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In the hippocampus in vivo, both synaptic plasticity and network activity are closely interdependent. We 
have found that immediately after an attempt to induce long-term potentiation (LTP), changes in theta 
(5–10 Hz) and gamma (30–100 Hz) activity correlate tightly with the occurrence of LTP, suggesting that 
tetanisation-driven activation of sensory inputs synchronises the activity of granule cells and interneurons, 
and thus, facilitates the encoding of acquired stimuli. This results in increase of theta and gamma power, 
and elevates the probability that afferent stimuli both coincide with the peak of theta cycle and reach 
their post-synaptic target within the gamma time-window (of 10–30 ms). Both these mechanisms can 
effectively shift the direction, of tetanisation-induced changes in synaptic weight, towards potentiation 
and induction of LTP. Here, we discuss our fi ndings in the context of possible mechanisms that link theta 
and gamma oscillations with LTP induction, as well as their role in information processing and formation 
of memories.
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various preparations both in vivo and in vitro. 
Nowadays, LTP, along with long-term depres-
sion (LTD), is widely used as a model of synaptic 
information storage and are believed to represent 
the processes of learning and memory in neuronal 
networks (Abraham, 2003; Bear, 1996; Bliss and 
Collingridge, 1993; Kemp and Manahan-Vaughan, 
2007; Lynch, 2004; Whitlock et al., 2006).

Synaptic plasticity in the form of LTP, typically 
results in both functional and structural reorgani-
sation of the synapse, that evolves over time and 
comprises different phases, namely LTP-induction 
(post-tetanic potentiation), short-term potentia-
tion, LTP expression (early LTP) and maintenance 
(late LTP) (Abraham, 2003; Bliss and Collingridge, 
1993; Frey et al., 1993; Huang et al., 1996; Nguyen 
et al., 1994). Furthermore, each of these phases is 
characterised by the different involvement of neuro-

LONG-TERM POTENTIATION OF SYNAPTIC 
TRANSMISSION AS A MODEL OF SYNAPTIC 
PLASTICITY
The ability to analyse and learn new information 
and, if necessary, modify ongoing behaviour, based 
on a combination of previous and recent memories, 
is an important factor for the survival of organisms 
in an ever-changing world. Creating and managing 
these memory traces, comprise core functions of the 
central nervous system, which rely on its ability to 
engage in synaptic plasticity. They can be monitored 
at different levels, ranging from the subcellular to 
the behavioural.

Since its discovery in the late 1960s (Andersen 
and Lømo, 1967; Bliss and Lømo, 1973; see for 
review: Lømo, 2003), long-term potentiation 
(LTP) has been the subject of intense study, using 
a  plethora of induction protocols, species, and 
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transmitter systems acting via both ionotropic and 
metabotropic receptors. For the induction phase, 
several lines of evidence underlie the important role 
of the activation of N-methyl-D-aspartate (NMDA) 
receptors, at least for the hippocampal CA1 region 
and dentate gyrus (Abraham and Mason, 1988; 
Collingridge et al., 1983; Errington et al., 1987; Fox 
et al., 2006; Frey et al., 1996; Manahan-Vaughan, 
1997; Niewoehner et al., 2007). For early LTP, 
activation of the metabotropic glutamate recep-
tors (mGluRs), particularly group I mGluRs, 
plays a critical role (Aiba et al., 1994; Anwyl, 1999; 
Manahan-Vaughan, 1997; Manahan-Vaughan 
and Braunewell, 2005; Manahan-Vaughan and 
Reymann, 1996; Manahan-Vaughan et al., 1998; 
Richter-Levin et al., 1994). Late-LTP (maintenance 
phase) requires de novo protein synthesis (Frey 
et al., 1996; Krug et al., 1984; Otani and Abraham, 
1989) and activation of several immediate-early 
genes and late-response genes (Abraham et al., 
1991; Brakeman et al., 1997; Cole et al., 1989; Link 
et al., 1995; Messaoudi et al., 2007; Wisden et al., 
1990; Yin et al., 2002). Additionally, various neu-
romodulators can either increase or decrease the 
probability, magnitude and/or longevity of changes 
in synaptic transmission, hence affecting the out-
comes of patterned synaptic activation (Granado 
et al., 2008; Kemp and Manahan-Vaughan, 2005, 
2008; Kulla and Manahan-Vaughan, 2002; Lemon 
and Manahan-Vaughan, 2006; Li et al., 2003, 2007; 
Manahan-Vaughan and Kulla, 2003; Swanson-Park 
et al., 1999).

Besides the different relative involvement of 
neurotransmitter systems, the induction and/or 
expression of LTP, as a refl ection of central syn-
apses to acquire, process and subsequently store 
new information, depends upon several other fac-
tors, including environmental enrichment, vari-
ous forms of stress, etc. (Artola et al., 2006; Avital 
et al., 2006; Bruel-Jungerman et al., 2005; Duffy 
et al., 2001; Foster et al., 2000; Kopp et al., 2006; 
Seidenbecher et al., 1997; van Praag et al., 1999; Xu 
et al., 1998), which couple the sensory input to a 
current behavioural state and provide the contex-
tual frame for processing of sensory stimuli. Thus, 
taking into account the plethora of mechanisms 
underlying the phenomenon of LTP, it is not sur-
prising that various factors and/or experimental 
manipulations can markedly affect its different 
phases. However, for most forms of LTP, and par-
ticularly for electrically induced LTP, the state of the 
animal (synaptic and behavioural) during a short 
period of time, both during and immediately after 
tetanisation, appears decisive in determining the 
persistence of potentiation (Abraham, 2003).

In our study (Bikbaev and Manahan-Vaughan, 
2007), we applied high-frequency tetanisation 

(HFT) in freely behaving adult rats and monitored 
fi eld excitatory synaptic potentials (fEPSPs) in par-
allel with the intrahippocampal electroencephalo-
gram over a period of 24 h. Despite the fact that 
an identical stimulation protocol was employed for 
all animals, substantial variation in the outcomes 
of tetanisation was found. In the fi rst group of ani-
mals, a robust LTP occurred that was stable for at 
least 24 h (LTP group), in the second group short-
term potentiation that endured for up to 3 h was 
induced (STP group), whereas in the third group 
a failure of potentiation occurred, i.e. no persistent 
increase in synaptic transmission was seen (failure 
group). Given this range of tetanisation results, we 
analysed them in the context of the changes in net-
work activity that occurred during and within fi rst 
300 s after tetanisation.

