smaller segments, each with a size of 
32 × 128 × 128. Before segmentation, all images were normalized 
to reduce the eects of variations in grayscale values and improve 
the stability of model training. Random flipping was applied during 
the training phase as a data augmentation technique to lower the 
likelihood of overfitting, thereby enhancing the model’s ability to 
generalize. 

The model was implemented in PyTorch 1.13 and evaluated 
on Ubuntu 20.04 with Python 3.9. For hardware configuration, 
we employed an RTX 4070 GPU with 12 GB of VRAM and an 
Intel i5-13400F processor for computational tasks. Training was 
conducted using the Adam optimizer, initialized with a learning 
rate of 0.0001. The random seed set during segmentation is 41. 
Additionally, early stopping was implemented to avert overfitting. 
The specific parameter configurations employed in the trials are 
outlined in Table 1. 

4.2 Computational efficiency and 
deployment analysis 

To further assess the practical applicability of the proposed 
method, Table 2 summarizes the GPU memory footprint, total 
training time, and inference latency achieved on both the BraTS 
2019 and BraTS 2020 datasets. All experiments were conducted on 
an identical workstation. 

As shown in Table 2, on the BraTS2019 dataset, the proposed 
model consumed 9.2 GB of GPU memory, completed training in 
420.12 min, performed inference in 7.96 min, and achieved an 
average Dice score of 84.5%. Similarly, on the BraTS2020 dataset, 
GPU memory usage remained 9.1 GB, training lasted 700.48 min, 
inference took 10.48 min, and the average Dice score was 83.8%. 
These results indicate that the proposed method achieves good 
segmentation accuracy while retaining computationally reasonable 
eÿciency. 

4.3 Evaluation metrics 

In this study, we implemented a comprehensive set of metrics 
to evaluate the segmentation eÿcacy of the model, encompassing 
the Dice Similarity Coeÿcient (DSC), sensitivity (True Positive 
Rate, TPR), and specificity (True Negative Rate, TNR). The DSC 
served as the primary quantitative benchmark for segmentation 
accuracy, quantifying the overlap between predicted and ground-
truth regions. Precision measures the accuracy of the model in 
predicting positive cases. Sensitivity reflects the model’s capability 
to accurately identify positive cases, whereas specificity assesses the 

model’s accuracy in identifying negative cases (Tripathi and Bag, 
2023). The mathematical formulas for these evaluation criteria are 
shown in Equations 13–16. 

Dice = 
2TP 

2TP + FP + FN 
(13) 

Sensitivity = 
TP 

TP + FN 
(14) 

Specificity = 
TN 

TP + FP 
(15) 

Precision = 
TP 

TP + FP 
(16) 

here, TP (True Positives) indicates the count of correctly 
identified positive cases, while TN (True Negatives) represents the 
count of accurately recognized negative cases. FP (False Positives) 
refers to the count of negative cases that are misclassified as positive, 
and FN (False Negatives) is the count of positive cases that are 
wrongly classified as negative. 

4.4 Hyperparameter optimization 

To further validate the rationale behind the hyperparameters 
employed in the MAUNet model, this section presents a systematic 
experimental analysis of key hyperparameters, including the 
learning rate, optimizer, and random seed. The model was trained 
on the BraTS2019 training set, and its segmentation performance 
was evaluated on the test set, with the Dice coeÿcient serving as 
the primary evaluation metric. 

As summarized in Table 3, the impact of dierent learning 
rates on model performance was first evaluated by testing values of 
0.001, 0.0001, and 0.00001. The experimental results demonstrate 
that a learning rate of 0.0001 enabled the model to achieve 
Dice scores of 91.20, 84.00, and 78.40% for the whole tumor 
(WT), tumor core (TC), and enhancing tumor (ET) regions, 
respectively. This configuration yielded a mean Dice score of 
84.53%, significantly outperforming other settings. Subsequently, 
a comparison was conducted among three prevalent optimizers: 
Adam, SGD, and RMSprop. The results reveal that the Adam 
optimizer yielded superior performance across all evaluation 
metrics. Finally, experiments were conducted under multiple 
random seed values (26, 41, 2023). The highest Dice score is 
achieved when the seed value is set to 41. 

