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The recent and rapid development of open source software tools for the analysis of 
neurophysiological datasets consisting of simultaneous multiple recordings of spikes, 
field potentials and other neural signals holds the promise for a significant advance in the 
standardization, transparency, quality, reproducibility and variety of techniques used to analyze 
neurophysiological data and for the integration of information obtained at different spatial and 
temporal scales. In this review we focus on recent advances in open source toolboxes for the 
information theoretic analysis of neural responses. We also present examples of their use to 
investigate the role of spike timing precision, correlations across neurons, and field potential 
fluctuations in the encoding of sensory information. These information toolboxes, available both 
in MATLAB and Python programming environments, hold the potential to enlarge the domain 
of application of information theory to neuroscience and to lead to new discoveries about how 
neurons encode and transmit information.
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INTRODUCTION
Recent years have witnessed a sharp increase in the 
amount and complexity of data collected in neu-
rophysiological experiments. Neurophysiologists 
can now record simultaneous neural activity, at 
temporal resolutions of tens of kHz, from tens 
to hundreds of intracranial electrodes (Csicsvari 
et al., 2003). From each electrode, both action 
potentials of individual neurons (reflecting the 
output of a cortical site) and local field potentials 
(LFPs; reflecting both population synaptic poten-
tials and other types of slow activity such as spike 
afterpotentials) can be extracted. Moreover, elec-
trophysiological recordings can now be accom-
panied by joint measurements of other brain 
signals, such as those recorded with optical imag-
ing, electroencephalography (EEG) or functional 
magnetic resonance imaging (fMRI) (for a review, 
see Logothetis, 2008). In addition, increasingly 
detailed large-scale modeling produces sizable 

quantities of synthetic data that must be care-
fully analyzed to provide meaningful compari-
sons to experiments. While this richness provides 
unprecedented opportunities to understand brain 
organization at multiple levels, it poses to compu-
tational neuroscientists the enormous challenge 
of developing analytical tools to extract meaning-
ful information from such complex data.

There is a strong argument that the devel-
opment of the analytical tools for analyzing 
complex, multi-scale neurophysiological sig-
nals would be greatly helped by standardiza-
tion, and public and transparent availability of 
the software implementing these analysis tools, 
together with sharing of experimental data 
(Ascoli, 2006; Teeters et al., 2008), as well as by 
the standardization of experimental and mod-
eling neuroscience procedures (Nordlie et al., 
2009). In recent months, several laboratories 
have taken on board this philosophy and have 
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OPEN SOURCE COMPUTATIONAL  
TOOLBOXES FOR THE ANALYSIS  
OF NEUROPHYSIOLOGICAL DATA
A crucial element for computational analysis tool-
boxes is that they should be publicly released. For 
the group that developed the tool, this provides 
an opportunity to gain a broader user base, with 
wider recognition for and application of their 
techniques as well as greater feedback and testing. 
For the users of the tools, it allows exploration of 
a greater range of analysis techniques, reducing 
duplication of effort and improving reproduc-
ibility of results.

These benefits have long been recognized in 
other communities, such as bioinformatics and 
systems biology (De Schutter, 2008). In neu-
roscience, it has been recognized earlier in the 
modeling community, with the release of stand-
alone applications for detailed compartmental 
single cell and network modeling (Bower and 
Beeman, 1998; Carnevale and Hines, 2006), and 
large scale network simulators (Gewaltig and 
Diesmann, 2007; Goodman and Brette, 2008). 
These developments allow modelers to concen-
trate more on the issue of biological relevance 
without having to worry about implementation 
details, as well as allowing easier reproducibility 
of results. Publically released codes have also had 
a clear benefit in the analysis of fMRI data (Cox, 
1996; Duann et al., 2002; Friston et al., 2007) 
and EEG data (Delorme and Makeig, 2004) and 
were a key factor in boosting the development of 
neuroimaging and in the standardization of the 
resulting data and methods.

