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Framework and implications of virtual neurorobotics
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Despite decades of societal investment in artifi cial learning systems, truly “intelligent” systems have yet to be 
realized. These traditional models are based on input-output pattern optimization and/or cognitive production 
rule modeling. One response has been social robotics, using the interaction of human and robot to capture 
important cognitive dynamics such as cooperation and emotion; to date, these systems still incorporate 
traditional learning algorithms. More recently, investigators are focusing on the core assumptions of the brain 
“algorithm” itself—trying to replicate uniquely “neuromorphic” dynamics such as action potential spiking and 
synaptic learning. Only now are large-scale neuromorphic models becoming feasible, due to the availability 
of powerful supercomputers and an expanding supply of parameters derived from research into the brain’s 
interdependent electrophysiological, metabolomic and genomic networks. Personal computer technology 
has also led to the acceptance of computer-generated humanoid images, or “avatars”, to represent 
intelligent actors in virtual realities. In a recent paper, we proposed a method of virtual neurorobotics (VNR) 
in which the approaches above (social-emotional robotics, neuromorphic brain architectures, and virtual 
reality projection) are hybridized to rapidly forward-engineer and develop increasingly complex, intrinsically 
intelligent systems. In this paper, we synthesize our research and related work in the fi eld and provide a 
framework for VNR, with wider implications for research and practical applications.
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ing the important dynamics of cognition using 
robotic interaction with humans (Dautenhahn, 
2007; Scheutz et al., 2007). However, almost all 
social robotics systems to date continue to incorpo-
rate some mixture of existing machine learning and 
production rule cognitive systems.

For this reason, investigators are now asking 
whether critical neural dynamics have indeed been 
left out of the traditional models. Fortunately, the 
past two decades of neuroscience research has 
yielded an abundance of quantitative parameters 
that characterize the brain’s interdependent elec-
trophysiological (Markram et al., 1997; Schindler 
et al., 2006), genomic (Toledo-Rodriguez et al., 
2004), proteomic (Toledo-Rodriguez et al., 2005), 

INTRODUCTION
An overarching societal goal is to understand ani-
mal and human intelligence and translate that 
knowledge into technology for prosthetic, assis-
tive, and decision support applications. Traditional 
research in this fi eld considers the brain to be a 
specially adapted information-processing system, 
which can be modeled using mathematical optimi-
zation or production rule artifi cial intelligence sys-
tems. Despite many decades of investment in such 
learning and classifi cation systems, however, this 
approach has yet to yield truly “intelligent”  systems. 
One proposed remedy comes from research in 
social robotics, which attempts to augment the 
understanding of intelligent behavior by captur-
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metabolomic and anatomic (Wang et al., 2006) 
networks.

Researchers now have access to over a hundred 
neuroscience databases (Society for Neuroscience, 
2007), including automated warehousing col-
lections such as the Allen Brain Atlas (Allen 
Institute, 2007) and a new data-sharing website 
sponsored jointly by the U.S. National Science 
Foundation and National Institutes for Health, 
called the Collaborative Research in Computational 
Neuroscience (Teeters et al., 2008).

A previous limitation to the use of biologically 
realistic models has been the computational over-
head. Fortunately, the past decade has witnessed an 
order of magnitude increase in computation power 
of individual computers and cluster confi gurations 
with a tremendous drop in cost for system compo-
nents. A few groups have already reported simula-
tions on the order of one million simplifi ed neural 
elements (Izhikevich et al., 2004; Ripplinger et al., 
2004) using supercomputer clusters.

Growth in computational technology has also 
encouraged nontechnical persons to participate 
across the Internet using “avatars” in complex vir-
tual reality games and social networking “communi-
ties” (e.g., Second Life), which may include not only 
other human participants but also programmed 
robots. Thus, taken together, advances in computer 
technology and interactive 3-D software have set the 
stage not only to facilitate supercomputer modeling 
of realistic brains, but also to promote acceptance 
by humans that virtual reality projections may be 
capable of meaningful cognitive interaction.