In summary, the hyperparameter combination established 
in this study (learning rate: 0.0001, optimizer: Adam, random 
seed: 41) demonstrated optimal performance across the evaluated 
metrics and experimental conditions. 

4.5 The segmentation results of the 
model 

This section comprehensively evaluates the proposed model’s 
performance on the BraTS2019 and BraTS2020 test datasets. The 
model demonstrated outstanding performance on the BraTS2019 
dataset, achieving Dice scores of 91.2% for the whole tumor 
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TABLE 2 The computational efficiency metrics of the proposed model on the BraTs2019 and BraTs2020 datasets. 

Dataset GPU-AvgM (GB) Train time (min) Inference time (min) Average dice (%) 

BraTs2019 9.2 420.12 7.96 84.5 

BraTs2020 9.1 700.48 10.48 83.8 

TABLE 3 Performance comparison of MAUNet models with different 
hyperparameters. 

Parameters Value Dice (%) 

WT TC ET Average 

Lr 0.001 88.82 79.06 75.90 81.26 

0.00001 89.47 79.76 76.67 81.97 

0.0001 91.20 84.00 78.40 84.53 

Optimizer RMSprop 89.16 79.85 76.39 81.80 

SGD 87.70 78.23 72.97 79.63 

Adam 91.20 84.00 78.40 84.53 

Random seed 42 89.37 80.63 76.12 82.04 

2023 89.14 78.45 75.00 80.86 

41 91.20 84.00 78.40 84.53 

(WT), 84.0% for the tumor core (TC), and 78.39% for the 
enhancing tumor (ET) regions. The corresponding values for 
sensitivity, specificity and precision were 91.6, 84.8 and 82.7%, 
91.2, 85.6 and 77.6%, and 90.07, 86.98 and 79.23%, respectively. 
On the BraTS2020 dataset, the model demonstrated similarly 
strong performance, achieving Dice scores of 90.1, 84.2, and 77.2% 
for the WT, TC, and ET regions. The sensitivities were 90.6, 
85.1, and 77.3%; the specificities were 90.6, 86.9, and 81.7%; and 
the precision values were 90.63, 86.94, and 81.70%, respectively. 
A comprehensive set of evaluation metrics can be found in Table 4. 

Additionally, to visually demonstrate the segmentation 
outcomes, we processed the model outputs for visualization. 
Figure 4 illustrates that the segmentation findings indicate 
MAUNet’s capability to precisely identify lesion sites, highlighting 
the model’s potential for clinical applications. To further illustrate 
the segmentation results and provide a visual representation of 
their distribution, box plots (Boxplot) were utilized. Figure 5 
presents box plots summarizing the segmentation performance 
of MAUNet on the BraTS2019 and BraTS2020 brain-tumor 
segmentation datasets. The median Dice coeÿcient of every box 
plot lies approximately between 0.80 and 1.00, demonstrating that 
MAUNet achieves high segmentation accuracy across the three 
tumor sub-regions. The low height of each box indicates that most 
observations are concentrated at high Dice values, confirming 
the model’s stable performance. There are also some outliers in 
the figure, but they are few in number, indicating that the model 
shows slight fluctuations on individual samples. Overall, Figure 5 
shows that MAUNet performs well in the task of brain tumor 
segmentation, with high accuracy and stability. 

To visually identify the regions of interest on which the 
model focuses during the 3D brain tumor segmentation process, 
we employ Grad-CAM (Selvaraju et al., 2019) to generate visual 
explanations. As shown in Figure 6, the areas highlighted in red 
and yellow represent the regions that the model pays more attention 

to, while the blue and darker areas correspond to the regions that 
the model pays less attention to or receives no attention at all. This 
visualization technique aids medical professionals by highlighting 
critical regions within the scan, thereby directing their diagnostic 
focus and potentially assisting in the diagnostic process. 