It is only more recently that code sharing is 
beginning to happen for tools related to the analy-
sis of electrophysiological data. In part, this might 
be because analysis tools were being developed 
and adapted along with the experimental tech-
niques, so it was hard to develop standard tools 
that could be meaningfully applied in different 
experimental circumstances. However, stand-
ard techniques are now starting to emerge and 
this is resulting in more groups releasing tools 
for electrophysiological data analysis. Examples 
of this include tools for spike sorting (Quiroga 
et al., 2004), tools for analysis of spike trains 
(Spacek et al., 2008; Goldberg et al., 2009) and 
for processing various types of neurophysiologi-
cal data (Meier et al., 2008; Zito et al., 2008; Garcia 
and Fourcaud-Trocme, 2009).

The effectiveness and impact of open source 
analysis toolboxes depends in part on the pro-
gramming language for which they are developed. 
In experimental neuroscience, the most common 
computing environment is MATLAB, a matrix-
based interactive programming language with 

put a  considerable effort into development, open 
source sharing and standardisation of the analy-
sis tools they work with.

In this focused review we discuss the rapid 
growth of advanced open source analysis tool-
boxes for neuroscience data. After briefly outlin-
ing the advantages of this framework, we discuss 
in more detail publically available open source 
toolboxes of one particular type of neuroscien-
tific analysis tools: those based on information 
theory. Then, focusing particularly on our own 
contributions, we use recent examples to illus-
trate the benefits that can be gained from using 
these information theoretic tools for the analysis 
of real and simulated data and for their detailed 
comparison.

THE ROLE OF ADVANCED TOOLBOXES  
FOR THE ANALYSIS OF NEUROPYSIOLOGICAL 
DATA IN THE DEVELOPMENT  
OF NEUROINFORMATICS
Neuroinformatics is a discipline which deals 
with the development of information science 
infrastructures that support the progress of 
neuroscience (Ascoli, 2006; Gardner et al., 2008). 
There are at least two key elements of such infra-
structures. The first element is the construction 
of publicly accessible databases collecting neu-
roscientific data from different levels of inves-
tigation. This offers theoreticians access to real 
data, which is essential to build, constrain and 
test meaningful models of brain function, as 
well as providing benchmark data for develop-
ing new analysis methods (Teeters et al., 2008). 
The second element consists of publicly available 
analysis tools to mine these databases and inte-
grate data at different scales. This offers experi-
mental laboratories access to advanced routines 
and algorithms, which go beyond the skills and 
expertise of an individual group. Importantly, 
the combination of expertise, algorithms and 
data at different levels could lead to scientific 
discoveries which would be impossible within a 
single laboratory or collaborative group (Insel 
et al., 2004).

While the full integration between repositories 
of large amounts of data and advanced routines 
is still a few years away, the public availability of 
analysis software for neurophysiological data has 
grown in recent years to a level which can be of 
immediate and substantial benefit to individual 
experimental laboratories and to collaborative 
networks of experimentalists and theoreticians. 
In the following, we briefly review the develop-
ment of open source tools for the analysis of neu-
rophysiological signals, with a particular focus on 
our own contribution.

Open source information-theoretic analysis tools

Local field potential
Local field potential (LFP)  
is a neurophysiological signal obtained 
by low-pass filtering extracellular 
recordings, typically using a frequency 
cutoff in the range of 100–300 Hz.  
It captures the fluctuations generated  
by the slow components of synaptic  
and neural events in the vicinity 
 of the recording electrode.

Open source
Open source (http://www.opensource.
org) is a software development method 
in which the source code is made 
available under a license which allows 
free redistribution and the creation  
of derived works. In an academic 
context it offers obvious advantages  
in terms of reproducibility of results, 
open access, easier collaboration, 
increased flexibility, and lower cost.

*Correspondence:
Robin A. A. Ince is currently studying  
for a Ph.D. at the University of 
Manchester, working on information 
theoretic analysis of neural data and 
numerical optimisation of information 
theoretic quantities.
robin.ince@postgrad.manchester.ac.uk



www.frontiersin.org May 2010 | Volume 4 | Issue 1 | 64

many of the features built in to the  environment, 
such as dynamic memory  allocation and advanced 
data types, in a robust cross platform way. For 
example, the different dynamic memory models 
of MATLAB and Python mean it would be dif-
ficult to implement codes, such as those discussed 
below, in a common backend without requiring 
expensive memory copies which would affect per-
formance. For these reasons we chose to implement 
separate native extensions for our software (dis-
cussed below), which can each take full advantage 
of the benefits of the respective systems without 
catering to the lowest common denominator of 
the feature sets.