Realistic brain simulation faces several remain-
ing challenges, however. Developing tenable mod-
els to capture the essence of natural intelligence for 
real-time application requires that we discriminate 
features underlying information processing and 
intrinsic motivation from those refl ecting biological 
constraints (such as maintaining structural integrity 
and transporting metabolic products). Furthermore, 
despite the large and increasing number of physi-
ological parameters provided by experimental 
inquiry, most of the data relates either to the very 
small scale of individual or small groups of neurons 
(e.g., intracellular, 2-photon, or unit recordings at 
discrete recording sites), or at the other extreme, the 
joint effect of thousands or millions of neurons over 
millimeter (optical  imaging) or centimeter fi elds 
(fMRI and PET). Thus the architecture and response 
patterns at the middle scale, or “mesocircuit”, remain 
largely uncharacterized, requiring that the brain 
modeler proposes and systematically tests plausible 
connection patterns and learning dynamics.

Another challenge in designing neuromorphic 
systems is that they must in some way be driven 
intrinsically by a motivational infl uence such that 

the dynamics that subserve information processing 
are themselves affected by a drive to accomplish the 
tasks (with neural learning that reinforces success-
ful behavioral adaptation) (Oudeyer and Kaplan, 
2007; Oudeyer et al., 2007; Samejima and Doya, 
2007; Schweighofer et al., 2007). The motivational 
system must capture “the aboutness” of its own 
relationship to other behaving entities (and vice 
versa) in its environment (i.e., intentionality).

Considered together, physiological responsive-
ness to intrinsic motivation with intentionality 
should refl ect behaviors consistent with emotional 
drive rather than by rules or objectives specifi ed 
under the traditional information-processing para-
digm. This suggests that “intelligence” has evolved 
most directly as a way to better serve emotional 
drive (rather than in spite of it).

We therefore hypothesize that the development 
of truly intelligent systems cannot occur outside the 
real-time, emotional interaction of humans with an 
intentionality-capable neuromorphic system. This 
does not exclude the possibility that intelligent sys-
tems, once refi ned, could ultimately be cloned at a 
point in development where they are ready to learn 
advanced tasks. Hence, to grow intelligent systems we 
must start with minimalist brain architectures that 
are capable of being driven by intrinsic motivation 
and intentionality in scenarios requiring intelligent 
behavior in a real-world context. One approach to 
growing human-like intelligence is to recapitulate 
the way in which children develop cognitive func-
tions over the fi rst several years of social experience.

DEFINITION OF VNR
In testing our hypothesis, it would be relevant not 
only to grow such intelligent systems but also to 
comprehend, at each step, the differential changes 
in architecture giving rise to novel and intelligent 
cognition. To address these objectives, in a recent 
publication, Goodman et al. (2007) proposed a 
hybridization of neuromorphic brain modeling 
validation using virtually projected robots inter-
acting with human actors, which we call “virtual 
neurorobotics” (VNR). Our proposed defi nition, 
open to future collaborative revision, is defi ned in 
Table 1. The defi nition expands upon the defi ni-
tion of  neurorobotics, which alone would imply 
a  biologically representative robotic control sys-
tem (criterion 3), and “virtual”, which suggests 
 interaction with a human. To test our hypothesis, 
we additionally require that the robotic  system 
demonstrate  suffi cient physical and cognitive 
 realism that the human accepts the robot as deserv-
ing of emotional reward (criteria 1 and 4) in a 
real-time interactive loop (criterion 2), with a cog-
nitive architecture potentially extensible to larger 
cognitive scale (criterion 5).

Goodman et al.
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Table 1 | Defi nition of virtual neurorobotics (VNR).

A computer-facilitated behavioral loop wherein a human interacts with a projected robot that meets the following fi ve criteria:

1. The robot is suffi ciently embodied for the human to tentatively accept the robot as a social, emotional partner

2.  The human-robot interaction loop operates in real time, with no pre-specifi ed parcellation into receptive and responsive time windows

3.  The cognitive control is a neuromorphic brain emulation incorporating realistic neuronal dynamics with time constants that refl ect synaptic activation 
and learning, established membrane and circuitry properties

4.  The neuromorphic architecture can potentially provide circuitry underlying intrinsic motivation and intentionality, using “emotional” rather than rule-
based learning & reinforcement

5.  The neuromorphic architecture is expandable to progressively larger scale and complexity to support brain model development and validation

Table 2 | Specifi cation of a virtual neurorobotic system.