Ablation experiments were carried out on BraTS2019 
to systematically evaluate each critical model component’s 
contribution. These studies systematically modified critical 
modules by either eliminating or substituting them, enabling 
observation of performance variations across configurations. 
This approach allowed us to quantify individual contributions to 
the segmentation accuracy, highlighting the functional necessity 
of distinct architectural elements. Detailed methodologies and 
quantitative outcomes of these component-level analyses are 
presented in later chapters, providing empirical evidence for 
the role of specific modules and their cumulative eects on 
system eectiveness. 

4.6 Ablation experiments 

To evaluate the eÿcacy of critical components within 
MAUNet, such as gate attention, SWDA, and CFC, ablation 
studies were conducted. 

Firstly, each module was incorporated separately to evaluate its 
unique impact on model performance. Table 5 illustrates that the 
incorporation of a single module into the baseline model resulted 
in varied degrees of improvement in the overall Dice coeÿcient. 
Notably, method (3), which involves adding the SMWA module 
to the baseline, resulted in an average Dice improvement of 1.1%. 
However, it is worth noting that for the segmentation of the TC 
region, all methods enhanced with single modules performed worse 
than the baseline model. Similarly, methods (2) and (4) showed 
decreased performance for the ET region. 

4.7 Discussion 

MAUNet, as previously detailed, achieved average Dice 
coeÿcients of 84.5 and 83.6% on the BraTS2019 and BraTS2020 
datasets, respectively (refer to Figures 1, 2 and Table 2). To further 
validate the model’s eectiveness and better understand how its 
various components contribute, a series of ablation studies was 
conducted. These studies specifically examined the roles of the 
key components–Gate Attention, SWDA, and CFC. The results 
unequivocally aÿrm the necessity of these modules in improving 
the precision of brain tumor segmentation and demonstrate the 
advantages of their collaborative function. 

The segmentation performance of MAUNet was benchmarked 
against the existing advanced techniques using the same dataset, 
and the comparison results are shown in Table 6. 

Frontiers in Neuroscience 09 frontiersin.org 

https://doi.org/10.3389/fnins.2025.1682603
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/


fnins-19-1682603 October 3, 2025 Time: 19:27 # 10

Chen et al. 10.3389/fnins.2025.1682603 

TABLE 4 Segmentation results of the model on the test sets of BraTS2019 and BraTS2020. 

Dataset Dice (%) Sensitivity (%) Specificity (%) Precision (%) 

WT TC ET WT TC ET WT TC ET WT TC ET 

BraTs2019 91.2 84.0 78.4 91.6 84.8 82.7 91.2 85.6 77.6 90.07 86.98 79.23 

BraTs2020 90.1 84.2 77.2 90.6 85.1 77.3 90.6 86.9 81.7 90.63 86.94 81.70 

FIGURE 4 

Visualization of the segmentation results of MAUNet. (Red, blue, and yellow indicate necrotic tumor core (NCR), enhanced tumor (ET), and 
peritumoral edema (ED), respectively). 

FIGURE 5 

The box plot of MAUNet’s segmentation results, where (a,b) represent the segmentation outcomes for the BraTS2019 and BraTS2020 datasets, 
respectively. 

On the BraTS2019 dataset, MAUNet’s Dice scores for the TC 

metric underperformed relative to models by Zhou (2024) and 

Zhou and Zhu (2023). Similarly, for the ET Dice score, MAUNet 
trailed Zhou (2024), Zhou and Zhu (2023), Li et al. (2022), 
Sobhaninia et al. (2023), and Wang et al. (2021). However, MAUNet 

outperformed these methods [cited in (Zhou and Zhu, 2023; Peng 

and Sun, 2023; Sobhaninia et al., 2023; Zhou, 2024; Wang et al., 
2021; Akbar et al., 2022; Latif et al., 2021)] in terms of the average 

Dice score. On the BraTS2020 dataset, MAUNet achieved the 

highest TC Dice score, though its ET Dice score lagged behind the 
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FIGURE 6 

Grad-CAM visualization of MAUNet model segmentation results. 