INFORMATION THEORY
Among the many mathematical tools to analyze 
neural data, one that has attracted substantial 
interest in sensory neuroscience over the last 
20 years is information theory. Information the-
ory is the mathematical theory that deals with 
measures of transmission of information in the 
presence of noise, and with their applications to 
the study of communication systems (Shannon, 
1948). The most fundamental information the-
oretic quantity for studying neural codes is the 
mutual information I(S; R) between stimuli and 
neural responses, defined as follows:

 
(1)

where P(s) is the probability of presenting stimu-
lus s, P(r) is the probability of observing a neural 
response r across all presentations (trials) of all 
stimuli and P(r|s) is the probability of observing 
r when a specific stimulus s is presented. I(S; R) 
quantifies the reduction of uncertainty about the 
stimulus that can be gained from observation of 
a single trial of the neural response. Its usefulness 
in neuroscience arises from the fact that it can be 
used to better understand how neurons transmit 
information, for example by quantifying and 
comparing the information about external cor-
relates (such as different types of sensory stimuli) 
available in different candidate neural codes, each 
candidate code corresponding to a choice of how 
to represent the neural response.

The fact that information theoretic techniques 
quantify information gains in single trials (rather 
than on average across trials) makes them biologi-
cally relevant, because brains recognize sensory 
stimuli and take decisions on single trials. With 
respect to other single trial analysis techniques (such 
as decoding or reconstruction of the most likely 
stimulus that elicited the neural response) informa-
tion theory has the advantage that it naturally takes 

a wide base of scientific libraries and powerful 
functionality for plotting and data visualisation. 
It is well supported by industry and frequently 
interfaces directly with experimental hardware as 
a key component in the data acquisition chain. 
However, there are several open source alter-
natives that are growing in functionality and 
popularity. One such example is Python, a fully 
object-oriented programming language which is 
endowed with a range of scientific libraries for 
numerical computation, such as NumPy and 
SciPy. Python has rapidly gained momentum 
in the computational modeling and methods 
development community, as can be seen from 
the recent Python in Neuroscience special topic 
of Frontiers in Neuroinformatics (Koetter et al., 
2008), which showcases some of the wide range 
of software already available. Python’s flexibility 
as a scripting language is particularly valuable 
for taking outputs from one tool (for example 
a network simulator) and analyzing them with 
other tools (for example spike train analysis 
tools) programmatically.

Ideally, open source toolboxes should be avail-
able with interfaces allowing use from several 
programming languages in order to maximize the 
potential user base and allow greater interaction 
between different communities. For example, an 
analysis toolbox with both Python and MATLAB 
interfaces would ease comparison between 
simulations and experiment, as modelers could 
enjoy the performance and flexibility of Python, 
whereas experimenters could use it from within 
the MATLAB environment often used to acquire, 
pre-process and plot their data. While there are a 
number of community developed utilities to allow 
integration between computing environments, for 
example mlabwrap1 (MATLAB from Python) and 
pythoncall2 (Python from MATLAB) these can be 
difficult to install and must work around inher-
ent differences in the data types and facilities of 
the different systems. A native interface following 
the idioms of the platform is generally easier for 
users familiar with a specific software environ-
ment. Having a single implementation of the 
algorithms with interfaces available for each lan-
guage also has technical advantages, reducing code 
duplication and simplifying the maintenance of 
the software since changes and enhancements to 
the core routines only need to be made in a sin-
gle location. However, this can be challenging for 
highly dynamic environments, such as MATLAB 
and Python, since it requires re-implementing 
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Mutual information
It is a measure of how well an 
observation of one stochastic variable 
reduces the uncertainty about another. 
When it is defined using base-2 
logarithms (as in Eq. 1) the reduction  
of uncertainty it expresses is measured 
in units of bits. One bit corresponds  
to a reduction of uncertainty by a factor 
of two (for example, a correct answer  
to a yes/no question).

1http://mlabwrap.sourceforge.net/
2http://www.elisanet.fi/ptvirtan/software/pythoncall/index.
html
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INFORMATION THEORETIC TOOLBOXES
Here we briefly describe three recently released 
open source toolkits that include implementa-
tions of information theoretic quantities and that 
were specifically designed and tested for analyzing 
recordings of neural activity.