TETANISATION-TRIGGERED FACILITATION 
OF THETA AND GAMMA ACTIVITY FAVOURS LTP
Oscillatory activity is an integral part of functional 
neuronal networks, and signifi cant variability in 
patterns of oscillatory activity can be registered 
under certain conditions both in vivo and in vitro. 
Modifi cation of synaptic weights occurs very fast 
during the activated state of the hippocampus 
(Buzsáki, 1996), with entorhinal–hippocampal 
network oscillations at theta frequency playing a 
crucial role in this process (Kamondi et al., 1998). 
Particularly in the hippocampus, theta oscillations 
(theta rhythm, rhythmic slow activity) have been 
proposed to play a role in a wide variety of hip-
pocampal functions (see for review: Buzsáki, 2005). 
In rodents, periods of prominent theta oscillations 
occur during exploratory behaviour and phases 
of rapid eye movement REM (sleep); conditions 
which are generally termed theta-associated behav-
iour (Bland, 1986; Buzsáki, 2002, 2005; Vanderwolf, 
1969). These behavioural states, and particu-
larly exploratory behaviour, are characterised by 
neocortico-hippocampal transfer of new spatial 
information when acquisition and/or encoding of 
sensory information should be facilitated, whereas 
transfer of the information from the hippocam-
pus to neocortex is associated with other patterns, 
such as sharp waves and ripples (Bragin et al., 
1995; Buzsáki, 1996; Buzsáki et al., 2002; Chrobak 
et al., 2000). Gamma oscillatory activity repre-
sents another pattern of network activity, which 
is characteristic for cortical locations, and is pro-
posed to be involved in various cognitive  functions 
(Buzsáki and Chrobak, 1995; Fell et al., 2001; 
Fries et al., 2001; Gray and Singer, 1989; Hermann 
et al., 2004; Hopfi eld, 1995; Lisman, 1999; Lisman 
and Idiart, 1995; Montgomery and Buzsáki, 2007; 
Singer, 1993). In the hippocampus of freely mov-



58 | July 2008 | Volume 2 | Issue 1 www.frontiersin.org

Figure 1 | Transient enhancement of theta and gamma power in the post-tetanisation period correlates with potentiation of synaptic transmission in 
the dentate gyrus of freely moving rats. (A) Examples of EEG epochs, which comprise 100 s long periods of tetanisation (200 Hz, 10 trains: fi rst train is marked 
by arrow) and following 300 s, recorded in rats that showed either LTP (left panel), STP (middle panel) or failure of potentiation (right panel), respectively. Asterisk 
denotes the period immediately after HFT, when the amplitude of network oscillations is higher in LTP and STP cases, in comparison with failed potentiation. Scale 
bar: 20 s. (B) Successful potentiation (LTP and STP) of synaptic transmission is associated with a prominent increase of the relative theta and gamma power par-
ticularly in the period encompassing 100 s after tetanisation. The results were pooled for LTP, STP and failure groups and presented as Mean ± S.E.M. (modifi ed 
from Bikbaev and Manahan-Vaughan, 2007).

ing animals, the amplitude of gamma oscillations 
is higher in the dentate gyrus than in other hip-
pocampal regions expressing gamma oscillations 
(Bragin et al., 1995), and varies as a function of the 
theta cycle (Csicsvari et al., 2003; Penttonen et al., 
1998). Hence, hippocampal theta and gamma oscil-
lations comprise functionally-associated patterns 
of network activity that emerge as a consequence of 
the combination of intrinsic oscillatory properties 
of principal cells and interneurons, the rhythmic 
activation of which is driven by intra- and extrahip-
pocampal connections (Bartos et al., 2007; Bragin 
et al., 1995; Csicsvari et al., 2003; Klausberger et al., 
2003; Penttonen et al., 1998; Ylinen et al., 1995).

The results of our study demonstrated that 
the successful potentiation of synaptic transmis-
sion (LTP and STP groups) in freely moving rats, 
was preceded by a higher relative theta power in 
the period of 300 s after HFT, when compared 
with the pre-tetanisation period (Figure 1). In 
contrast, a gradual recovery of theta power to pre-
 tetanisation values, but not an increase, was found 
in the LTP-failure group. In other words, success-
ful induction of potentiation (either in the form of 
STP or LTP), resulted in an enhancement of theta 
oscillatory activity after tetanisation, whereas no 
such enhancement occurred in rats that showed 
failure of LTP. The mean amplitude of a single theta 
cycle was also signifi cantly higher within the post-
tetanisation period in the LTP and STP groups, 

when compared to the group of failed synaptic 
potentiation. Taken together, these data suggest 
that a transient increase of theta power is necessary 
for the proper handling of sensory input activation 
(mimicked here by HFT). This, in turn, may play 
a permissive role in LTP induction, and, in gen-
eral, in the formation of memory trace(s) of newly 
acquired information.

However, the differences between LTP, STP and 
failed potentiation groups were not limited in our 
study by theta oscillations. We found that within 
the fi rst 100 s after HFT the increase in theta power, 
and the mean amplitude of a single theta cycle, was 
accompanied by higher gamma power in the LTP 
group, and higher amplitude of gamma oscilla-
tions within a single theta cycle in both the LTP and 
STP groups, when compared with cases of failed 
potentiation (Figure 1B). This indicates that not 
the increase of theta power per se, but a correlated 
increase of both theta and gamma power is impor-
tant for enabling or mediating the plastic changes 
in synaptic weights. Furthermore, our results show 
that these enhancements of oscillatory activity 
should take place within a relatively short period 
of time for synaptic plasticity to occur. Taking into 
account that the amplitude of gamma oscillations 
in the dentate gyrus, but not in the CA3 or CA1 
regions, is signifi cantly higher in the  presence of 
theta oscillations than in non-theta states (Csicsvari 
et al., 2003), these fi ndings suggest that the tetani-

Bikbaev and Manahan-Vaughan
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sation-induced facilitation of theta activity can 
play a causal role for the enhancement of gamma 
oscillations.