I. Temporal sequencing (TIMING)

 1. Computation and communication provide nearly real-time ROBOT response, to maintain cognitive and emotional linkage

 2. Time is not segmented a priori for ROBOT or ACTOR receptiveness or reaction

II. Environment (SCENE)

 1. Realistic contents, including sights, sounds, and objects

 2. May be affected by the actions of ROBOT or ACTOR 

 3. May include other ROBOTs or multiple ACTORs

III. Live participant (ACTOR)

 1. Human, child or adult, depending on type of target intelligence 

 2. Willingness to accept SCENE as realistic situation

 3. Willingness to assume ROBOT has ability to perceive and respond meaningfully

 4. Willingness to attribute intentionality to ROBOT 

IV. Neuromorphic system (ROBOT)

  1.  Central nervous subsystem (BRAIN) may include neocortex, hippocampus, basal ganglia, and/or other limbic regions relating to attention, reward, 
and fear

  2.  Computational architecture must incorporate biologically plausible learning algorithms and support for expansion to progressively larger scale and 
complexity

 3. Repertoire of sensors, expressions, and behaviors are commensurate with its physical and brain complexity

The components of the real-time loop are fur-
ther delineated in Table 2. Here, we emphasize that 
the interaction between human and virtual robot 
be unscripted, of a spontaneous, action-reaction 
nature. That is, there is no segmentation of behav-
ioral time into periods wherein the robot is recep-
tive, waiting, analyzing, and/or taking action. The 
action-reaction requirement implies also that the 
system operate nearly in real time. In our experi-
ences, human actors readily accept delays of up to 
3 or 4 s without becoming frustrated about unre-
alistic robotic response and loosing cognitive and 
emotional linkage. Of course, the range of behav-
iors is indirectly constrained by the sensory and 
motor capabilities of the robot, the types of behav-
iors exhibited by the human, and the context (e.g., 
background activity).

RESEARCH
To-date there is a paucity of literature meeting our 
criteria (see Related Work, below). Thus we focus 
here on our own research (Goodman et al., 2007) as 
an example of the VNR principles. In that work, we 
chose an instinctual “friend vs. foe” response wherein 
a resting dog responds to movement in its visual fi eld 
with either (1) a cautious growl while remaining in 
a lying position, (2)  threatening bark while sitting 
up, or (3) happy breathing and tail-wagging while 
fully standing. A human actor was told that he/she 
is visiting a home with a dog unknown to him/her. 
As shown in Figure 1, a robotic dog was projected 
in pseudo-3D onto the forward screen, with external 
sensors that enable its simulated brain to “see” and 
respond to the actor’s movements, in the context of a 
background scene projected onto the rear screen (for 

Virtual neurorobotics
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Figure 1 | Schematic cartoon of a fully-implemented virtual neurorobotic (VNR) system. 
See text for explanation.

this demonstration, we used a static image of a sub-
urban neighborhood). The robot’s eyes (a tracking 
pan-tilt-zoom camera) and ears (monaural or spaced 
stereo microphones) capture the actor’s movements 
and voice in the context of the background scene, 
which is projected independently (and may contain 
moving elements, including other animals or actors). 
The BRAINSTEM is a supercomputer running 
threads that synchronously (1) capture and preproc-
ess video images, sound, and touch, (2) convert pre-
processed sensory images into probabilities of spiking 
for each primary neocortical region, (3) upload spike 
probability vectors to the BRAIN simulator, (4) then 
from the BRAIN simulator accept motor neuron 
region output spike density vectors and trigger cor-
responding dominant motor sequences (e.g., for the 
virtual dog robot: sitting, lying, barking, walking) 
via the robotic simulator program (Webots/URBI), 
which makes the corresponding changes in behav-
ior of the projected robot (and incorporates internal 
 sensation such as proprioception and balance). The 
BRAIN simulator is a neuromorphic modeling pro-
gram running on a supercomputer, executing a pre-
specifi ed spiking brain architecture, which can adapt 
as a result of learning (using reward stimuli offered 
by the ACTOR’s voice or stroking of the touch pad). 
Based on successful performance, researchers itera-
tively “plug in” alternative or more complex brain 
architectures. A proposed enhancement would be to 
couple live in vivo or in vitro neural tissue (BRAIN 
SLICE) to the brain simulation using multielectrode 
arrays and optical imaging, in order to continuously 
calibrate and constrain  synthetic brain dynamics.