The Spike Train Analysis Toolkit3 (Goldberg 
et al., 2009) is a MATLAB toolbox which imple-
ments several information-theoretic spike train 
analysis techniques. It is a comprehensive piece of 
software, covering a range of entropy and informa-
tion bias correction methods. Particularly notable 
is the inclusion of the so-called metric space (Victor 
and Purpura, 1996) and binless (Victor, 2002) 
methods for estimating information theoretic 
quantities from spike trains, which to our knowl-
edge are not available in any other package.

PyEntropy4 (Ince et al., 2009) is a Python module 
computing information quantities from discretized 
neural responses with a range of bias corrections, 
including the highly efficient shuffled information 
estimator (Panzeri et al., 2007). It also includes cal-
culation of all required terms for the information 
breakdown (Pola et al., 2003), which can quantify 
the effect of different types of correlations on the 
information carried by population codes. One of 
its unique features is that it includes a novel algo-
rithm for obtaining maximum entropy probability 
distributions over finite alphabet spaces under mar-
ginal constraints, which is useful for investigating 
correlations (see Cross-Neural Interactions and the 
Information Carried by Population Codes).

The Information Breakdown Toolbox5 (ibTB) 
(Magri et al., 2009) is a MATLAB toolbox imple-
menting several of the information estimates and 
bias corrections mentioned above. Importantly, 
it does this via a novel algorithm to minimize the 
number of operations required during the direct 
entropy estimation, which results in extremely 
high speed of computation. It contains a number 
of algorithms which have been thoroughly tested 
and exemplified not only on spike train data (as 
for the above toolboxes), but also on data from 
analogue brain signals such as LFPs and EEGs.

Besides information theoretic toolboxes 
designed primarily for neuroscientific data, there 
are also other open-source information theoretic 
packages not designed specifically for neural 
data. One prominent example is the R package 
“entropy”6, which implements plug-in estimates 
of the entropy and mutual information, as well 
as a number of bias corrections.

into account all possible ways in which neurons can 
convey information (for example, by predicting the 
most likely stimulus, by reporting the uncertainty 
of the prediction, or by ruling out very unlikely 
stimuli) (Quiroga and Panzeri, 2009). Some ways 
in which mutual information can be used to gain 
insights into neural computations will be illustrated 
by examples in the following section.

THE LIMITED SAMPLING BIAS PROBLEM
The major technical difficulty in computing 
mutual information from neural responses is that 
it requires knowledge of the full  stimulus–response 
probability distributions (Eq. 1), and these 
probabilities must be measured from a limited 
number of stimulus–response trials. This leads 
to a systematic error (called limited sampling 
bias) in estimates of information, which can be 
prominent (Figure 1) and is difficult to correct 
for. Fortunately, there are several bias correction 
techniques which allow accurate estimates of 
information theoretic quantities from realistically 
collectable amounts of data (recently reviewed 
in Victor, 2006; Panzeri et al., 2007). However, 
these methods are complex and computation-
ally demanding, and their performance depends 
on the statistics of neural data, which necessitates 
testing several methods with simulated neural 
responses with statistical properties close to that 
of real data. Therefore, the availability of high-
performance toolboxes implementing many of 
the available bias correction techniques is cru-
cial for widening the use of information theoretic 
tools among neuroscience laboratories.

Open source information-theoretic analysis tools

Figure 1 | The origin of the limited sampling bias in information measures. (A, B) Simulation  
of a toy uninformative neuron, responding on each trial with a uniform distribution of spike counts 
ranging from 0 to 9, regardless of which of two stimuli (S = 1 in (A) and S = 2 in (B)) are presented. 
The black dotted horizontal line is the true response distribution, solid red lines are estimates 
sampled from 40 trials. The limited sampling causes the appearance of spurious differences  
in the two estimated conditional response distributions, leading to an artificial positive value  
of mutual information. (C) The distribution (over 5000 simulations) of the mutual information values 
obtained (without using any bias correction) estimating Eq. 1 from the stimulus–response 
probabilities computed with 40 trials. The dashed green vertical line indicates the true value  
of the mutual information carried by the simulated system (which equals 0 bits); the difference 
between this and the mean observed value (dotted green line) is the bias.