In the dentate gyrus of the intact brain, the 
power of both theta and gamma activity is driven by 
and strongly depends upon entorhinal input, and is 
higher during exploratory behaviour (Bragin et al., 
1995; Csicsvari et al., 2003). Furthermore, behav-
ioural data indicating enhanced eyeblink condi-
tioning in rabbits that received pairings of stimuli 
during epochs of prominent theta activity, when 
compared to those stimulated during non-theta 
periods (Seager et al., 2002), provide additional 
support for a facilitatory role of theta oscillations in 
learning. However, one should emphasise that the 
increase of theta power occurred in our study in the 
period after tetanisation. Thus, the differences in 
theta power that we observed, did not comprise an 
endogenous pre-condition for synaptic plasticity, 
but rather occurred as a consequence of perforant 
path stimulation. Accordingly, if natural theta 
rhythm is necessary for the acquisition or process-
ing of sensory stimuli, one can presume that the 
artifi cial activation of sensory inputs (in the form 
of HFT) would require and/or induce an enhance-
ment of oscillatory activity in the theta frequency 
range, in order to temporally organise neuronal 
activity and favour synaptic plasticity. The depolari-
sation of dendritic compartments of dentate gyrus 
granule cells via activation of NMDA receptors and 
mGluRs, after strong activation of the glutamater-
gic perforant path, is likely to contribute to such 
an enhancement. Perforant path stimulation of 
the dentate gyrus, in conjunction with subsequent 
fi ring of mossy fi ber collaterals, will also activate 
parvalbumin-expressing basket cells (Kneisler and 
Dingledine, 1995), which via ionotropic γ-amino-
butyric acid (GABA

A
) receptors provide rhythmic 

inhibition of somata and perisomatic region of 
principal cells and play a pivotal role in the gen-
eration of both theta (Buzsáki, 2002; Klausberger 
et al., 2003; Sik et al., 1997; Ylinen et al., 1995) and 
gamma (Bartos et al., 2001, 2007; Penttonen et al., 
1998; Vida et al., 2006) oscillations. Additionally, 
activation of GABA

A
 receptors has been reported to 

be critical also for the generation of transient tetan-
ically induced gamma oscillations in vitro (Traub 
et al., 2004; Whittington et al., 1997). Hence, the 
combination of NMDAR-induced dendritic exci-
tation and GABA

A
R-mediated somatic inhibition 

results in current fl ow through distal dendrites, 
which is important for the generation and mainte-
nance of extracellular theta currents (Buzsáki, 2002). 
This could also effectively trigger and/or enhance 
theta oscillations in post-HFT period. In turn, theta 
oscillations may dynamically modulate the prob-
ability of NMDAR activation, which is highest on 

the peak of the theta cycle and the lowest on the 
trough (Vertes, 2005). The increase of gamma 
power in the post-tetanisation period may rely 
on the activation of group I mGluRs, which was 
reported to induce GABA

A
R-dependent gamma 

oscillations in vitro (Whittington et al., 1995), and 
increase gamma power in vivo (Martin, 2001). We 
have found recently that prolonged inhibition of 
mGluR5 results in a signifi cant impairment of LTP 
associated with a marked suppression of gamma 
oscillations in the dentate gyrus of freely moving 
rats (Bikbaev et al., 2008). Taken together, corre-
lated activation of granule cells and interneurons, 
via fast and slow glutamatergic excitation, not only 
can contribute to long-term synaptic potentiation, 
but, complemented with fast rhythmic GABAergic 
inhibition, can affect network oscillations on both 
short- and long-term time-scales (Figure 2). In this 
respect, pharmacological modulation of selected 
neurotransmitter systems, including the glutama-
tergic, GABAergic and cholinergic systems, cou-
pled with correlation analysis of network activity 
and long-term changes in synaptic transmission, 
would be necessary for a more conclusive support 
of this suggestion. For instance, such analysis after 
activation of the cholinergic system, which can 
facilitate oscillatory activity in the theta frequency 
band, and simultaneous inhibition of GABA

A
R- 

and/or mGluR-mediated signalling, which affects 
hippocampal gamma activity, could help to dissect 
the roles of theta and gamma oscillations in the 
shaping of synaptic plasticity.

THE DIRECTION OF CHANGE IN SYNAPTIC 
WEIGHT CORRELATES WITH THE PHASE 
OF THETA CYCLE
The apparent relationship between theta activity and 
certain types of behaviour, and the relative regular-
ity and stability of this oscillatory pattern suggests 
that theta rhythm may serve as an internal timing 
mechanism for individual elements of spatially 
distributed neuronal ensembles (Buzsáki, 2005). 
In other words, enhanced theta oscillations may 
provide an appropriate time-window for the fi ring 
of individual neurons within currently activated 
ensemble(s) and, therefore, optimise the encoding 
of the acquired signal. Indeed, the fi ring rate of both 
principal cells and several classes of interneurons in 
the hippocampus has been found to be theta phase-
locked, i.e. to depend upon the phase of the ongoing 
theta cycle (Csicsvari et al., 1999; Klausberger et al., 
2003; O’Keefe and Recce, 1993). An important link 
between hippocampal theta oscillations and the 
probability of potentiation of synaptic transmission 
is provided by observations with regard to increases 
or decreases of synaptic effi cacy, which were caused 
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Figure 2 | A schematic representation of the consequences of high-frequency tetanisation that occur on the network and 
cellular levels, and lead towards long-term potentiation of synaptic transmission. (A) Strong afferent stimulation results in 
an enhancement of both theta and gamma oscillations, which occurs within 5 min interval after tetanisation and can be mediated 
via GABARs, NMDARs and mGluRs. (B) Tetanisation-triggered activation of both ionotropic and metabotropic glutamate recep-
tors is followed by the expression of plasticity-related immediate-early genes (IEGs) and protein synthesis, which can underlie 
structural synaptic reorganisation and long-term increase in synaptic effi cacy. Experimental procedures that inhibit the induction, 
expression or maintenance of LTP can result in impairment of post-tetanic potentiation, STP, early LTP or late LTP (1–4, respec-
tively). Grey arrows denote possible links between NMDAR and mGluR activation and facilitation of network activity in theta and 
gamma frequency bands.