The simple neuromorphic brain consisted of 
64 single-compartment neurons divided into four 
columns representing pre-motor regions (precur-
sors to coordinated behavioral sequences), each 
connected to one of the visual fi eld preferences 
based on Gabor fi lter confi gurations. According to 
the probability vector received from BRAINSTEM, 
NCS injected short (1 ms) step current (3 nA) 
pulses suffi cient to reach the threshold of −50 mV 
and generate a single spike. Membrane voltages 
updated at a frequency of 1 kHz. The ACTOR in 
this scenario was told in advance that moving 
 vertically-oriented objects (including body parts) 
will pose a threat to the robot, whereas moving 
horizontally-oriented objects will be perceived as 
friendly gestures; the actor was free to choose any 
sequence of movements in response to the per-
ceived intent of the ROBOT. ROBOT behavioral 
sequences are triggered when the neuromorphic 
BRAIN output to BRAINSTEM has 50 ms of con-
sistent spiking in one pre-motor region compared 
with another. Periods without domination of one 
pre-motor region over another trigger the ROBOT 
to lie down and growl. In cell rasters, each row rep-
resents the timing of action potentials (spikes) of 
a single neuron; darker gray markers indicate clus-
tered bursts of spikes. Figure 2 shows pre-motor 
action potential spike rasters from a typical 10-s 
VNR interaction with a human actor. A video is 
available online at http://brain.unr.edu/VNR.

RELATED WORK
Social embeddedness is a key characteristic of the 
proposed VNR approach, with an emphasis simi-
lar to that received initially in the stepwise, onto-
logical development of robotic cognition (Breazeal 
and Scassellati, 2000; Brooks et al., 1998) and more 
recently in epigenetic robotics research focused on 
the interaction between cognitive and perceptual 
brain systems (Lungarella and Berthouze, 2002; 
Schlesinger, 2003). In order to map behavior to 
robotic cognition, almost all of these models rely 
on combinations of psychological production rules, 
fi tness functions, and machine learning algorithms. 
Notably, this includes models aimed at capturing 
neuronal epiphenomena such as mirror neuro-
nal activity (Triesch et al., 2007). Our proposed 
approach is different in several ways. First, we focus 
on understanding brain physiology at the “meso-
circuit” level, relying on social- emotional robotics 
to reduce the multitude of potential architectures 
that could bridge the measurements at the cellular 
level (e.g., patch clamp and unit recordings) with 
those at the scales of millions of cells (e.g., optical 
and fMR imaging). Second, because the stipula-
tion of neuromorphic architecture excludes the use 
of production rules or hierarchical algorithms as 

Goodman et al.
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Figure 2 | Spike rasters from a 10-s behavior scenario indicating timing of ACTOR (upper 
row) and ROBOT (lower row) events. See text for explanation.

psychological models, any assumptions on motiva-
tion, intentionality and behavioral triggering must 
emerge from the tissue models themselves, and 
learning from behavioral reinforcement must man-
ifest as synaptic change. Third, since realistic social 
interaction requires temporal coherence between 
the simulated robotic brain and that of the human 
actor, the simulation must incorporate the actual 
distribution of physiological time constants that 
characterize membranes, channels, and synapses.

Due to the distinguishing characteristics of the 
proposed VNR approach, there is limited research 
work similar to ours. Some groups have reported suc-
cess in navigational tasks using neuromorphic archi-
tectures (Banquet et al. 2005; Cuperlier et al., 2005; 
Krichmar et al., 2005; Ogata et al., 2004; Wiener and 
Arleo, 2003). Notable endeavors that share similari-
ties with our work include identifi cation of challenges 
and opportunities in robot-mediated neurorehabili-
tation (Harwin et al., 2006), development of proto-
types that combine robotics and virtual reality to 
assist in the rehabilitation of brain-injured patients 
and support motor control research (Patton et al., 
2006), and generation of artifi cial brains for virtual 
robots using a new paradigm based on the epigenetic 
approach (Pasquier, 2004, 2005).