3http://neuroanalysis.org/toolkit/
4http://code.google.com/p/pyentropy/
5http://www.ibtb.org/
6http://cran.r-project.org/web/packages/entropy/
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and theory and aimed at understanding the rules 
of translation between complex sensory stimuli 
and LFP oscillations at different frequencies, and 
illustrate how information theory helped us in 
this investigation.

Analysis of cortical LFPs reveals that cortical 
activity contains oscillations and fluctuations 
ranging over a wide range of frequencies, from 
a fraction of Hz to well over 100 Hz (Buzsaki 
and Draguhn, 2004). However, it is not known 
whether all parts of the spectrum of cortical fluc-
tuations participate in encoding sensory stimuli, 
or whether there are frequency ranges which do 
not participate in encoding stimuli and instead 
reflect stimulus unrelated or ongoing activity. 
To address the issue of which frequency range 
of cortical fluctuations are involved in sensory 
function, we carried out an experimental study 
(Belitski et al., 2008) in which we recorded LFPs 
in the primary visual cortex of anesthetized 
macaques during binocular visual stimulations 
with naturalistic color movies. To understand 
which parts of the LFP spectrum were involved 
in encoding visual stimulus features, we com-
puted the amount of information carried by 
LFP power in various bands about which part 
of a naturalistic color movie was being shown. 
We found that not all the frequency range was 
involved in stimulus coding: the power of LFPs 
carried information only in the low (<12 Hz) 
and gamma (60–100 Hz) frequency range 
(Figure 2C), and each of these two ranges car-
ried independent visual information. To under-
stand the origin of these two informative and 
independent frequency bands, we simulated 
the responses of a cortical recurrent network 
of excitatory and inhibitory neurons to time-
 dependent thalamic inputs (Mazzoni et al., 
2008). When the dynamics of the simulated 
thalamic input matched those of real visual 
thalamic neurons responding to movies, the 
simulated network produced stimulus-related 
LFP changes that were in close agreement with 
those observed in primary visual cortex (see 
Figure 2A for individual simulated traces and 
Figure 2C for the results of information analy-
sis of real and simulated data). Moreover, by 
systematically manipulating the dynamics of 
inputs to the network, we could shed light on the 
differential origin of the information at low and 
at gamma LFP frequencies. Gamma-range oscil-
lations were generated by inhibitory– excitatory 
neural interactions and encoded static input 
spike rates, whereas slow LFP fluctuations were 
mediated by stimulus–neural interactions and 
encoded slow dynamic features of the input 
(Mazzoni et al., 2008).

It should be noted that our own two toolboxes 
(PyEntropy and ibTB) contain many informa-
tion estimation algorithms implemented both in 
Python and MATLAB. As noted above, the avail-
ability of the same algorithm in multiple program-
ming environments facilitates interactions between 
computational and experimental laboratories.

RECENT APPLICATIONS
USING INFORMATION THEORY TO COMPARE 
 MODELS AND EXPERIMENTS AND TO SET  
THE AMOUNT OF NOISE IN SIMULATED MODELS
Information theory is useful to compare models 
and experiments and elucidate the neural mecha-
nisms underlying the generation of neural rep-
resentations of sensory events. To illustrate this, 
we report a recent study combining experiment 
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Figure 2 | Computing the information content of LFP spectrum in models and cortical data. 
(A) The time course of the 70–74 Hz component of simulated LFP’s generated from the recurrent 