by trains of high-frequency stimulation delivered 
either at the peak or the trough of theta cycle, and 
which resulted in LTP or LTD respectively (Huerta 
and Lisman, 1993, 1995; McCartney et al., 2004; 
Pavlides et al., 1988). During naturally occurring, 
locomotion-induced theta oscillations, LTP, that 
persists for at least 48 h, is preferentially induced by 
stimuli delivered near the local theta peak in behav-
ing animals (Hyman et al., 2003; Orr et al., 2001), 
whereas in anesthetised animals a long-lasting 
enhancement of fEPSP is elicited, if hippocampal 
afferents are stimulated synchronously on the peak 
of theta oscillations (Hölscher et al., 1997; Pavlides 
et al., 1988). This demonstrates that not only the 
parameters of the stimulation protocol, but also the 
timing of tetanisation relative to the phase of theta 
cycle, can change the direction of synaptic plasticity 
(LTD vs. LTP).

Thus, tetanisation-driven increases of theta and 
gamma oscillations, such as those observed in our 

study (Bikbaev and Manahan-Vaughan, 2007), 
seem to be intrinsically interconnected, and play 
complementary roles in synaptic potentiation. The 
heightened theta power in the period after tetani-
sation is likely to temporally organise the fi ring of 
principal cells within theta time-windows, hence 
supporting the increase of the amplitude of gamma 
oscillations. Bearing in mind that the higher ampli-
tude of gamma oscillations refl ects a higher degree 
of synchronisation in the network (see for review: 
Axmacher et al., 2006), the increase of gamma 
power in the period immediately after tetanisation 
may indicate that, during the facilitated theta activ-
ity, the fi ring of principal cells and interneurons is 
more synchronised (or precise) and/or recruits more 
elements into the network activity. Accordingly, 
enhanced gamma oscillations synchronise neuro-
nal fi ring within narrower gamma time windows 
and elevate the probability for afferent stimuli to 
coincide with the peak of theta cycle, where the 

Bikbaev and Manahan-Vaughan
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gamma amplitude is highest, hence resulting in the 
strengthening of the activated synaptic pathway. 
The outcomes of studies of spike-timing depend-
ent plasticity (see for review: Dan and Poo, 2004) 
demonstrate that such synchronisation of neuronal 
spiking, within a 10–30 ms window: which precisely 
matches to a single gamma cycle, can dramatically 
increase the probability of potentiation of activated 
synaptic connections. Moreover, in in vitro record-
ings from the primary visual cortex, where theta 
activity is generally not so prominent as in the hip-
pocampus, pairing the stimuli with either the peak 
or trough of oscillations in the beta and gamma fre-
quency ranges has been found to effectively drive 
synaptic plasticity towards potentiation or depres-
sion, respectively (Wespatat et al., 2004).

In this context, one can conclude that the transient 
enhancement of theta and gamma oscillations in 
the post-tetanisation period refl ects the engagement 
of the system in encoding of acquired information. 
This can result in a subsequent “reconfi guration” 
of the network, coupled with the strengthening of 
currently activated connections, and the weakening 
of the others. Furthermore, facilitated theta activ-
ity can support a tighter timing control of the fi ring 
of principal cells and interneurons in the network, 
which serves to optimise information processing. 
Tetanisation-triggered enhancement of gamma 
oscillations is associated, on the other hand, with 
higher synchronisation and refl ects the coordinated 
ensemble activity aimed to encode/retrieve relevant 
memories. Accordingly, the absence or inconsist-
ency of such changes in network activity can be 
related to the lack, or insuffi ciency, of activation 
of required neurotransmitter systems, sub-optimal 
conditions for the processing of sensory informa-
tion and, therefore, a lower probability for LTP.

SUMMARY
For several decades, theta rhythm was regarded in 
rodents as an electrographic hallmark of  exploratory 
behaviour, that occurs when the hippocampus 

is engaged in the acquisition and processing of 
sensory stimuli, which can lead in turn to experi-
ence-based modifi cation of ongoing behaviour. 
Gamma oscillations were also proposed to play a 
role in various cognitive processes both in human 
and animals. At the neuronal level, the acquisition 
and formation of memory traces are believed to 
rely on activity-related changes in synaptic effi cacy, 
and LTP of synaptic transmission after patterned 
afferent stimulation is considered as an adequate 
experimental model of these processes. However, 
despite the existence of extensive experimental data 
showing the involvement of hippocampal theta 
and gamma oscillations in cognitive processes, 
a relationship between the coordinated enhance-
ment of both theta and gamma power immediately 
after tetanisation and the consequences of induc-
tion of synaptic plasticity in freely moving rats was 
not, to our knowledge, described earlier. We found 
that changes in theta and gamma oscillatory activ-
ity precede electrically induced potentiation of 
synaptic transmission. Importantly, the correlated 
tetanisation-driven enhancement of both theta and 
gamma oscillations is associated with successful 
short- and LTP, but not with its failure. These fi nd-
ings link LTP with the oscillatory activity of rather 
large assemblies of hippocampal principal cells and 
interneurons, and provide additional support for 
the role of hippocampal theta and gamma oscilla-
tions in information processing and the formation 
of new memories.

CONFLICT OF INTEREST STATEMENT
The authors declare that the research was conducted 
in the absence of any commercial or fi nancial rela-
tionships that could be construed as a potential 
confl ict of interest.

ACKNOWLEDGEMENT
This work was supported by a Deutsche 
Forschungsgemeinschaft grant to D. Manahan-
Vaughan (Ma1843).

REFERENCES
Abraham, W. C. (2003). How long will long-term 

potentiation last? Philos. Trans. R. Soc. Lond., B, 
Biol. Sci. 358, 735–744.