TABLE 5 Performance indicators of a single module. 

Methods Dice (%) 

WT TC ET Average 

(1) Baseline 86.9 80.3 75.5 80.9 

(2) Baseline + Gate 89.6 79.7 74.9 81.4 

(3) Baseline + SMWA 89.9 79.7 76.5 82.0 

(4) Baseline + CFC 89.4 79.6 75.4 81.5 

(5) Baseline + Gate + CFC 89.8 81.2 75.6 82.3 

(6) Baseline + Gate + SMWA 89.8 82.4 77.3 83.2 

(7) Baseline + SMWA + CFC 90.0 81.6 77.1 82.9 

(ours) MAUnet 91.2 84.0 78.4 84.5 

results reported by Wang et al. (2021) and Qamar et al. (2021). 
Nonetheless, MAUNet secured the top average Dice score across 
all metrics. 

5 Conclusion 

Brain tumors are a serious threat to human life, and computer-
assisted diagnostic systems can really help lighten the load for 
doctors while also improving patient outcomes. In this study, 
we’re introducing MAUNet, a 3D MRI brain tumor segmentation 
model that uses mixed attention mechanisms. The SMDConv 
module, with its SMWA mechanism, allows for multi-dimensional 
feature modeling, which significantly boosts the model’s ability 
to represent complex structures. The CFC module, paired with 
dilated convolutions, captures multi-scale contextual information 
and fine-tunes the relationships between pixels and their context. 
On top of that, the gating mechanism selectively highlights the 
most diagnostically important features through refined fusion. We 
tested MAUNet on the BraTS 2019 and BraTS 2020 datasets, and 
the results are really promising. Compared to baseline models, 
MAUNet exhibits enhanced performance, achieving Dice scores of 
91.2% (WT), 84.0% (TC), and 78.4% (ET) on BraTS2019, and 90.1% 
(WT), 84.2% (TC), and 77.2% (ET) on BraTS2020. Ablation studies 
confirm that each module plays a crucial role, and comparative 
analyses show that MAUNet outperforms existing methods. While 
this study focuses on brain tumor segmentation, the framework 
we’ve developed could potentially be applied more broadly. In 
future work, we will refine this architecture and systematically 
investigate more eective feature extraction techniques. (1) At 
each resolution level, the deepest SMDConv will be replaced 
by a lightweight Mamba–CapsResidual block to learn the part-
whole relationship between tumor sub-regions (Zhang et al., 2025). 
(2) The existing CFC module will serve as a parallel context 
path, fusing capsule-activated holistic representations with CFC-
calibrated pixel-level features via a cross-attention mechanism (Liu 
et al., 2025). 

TABLE 6 Comparison with existing methods. 

Dataset Method Dice (%) 

WT TC ET Average 

BraTS2019 Zhou, 2024 86.7 87.1 78.9 84.2 

Zhou and Zhu, 2023 86.5 87.0 79.4 84.3 

Li et al., 2022 and Sobhaninia et al., 2023 89.3 82.3 78.8 83.5 

Wang et al., 2021 90.0 81.9 78.9 83.6 

Peng and Sun, 2023 90 81 76 82.3 

Latif et al., 2021 87.4 75.8 74.1 79.1 

Akbar et al., 2022 88.5 81.0 74.9 81.5 

Huang et al., 2025 88.82 79.61 71.60 80.01 

Huang et al., 2025 90.81 76.08 68.57 78.49 

Ours 91.2 84.0 78.4 84.5 

BraTS2020 Guan et al., 2022 85 69 67 73.7 

Wang et al., 2021 90.1 81.7 78.7 83.5 

Peng and Sun, 2023 90 80 76 82 

Ali et al., 2023 89.6 83.2 75.0 82.6 

Qamar et al., 2021 87.5 83.7 79.5 83.6 

Akbar et al., 2022 88.6 80.2 72.9 80.6 

Ours 90.1 84.2 77.2 83.8 
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