inhibitory–excitatory neural network model of Mazzoni et al. (2008) for four repetitions of the 
same thalamic input signal during three 2-s nonoverlapping movie intervals (“scenes”), each coded 
with a different color. The power of the 70–74 Hz band varies reliably from scene to scene.  
(B) The distribution across 30 trials of the time-averaged instantaneous power within each scene 
(red, green, and blue lines coded as in (A)) is different across different scenes and from the 
distribution of power across all available scenes (black dashed line). This shows that the power  
in this frequency band carries some single-trial information about movie scenes. (C) The mutual 
information (about which scene of the movie was being presented) carried by the power of the LFP 
recorded from primary visual cortex (grey area represents the mean ± SEM over recoding locations) 
and by the power of the LFP simulated by the recurrent network model of Mazzoni et al. (2008) 
(black line), from which this panel is reprinted. The model accurately reproduced the spectral 
information of recorded LFP’s 
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codes, either by comparing the information 
encoded in the population to that of a hypo-
thetical population with no correlations but the 
same single neuron properties (Pola et al., 2003; 
Schneidman et al., 2003), or by considering the 
information loss if a downstream system ignores 
correlations when decoding the response (Latham 
and Nirenberg, 2005; Oizumi et al., 2009). Our 
toolboxes include these quantities and thereby 
allow detailed investigations of the role of cor-
relations in encoding and transmitting informa-
tion. The advantage of using information theory 
to study the role of interactions is that mutual 
information automatically takes into account 
contributions of all interactions among neurons 
at all orders. This property is central because it 
allows an evaluation of the role of all possible 
types of interactions among neurons, for example 
by removing them from the response probabili-
ties, and by quantifying how information changes 
with respect to the case in which the response 
probability was not manipulated.

A question which has recently attracted con-
siderable interest regarding the role of interactions 
in information processing is whether it is possi-
ble to describe the interaction structure in neural 
networks only in terms of pair-wise interactions 
(Schneidman et al., 2006; Shlens et al., 2006; Tang 
et al., 2008). To investigate this question (Montani 
et al., 2009), we used a  maximum-entropy approach 
(from the PyEntropy toolbox) to study the impact 
of interactions of any given order k on the encod-
ing of information about whisker vibrations by a 
population of neurons in rat somatosensory cortex. 
The maximum entropy approach imposes on the 
neural population activity all known interactions 
up to any considered order k but no further struc-
ture. The result (Figure 3) was that to understand 
information coding and response distributions in 
this system, it is necessary to consider not only first 
order statistics (mean firing rate), but also second 
order (pair-wise correlations) and third order 
interactions. The fact that the information carried 
by the population can be understood with pair-
wise and triple-wise correlations only, provides a 
tremendous simplification in terms of the number 
of parameters that must be estimated from the data 
to characterize the full response distribution, mak-
ing analysis of sensory coding by relatively large 
populations more tractable from the experimental 
point of view.

THE INFORMATION CARRIED BY THE TEMPORAL 
STRUCTURE OF NEURAL RESPONSES
Another problem which has received consider-
able attention over the last few years concerns 
the role of spike times in encoding information. 

Information theory was helpful to this study 
in two ways. First, the computation of informa-
tion about which scene of the movie was shown 
(exemplified in Figure 2B) takes into account 
all possible features in the movie, without any 
assumption of what specific feature was encoded. 
This afforded some generality in our conclusions. 
Moreover, this feature- independent information 
calculation could be easily replicated with the 
simulated model (Figure 2C), thereby allowing 
a simple computation from the model-output 
without having first to extract individual visual 
features from the movies, e.g., by a complicated 
array of model thalamic filters. Second, informa-
tion theory was useful in setting the trial-to-trial 
variability of neural responses. This variability 
is partly due to ongoing cortical activity which 
can influence the neural responses as much as 
the stimulus does (Arieli et al., 1996). Since local 
network models do not naturally generate such 
ongoing activity, they are usually less variable than 
real responses, and it is, therefore, often necessary 
to add such noise to models in an ad-hoc way. A 
principled way to set noise parameters is to match 
the information carried about neural responses, 
because information reflects both the variability 
in neural responses due to stimulus input and 
that due to internal variability (de Ruyter van 
Steveninck et al., 1997). In our model (Mazzoni 
et al., 2008), we could replicate all experimentally 
measured information over all LFP frequencies 
and under several stimulation conditions with a 
simple “internal noise” process; thus, information 
theory provided a simple and principled metric to 
set this otherwise arbitrary model parameter.

CROSS-NEURAL INTERACTIONS AND THE 
INFORMATION CARRIED BY POPULATION CODES
Nearby neurons in the central nervous system 
usually do not fire independently of the activity 
of other neurons, but rather interact: for example, 
the probability of near-simultaneous firing from 
two neurons is often significantly higher than the 
product of the probabilities of each neuron firing 
independently. Because of their ubiquitous pres-
ence, it has been suggested that interactions among 
neurons play an important role in shaping neural 
population codes (Averbeck et al., 2006). However, 
it has proven difficult to develop tools that can 
address the role of interactions in information 
processing quantitatively, and so it has remained 
difficult to ultimately understand whether neural 
interactions are epiphenomena or rather impor-
tant ingredients of neural population codes.