Abraham, W. C., Dragunow, M., and Tate, W. P. 
(1991). The role of immediate early genes in 
the stabilisation of long-term potentiation. Mol. 
Neurobiol. 5, 297–314.

Abraham, W. C., and Mason, S. E. (1988). Effects of 
the NMDA receptor/channel antagonists CPP 
and MK801 on hippocampal fi eld potentials 
and long-term potentiation in anesthetized rats. 
Brain Res. 462, 40–46.

Aiba, A., Chen, C., Herrup, K., Rosenmund, C., 
Stevens, C. F., and Tonegawa, S. (1994). Reduced 

hippocampal long-term potentiation and 
 context-specifi c defi cit in associative learning in 
mGluR1 mutant mice. Cell 79, 365–375.

Andersen, P., and Lømo, T. (1967). Control of hip-
pocampal output by afferent volley frequency. 
Prog. Brain Res. 27, 400–412.

Anwyl, R. (1999). Metabotropic glutamate receptors: 
electrophysiological properties and role in plas-
ticity. Brain Res. Rev. 9, 83–120.

Artola, A., von Frijtag, J. C., Fermont, P. C., 
Gispen, W. H., Schrama, L. H., Kamal, A., and 
Spruijt, B. M. (2006). Long-lasting modulation of 
the induction of LTD and LTP in rat hippocam-
pal CA1 by behavioural stress and environmental 
enrichment. Eur. J. Neurosci. 23, 261–272.

Avital, A., Segal, M., and Richter-Levin, G. (2006). 
Contrasting roles of corticosteroid receptors in hip-
pocampal plasticity. J. Neurosci. 26, 9130–9134.

Axmacher, N., Mormann, F., Fernandez, G., 
Elger, C. E., and Fell, J. (2006). Memory forma-
tion by neuronal synchronization. Brain Res. Rev. 
52, 170–182.

Bartos, M., Vida, I., Frotscher, M., Geiger, J. R., and 
Jonas, P. (2001). Rapid signaling at inhibitory 
synapses in a dentate gyrus interneuron network. 
J. Neurosci. 21, 2687–2698.

Bartos, M., Vida, I., and Jonas, P. (2007). Synaptic 
mechanisms of synchronized gamma oscillations 
in inhibitory interneuron networks. Nat. Rev. 
Neurosci. 8, 45–56.



62 | July 2008 | Volume 2 | Issue 1 www.frontiersin.org

Bear, M. F. (1996). A synaptic basis for memory stor-
age in the cerebral cortex. Proc. Natl. Acad. Sci. 
USA 93, 13453–13459.

Bikbaev, A., and Manahan-Vaughan, D. (2007). 
Hippocampal network activity is transiently 
altered by induction of long-term potentiation in 
the dentate gyrus of freely behaving rats. Front. 
Behav. Neurosci. doi: 10.3389/neuro.08/007.2007.

Bikbaev, A., Neyman, S., Ngomba, R. T., Conn, P. J., 
Nicoletti, F., and Manahan-Vaughan, D. (2008). 
MGluR5 mediates the interaction between late-
LTP, network activity, and learning. PLoS ONE 3, 
e2155.

Bland, B. H. (1986). The physiology and pharmacol-
ogy of hippocampal formation theta rhythms. 
Prog. Neurobiol. 26, 1–54.

Bliss, T. V., and Collingridge, G. L. (1993). A synaptic 
model of memory: long-term potentiation in the 
hippocampus. Nature 361, 31–39.

Bliss, T. V. P., and Lømo, T. (1973). Long-lasting 
potentiation of synaptic transmission in the den-
tate area of the unanaesthetized rabbit following 
stimulation of the perforant path. J. Physiol. 232, 
357–373.

Bragin, A., Jandó, G., Nádasdy, Z., Hetke, J., Wise, K., 
and Buzsáki, G. (1995). Gamma (40–100 Hz) 
oscillation in the hippocampus of the behaving 
rat. J. Neurosci. 15, 47–60.

Brakeman, P. R., Lanahan, A. A., O’Brien, R., 
Roche, K., Barnes, C. A., Huganir, R. L., and 
Worley, P. F. (1997). Homer: a protein that selec-
tively binds metabotropic glutamate receptors. 
Nature 386, 284–288.

Bruel-Jungerman, E., Laroche, S., and Rampon, C. 
(2005). New neurons in the dentate gyrus are 
involved in the expression of enhanced long-
term memory following environmental enrich-
ment. Eur. J. Neurosci. 21, 513–521.

Buzsáki, G. (1996). The hippocampo-neocortical 
dialogue. Cereb. Cortex 6, 81–92.

Buzsáki, G. (2002). Theta oscillations in the hippoc-
ampus. Neuron 33, 325–340.

Buzsáki, G. (2005). Theta rhythm of navigation: 
link between path integration and landmark 
navigation, episodic and semantic memory. 
Hippocampus 15, 827–840.

Buzsáki, G., and Chrobak, J. J. (1995). Temporal 
structure in spatially organized neuronal ensem-
bles: a role for interneuronal networks. Curr. 
Opin. Neurobiol. 5, 504–510.

Buzsáki, G., Csicsvari, J., Dragoi, G., Harris, K., 
Henze, D., and Hirase, H. (2002). Homeostatic 
maintenance of neuronal excitability by burst 
discharges in vivo. Cereb. Cortex 12, 893–899.

Chrobak, J. J., Lörincz, A., and Buzsáki, G. (2000). 
Physiological patterns in the hippocampo-
entorhinal cortex system. Hippocampus 10, 
457–465.

Cole, A. J., Saffan, D. W., Baraban, J. M., and 
Worley, P. F. (1989). Rapid increase of an imme-
diate early gene messenger RNA in hippocampal 
neurons by synaptic NMDA receptor activation. 
Nature 340, 474–476.

Collingridge, G. L., Kehl, S. J., and McLennan, H. (1983). 
Excitatory amino acids in synaptic transmission in 
the Schaffer collateral-commissural pathway of the 
rat hippocampus. J. Physiol. 334, 33–46.