DISCUSSION AND WIDER IMPLICATIONS
The rationale for the virtual paradigm in VNR is 
rooted fundamentally on engineering and human-
computer interface considerations, and is similar to 
that put forward by Krichmar and Edelman (2005) 
for robotic instantiation of brain-based devices. 
Certainly, a closed-loop system could incorporate 

either real or virtual robots. In our VNR framework, 
however, we emphasize virtuality for the following 
reasons: (1) the human actor must fi nd the robotic 
behavior believable; it is our impression that refi ned 
neurorobotic avatars are more readily accepted 
(perhaps due to the popularity of online virtual 
reality networking) than clumsy, unreliable physical 
robotic prototypes; (2) as investigators design and 
grow more complex neuromorphic brains, robotic 
behaviors will require additional sensory, motoric, 
and emotional sophistication, which in turn may 
entail major changes in the robot’s body parts and 
dimensions, and degrees of freedom of joints and 
face—all of which can be accelerated using soft-
ware (often in just hours) without the delays and 
costs of added hardware and its engineering; and, 
(3) at stages of neurorobotic development at which 
it would be important to demonstrate the func-
tionality of a physical robot, the software API can 
be compiled and transferred to a prototype of the 
hardware robotic system (provided that VNR sim-
ulator used a realistic control API).

The use of human actors in the VNR approach 
might be seen as an obstacle in terms of time, 
resources, and variability. However, there is no 
other “gold standard” for realistic, spontaneous, 
emotionally intelligent interaction. Moreover, it is 
human-level cognition that we explore and seek 
to elucidate in our modeling and applications. 
In addition, the parameters for neuronal mem-
branes, channels, and synapses are given as time 
constants on the order of milliseconds to seconds, 
as co- optimized by evolution. This means that, for 
example, a system that emulates connected neurons 
but operates at the temporal scale of microsec-
onds cannot interact with the slower responses of 
humans. Therefore, both the joint distribution of 
known biological time constants and the need for 
emotionally intelligent responses require the use 
of a closed-loop interaction of the brain prototype 
with an actor. As an alternative, one might consider 
using animals in place of humans; however, animals 
rely on many subtle biological sensory cues such as 
smell, so will readily accept neither embodied nor 
virtual robots as socially interactive partners.

The VNR approach opens exciting and promis-
ing avenues of future research and application. For 
example, within the Webots/URBI environment we 
are currently developing a social- emotional human-
oid robot with functional capabilities motivated by 
the MDS (mobile, dexterous, social) robot under 
development by the Personal Robotics Group of 
the MIT Media Lab (http://robotic.media.mit.edu). 
Our robot will incorporate language understanding 
and production using corresponding neocortical 
models based on praise and curiosity. We are also 
working on a related model of childhood autism. 

Virtual neurorobotics
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We also plan to calibrate and constrain synthetic 
brain dynamics by coupling live in vitro (acute slice 
or sustained culture) or in vivo neural recordings to 
the brain simulation using multi-electrode arrays 
and optical stimulation and imaging.

The envisioned impact of the proposed approach 
is wide-reaching. First, neuroscience research is 
expected to directly benefi t from VNR in terms of 
development and validation of new, expandable 
brain models and architectures as well as study and 
exploration of various brain  disorders and injuries, 
including strokes and genetic  disorders. Second, 
faster progress in a variety of medical applications 
areas will likely be enabled by VNR-based research, 
primary in terms of advancements in neuropros-
thetics and new solutions for brain-related assistive 
technologies. Third, a diversity of other applica-
tion areas traditionally  propelled by developments 

in artifi cial intelligence could take advantage of 
VNR method and tools. These include, but are 
not limited to, decision-making support driven by 
human-like behavior and motivation, enhanced 
robotics-centered navigation and security, and bet-
ter understanding in the fi elds of neural develop-
ment,  neurophysiology, and neuropathology.
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