 Csicsvari, J., Hirase, H., Czurkó, A., Mamiya, A., 
and Buzsáki, G. (1999). Oscillatory coupling of 

 hippocampal pyramidal cells and interneurons 
in the behaving rat. J. Neurosci. 19, 274–287.

Csicsvari, J., Jamieson, B., Wise, K. D., and Buzsáki, G. 
(2003). Mechanisms of gamma oscillations in the 
hippocampus of the behaving rat. Neuron 37, 
311–322.

Dan, Y., and Poo, M. M. (2004). Spike timing-
dependent plasticity of neural circuits. Neuron 
44, 23–30.

Duffy, S. N., Craddock, K. J., Abel, T., and Nguyen, P. V. 
(2001). Environmental enrichment modifi es 
the PKA-dependence of hippocampal LTP and 
improves hippocampus-dependent memory. 
Learn. Mem. 8, 26–34.

Errington, M. L., Lynch, M. A., and Bliss, T. V. (1987). 
Long-term potentiation in the dentate gyrus: 
induction and increased glutamate release are 
blocked by D(-)aminophosphonovalerate. 
Neuroscience 20, 279–284.

Fell, J., Klaver, P., Lehnertz, K., Grunwald, T., 
Schaller, C., Elger, C. E., and Fernandez, G. (2001). 
Human memory formation is accompanied by 
rhinal–hippocampal coupling and decoupling. 
Nat. Neurosci. 4, 1159–1160.

Foster, T. C., Fugger, H. N., and Cunningham, S. G. 
(2000). Receptor blockade reveals a correspond-
ence between hippocampal-dependent behavior 
and experience-dependent synaptic enhance-
ment. Brain Res. 871, 39–43.

Fox, C. J., Russell, K. I., Wang, Y. T., and Christie, B. R. 
(2006). Contribution of NR2A and NR2B 
NMDA subunits to bidirectional synaptic plas-
ticity in the hippocampus in vivo. Hippocampus 
16, 907–915.

Frey, U., Frey, S., Schollmeier, F., and Krug, M. (1996). 
Infl uence of actinomycin D, a RNA synthesis 
inhibitor, on long-term potentiation in rat hip-
pocampal neurons in vivo and in vitro. J. Physiol. 
490, 703–711.

Frey, U., Huang, Y.-Y., and Kandel, E. R. (1993). Effect 
of cAMP simulates a late stage of LTP in hippoc-
ampal CA1 neurons. Science 260, 1661–1664.

Fries, P., Reynolds, J. H., Rorie, A. E., and Desimone, R. 
(2001). Modulation of oscillatory neuronal syn-
chronization by selective visual attention. Science 
291, 1560–1563.

Granado, N., Ortiz, O., Suárez, L. M., Martín. E. D., 
Ceña, V., Solís, J. M., and Moratalla, R. (2008). D1 
but not D5 dopamine receptors are critical for 
LTP, spatial learning, and LTP-Induced arc and 
zif268 expression in the hippocampus. Cereb. 
Cortex 18, 1–12.

Gray, C. M., and Singer, W. (1989). Stimulus-specifi c 
neuronal oscillations in orientation columns of 
cat visual cortex. Proc. Natl. Acad. Sci. USA 86, 
1698–1702.

Hermann, C. S., Munk, M. H., and Engel, A. K. 
(2004). Cognitive functions of gamma-band 
activity: memory match and utilization. Trends 
Cogn. Sci. 8, 347–355.

Hölscher, C., Anwyl, R., and Rowan, M. J. (1997). 
Block of theta-burst-induced long-term poten-
tiation by (1S,3S)-1-aminocyclopentane-1,3-
dicarboxylic acid: further evidence against 
long-term potentiation as a model for learning. 
Neuroscience 81, 17–22.

Hopfi eld, J. J. (1995). Pattern recognition computa-
tion using action potential timing for stimulus 
representation. Nature 376, 33–36.

Huang, Y. Y., Nguyen, P. V., Abel, T., and Kandel, E. R. 
(1996). Long-lasting forms of synaptic poten-
tiation in the mammalian hippocampus. Learn. 
Mem. 3, 74–85.

Huerta, P. T., and Lisman, J. E. (1993). Heightened 
synaptic plasticity of hippocampal CA1 neurons 
during a cholinergically induced rhythmic state. 
Nature 364, 723–725.

Huerta, P. T., and Lisman, J. E. (1995). Bidirectional 
synaptic plasticity induced by a single burst dur-
ing cholinergic theta oscillation in CA1 in vitro. 
Neuron 15, 1053–1063.

Hyman, J. M., Wyble, B. P., Goyal, V., Rossi, C. A., 
and Hasselmo, M. E. (2003). Stimulation in 
hippocampal region CA1 in behaving rats 
yields long-term potentiation when delivered 
to the peak of theta and long-term depression 
when delivered to the trough. J. Neurosci. 23, 
11725–11731.

Kamondi, A., Acsády, L., Wang, X. J., and Buzsáki, G. 
(1998). Theta oscillations in somata and den-
drites of hippocampal pyramidal cells in vivo: 
activity-dependent phase-precession of action 
potentials. Hippocampus 8, 244–261.

Kemp, A., and Manahan-Vaughan, D. (2005). The 
5-hydroxytryptamine4 receptor exhibits fre-
quency-dependent properties in synaptic plas-
ticity and behavioural metaplasticity in the 
hippocampal CA1 region in vivo. Cereb. Cortex 
15, 1037–1043.

Kemp, A., and Manahan-Vaughan, D. (2007). 
Hippocampal long-term depression: master or 
minion in declarative memory processes? Trends 
Neurosci. 30, 111–118.

Kemp, A., and Manahan-Vaughan, D. (2008). {beta}-
adrenoreceptors comprise a critical element in 
learning-facilitated long-term plasticity. Cereb. 
Cortex. 18, 968–977.

Klausberger, T., Magill, P. J., Márton, L. F., Roberts, J. D., 
Cobden, P. M., Buzsáki, G., and Somogyi, P. 
(2003). Brain-state- and cell-type-specifi c fi ring 
of hippocampal interneurons in vivo. Nature 421, 
844–848.

Kneisler, T. B., and Dingledine, R. (1995). Spontaneous 
and synaptic input from granule cells and the 
perforant path to dentate basket cells in the rat 
hippocampus. Hippocampus 5, 151–164.

Kopp, C., Longordo, F., Nicholson, J. R., and Lüthi, A. 
(2006). Insuffi cient sleep reversibly alters bidi-
rectional synaptic plasticity and NMDA receptor 
function. J. Neurosci. 26, 12456–12465.

Krug, M., Lössner, B., and Ott, T. (1984). Anisomycin 
blocks the late phase of long-term potentiation in 
the dentate gyrus of freely moving rats. Brain Res. 
Bull. 13, 39–42.

Kulla, A., and Manahan-Vaughan, D. (2002). 
Modulation by serotonin 5-HT(4) receptors of 
long-term potentiation and depotentiation in the 
dentate gyrus of freely moving rats. Cereb. Cortex 
12, 150–162.

Lemon, N., and Manahan-Vaughan, D. (2006). 
Dopamine D1/D5 receptors gate the acquisi-
tion of novel information through hippocampal 
long-term potentiation and long-term depres-
sion. J. Neurosci. 26, 7723–7729.

Li, S., Cullen, W. K., Anwyl, R., and Rowan, M. J. 
(2003). Dopamine-dependent facilitation of LTP 
induction in hippocampal CA1 by exposure to 
spatial novelty. Nat. Neurosci. 6, 526–531.

Bikbaev and Manahan-Vaughan



Frontiers in Neuroscience July 2008 | Volume 2 | Issue 1 | 63

Hippocampal oscillations are linked to LTP

Li, S., Cullen, W. K., Anwyl, R., and Rowan, M. J. 
(2007). Muscarinic acetylcholine receptor-
dependent induction of persistent synaptic 
enhancement in rat hippocampus in vivo. 
Neuroscience 144, 754–761.

Link, W., Konietzko, U., Kauselmann, G., Krug, M., 
Schwanke, B., Frey, U., and Kuhl, D. (1995). 
Somatodendritic expression of an immediate 
early gene is regulated by synaptic activity. Proc. 
Natl. Acad. Sci. USA 92, 5734–5738.

Lisman, J. E. (1999). Relating hippocampal circuitry 
to function: recall of memory sequences by 
reciprocal dentate-CA3 interactions. Neuron 22, 
233–242.

Lisman, J. E., and Idiart, M. A. (1995). Storage of 
7+/−2 short-term memories in oscillatory subcy-
cles. Science 267, 1512–1515.

Lømo, T. (2003). The discovery of long-term poten-
tiation. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 
358, 617–620.

Lynch, M. A. (2004). Long-term potentiation and 
memory. Physiol. Rev. 84, 87–136.

Manahan-Vaughan, D. (1997). Group 1 and 2 metab-
otropic glutamate receptors play differential 
roles in hippocampal long-term depression and 
long-term potentiation in freely moving rats. 
J. Neurosci. 17, 3303–3311.

Manahan-Vaughan, D., and Braunewell, K. H. 
(2005). The metabotropic glutamate receptor, 
mGluR5, is a key determinant of good and 
bad spatial learning performance and hip-
pocampal synaptic plasticity. Cereb. Cortex 15, 
1703–1713.

Manahan-Vaughan, D., Braunewell, K. H., and 
Reymann, K. G. (1998). Subtype-specifi c involve-
ment of metabotropic glutamate receptors in two 
forms of long-term potentiation in the dentate 
gyrus of freely moving rats. Neuroscience 86, 
709–721.

Manahan-Vaughan, D., and Kulla, A. (2003). 
Regulation of depotentiation and long-term 
potentiation in the dentate gyrus of freely mov-
ing rats by dopamine D2-like receptors. Cereb. 
Cortex 13, 123–135.

Manahan-Vaughan, D., and Reymann, K. G. (1996). 
Metabotropic glutamate receptor subtype ago-
nists facilitate long-term potentiation within a 
distinct time window in the dentate gyrus in vivo. 
Neuroscience 74, 723–731.

Martin, S. J. (2001). Activation of metabotropic 
glutamate receptors induces gamma frequency 
oscillations in the rat dentate gyrus in vivo. 
Neuropharmacology 40, 634–637.

McCartney, H., Johnson, A. D., Weil, Z. M., and 
Givens, B. (2004). Theta reset produces opti-
mal conditions for long-term potentiation. 
Hippocampus 14, 684–687.

Messaoudi, E., Kanhema, T., Soulé, J., Tiron, A., 
Dagyte, G., da Silva, B., and Bramham, C. R. 
(2007). Sustained Arc/Arg3.1 synthesis con-
trols long-term potentiation consolidation 
through regulation of local actin polymeriza-
tion in the dentate gyrus in vivo. J. Neurosci. 27, 
10445–10455.

Montgomery, S. M., and Buzsáki, G. (2007). Gamma 
oscillations dynamically couple hippocampal 
CA3 and CA1 regions during memory task 
performance. Proc. Natl. Acad. Sci. USA 104, 
14495–14500.

Nguyen, P. V., Abel, T., and Kandel, E. R. (1994). 
Requirement of a critical period of transcription 
for induction of a late phase of LTP. Science 265, 
1104–1107.

Niewoehner, B., Single, F. N., Hvalby, Ø., Jensen, V., 
Borgloh, S. M., Seeburg, P. H., Rawlins, J. N., 
Sprengel, R., and Bannerman, D. M. (2007). 
Impaired spatial working memory but spared 
spatial reference memory following functional 
loss of NMDA receptors in the dentate gyrus. Eur. 
J. Neurosci. 25, 837–846.

O’Keefe, J., and Recce, M. L. (1993). Phase relation-
ship between hippocampal place units and the 
EEG theta rhythm. Hippocampus 3, 317–330.

Orr, G., Rao, G., Houston, F. P., McNaughton, B. L., 
and Barnes, C. A. (2001). Hippocampal synaptic 
plasticity is modulated by theta rhythm in the 
fascia dentata of adult and aged freely behaving 
rats. Hippocampus 11, 647–654.

Otani, S., and Abraham, W. C. (1989). Inhibition of 
protein synthesis in the dentate gyrus but not 
entorhinal cortex blocks the maintenance of 
long-term potentiation in rats. Neurosci. Lett. 
106, 175–180.

Pavlides, C., Greenstein, Y. J., Grudman, M., and 
Winson, J. (1988). Long-term potentiation in 
the dentate gyrus is induced preferentially on the 
positive phase of theta-rhythm. Brain Res. 439, 
383–387.

Penttonen, M., Kamondi, A., Acsady, L., and 
Buzsáki, G. (1998). Gamma frequency oscilla-
tion in the hippocampus of the rat: intracellular 
analysis in vivo. Eur. J. Neurosci. 10, 718–728.

Richter-Levin, G., Errington, M. L., Maegawa, H., 
and Bliss, T. V. (1994). Activation of metabo-
tropic glutamate receptors is necessary for 
long-term potentiation in the dentate gyrus 
and for spatial learning. Neuropharmacology 33, 
853–857.

Seager, M. A., Johnson, L. D., Chabot, E. S., Asaka, Y., 
and Berry, S. D. (2002). Oscillatory brain states 
and learning: Impact of hippocampal theta-con-
tingent training. Proc. Natl. Acad. Sci. USA 99, 
1616–1620.

Seidenbecher, T., Reymann, K. G., and Balschun, D. 
(1997). A post-tetanic time window for the rein-
forcement of long-term potentiation by appe-
titive and aversive stimuli. Proc. Natl. Acad. Sci. 
USA 94, 1449–1499.

Sik, A., Penttonen, M., and Buzsáki, G. (1997). 
Interneurons in the hippocampal dentate gyrus: 
an in vivo intracellular study. Eur. J. Neurosci. 9, 
573–588.

Singer, W. (1993). Synchronization of cortical activ-
ity and its putative role in information processing 
and learning. Annu. Rev. Physiol. 55, 349–374.

Swanson-Park, J. L., Coussens, C. M., Mason-
Parker, S. E., Raymond, C. R., Hargreaves, E. L., 
Dragunow, M., Cohen, A. S., and Abraham, W. C. 
(1999). A double dissociation within the hip-
pocampus of dopamine D1/D5 receptor and 
beta-adrenergic receptor contributions to the per-
sistence of long-term potentiation. Neuroscience 
92, 485–497.

Traub, R. D., Bibbig, A., LeBeau, F. E. N., Buhl, E. H., 
and Whittington, M. A. (2004). Cellular mecha-
nisms of neuronal population oscillations in the 
hippocampus in vitro. Annu. Rev. Neurosci. 27, 
247–278.

Vanderwolf, C. H. (1969). Hippocampal electri-
cal activity and voluntary movement in the 
rat. Electroencephalogr. Clin. Neurophysiol. 26, 
407–418.

van Praag, H., Christie, B. R., Sejnowski, T. J., and 
Gage, F. H. (1999). Running enhances neurogene-
sis, learning, and long-term potentiation in mice. 
Proc. Natl. Acad. Sci. USA 96, 13427–13431.

Vertes, R. P. (2005). Hippocampal theta rhythm: a 
tag for short-term memory. Hippocampus 15, 
923–935.

Vida, I., Bartos, M., and Jonas, P. (2006). Shunting 
inhibition improves robustness of gamma oscil-
lations in hippocampal interneuron networks by 
homogenizing fi ring rates. Neuron 49, 107–117.

Wespatat, V., Tennigkeit, F., and Singer, W. (2004). 
Phase sensitivity of synaptic modifi cations in 
oscillating cells of rat visual cortex. J. Neurosci. 
24, 9067–9075.

Whitlock, J. R., Heynen, A. J., Shuler, M. G., and 
Bear, M. F. (2006). Learning induces long-term 
potentiation in the hippocampus. Science 313, 
1093–1097.

Whittington, M. A., Stanford, I. M., Colling, S. B., 
Jefferys, J. G. R., and Traub, R. D. (1997). 
Spatiotemporal patterns of g frequency oscilla-
tions tetanically induced in the rat hippocampal 
slice. J. Physiol. (Lond.) 502, 591–607.

Whittington, M. A., Traub, R. D., and Jefferys, J. G. 
(1995). Synchronized oscillations in interneu-
ron networks driven by metabotropic glutamate 
receptor activation. Nature 373, 612–615.

Wisden, W., Errington, M. L., Williams, S., 
Dunnett, S. B., Waters, C., Hitchcock, D., Evan, G., 
Bliss, T. V., and Hunt, S. P. (1990). Differential 
expression of immediate early genes in the hip-
pocampus and spinal cord. Neuron 4, 603–614.

Xu, L., Holscher, C., Anwyl, R., and Rowan, M. J. 
(1998). Glucocorticoid receptor and protein/
RNA synthesis-dependent mechanisms underlie 
the control of synaptic plasticity by stress. Proc. 
Natl. Acad. Sci. USA 95, 3204–3208.

Yin, Y., Edelman, G. M., and Vanderklish, P. W. 
(2002). The brain-derived neurotrophic factor 
enhances synthesis of Arc in synaptoneurosomes. 
Proc. Natl. Acad. Sci. USA 99, 2368–2373.

Ylinen, A., Soltesz, I., Bragin, A., Penttonen, M., 
Sik, A., and Buzsáki, G. (1995). Intracellular cor-
relates of hippocampal theta rhythm in identifi ed 
pyramidal cells, granule cells, and basket cells. 
Hippocampus 5, 78–90.

Received: 15 May 2008; accepted: 13 June 2008.

Citation: Front. Neurosci. (2008) 2, 1: 56–63. 
doi: 10.3389/neuro.01.010.2008

Copyright © 2008 Bikbaev and Manahan-
Vaughan. This is an open-access article subject 
to an exclusive license agreement between the 
authors and the Frontiers Research Foundation, 
which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original 
authors and source are credited.