In recent years, several groups have  developed 
information theoretic tools to specifically address 
the impact of correlated firing on population 

Open source information-theoretic analysis tools
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The most established hypothesis on how sensory 
information is represented in the brain is the 
spike count coding hypothesis (Adrian, 1928), 
which suggests that neurons represent informa-
tion by the number of spikes discharged over 
some relevant time window. Another hypothesis 
is the spike timing encoding hypothesis, which 
suggests that the timing of spikes may add 
important information to that already carried 
by spike counts (MacKay and McCulloch, 1952; 
Optican and Richmond, 1987; Hopfield, 1995; 
Victor and Purpura, 1996).

Information theory can also be used to char-
acterize the temporal resolution needed to read 
out the information carried by spike trains. This 
can be performed by sampling the spike train at 
different temporal precisions, ∆t, (Figure 4A) 
and computing the information parametrically 
as a function of ∆t (de Ruyter van Steveninck 
et al., 1997). The temporal precision required to 
read the temporal code can then be defined as 
the largest ∆t that still provides the full infor-
mation obtained at higher resolutions. If this 
precision is equal to the overall length of the 
window over which neurons carry information, 
information is carried only by the number of 
spikes. As an example, we carried out this type 
of analysis on the responses of neurons from the 
VPm thalamic nucleus of rats whose whiskers 
were stimulated by fast white noise deflections 
(Montemurro et al., 2007). We found that the 
temporal precision ∆t at which neurons trans-
mitted information about whisker deflections 
was finer than 1 ms (Figure 4B), suggesting that 
these neurons use high precision spike timing, 
rather than spike counts over long windows, to 
carry information.

Information theory can also be used to investi-
gate whether spike times carry information when 
measured relative to the time shifts in the excitability 
of the local network, which are revealed by changes 
in phase of LFPs. Recent studies (Montemurro et al., 
2008; Kayser et al., 2009) revealed that in visual and 
auditory cortices, spike times with respect to the 
phase of low-frequency (<12 Hz) LFPs carry large 
amounts of information about naturalistic sensory 
stimuli which cannot possibly be obtained from 
spike count codes (Figure 5).

CONCLUSIONS
Given the steady increase in the volume and 
complexity of neurophysiological data, it is 
likely that open-source analysis toolboxes will 
play an increasingly important role in systems 
level neuroscience. This will provide theoretical 
and experimental neurophysiology laboratories 
with clear benefits in terms of transparency and 
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Figure 3 | Effect of higher order correlations on response distributions  
and information transmission. This figure illustrates the potential role of high order interactions  
in shaping the response distributions and the amount of information about the velocity  
of whisker deflection carried by population of neurons in rat somatosensory cortex  
(Montani et al., 2009). (A) The probability of the number of cells firing in a population  
of neurons (recorded simultaneously from 24 locations) in response to stimulus velocity 2.66 mm s−1 
during the [5–25] ms post-stimulus time window. The experimentally observed “true”  
probability distribution (black line) is compared to that of a maximum entropy probability model, 
preserving all interactions up to order k (k = 1,…5), but imposing no other interactions  
of order higher than k. Clearly, the model discarding all interactions (k = 1) gives a distribution  
very far from the real one. Including interactions across neurons (k > 1) improves the fit dramatically, 
and including interactions of order 3 is enough to get a statistically acceptable fit (χ2, p < 0.05).  
(B) To investigate the effect of the interactions on information, we simulated a system  
with these maximum entropy stimulus conditional distributions, generating the same number  
of trials as were available in the experimental data set. The information in this hierarchical family  
of model systems (averaged over 1000 simulations) is plotted and compared to the information 
carried by the “true” distribution observed experimentally. Correlations of order three 
 are required to match the information carried by the true neural population responses,  
but fourth order and above had no effect on the information transmitted.  
Data from Montani et al. (2009) were redrawn and reanalyzed to create this figure.

Figure 4 | Effect of temporal resolution of spike times on information. (A) The response  
of a neuron is initially recorded as a series of spike times. To investigate the temporal resolution  
at which spike times carry information, the spike train is binned at a variety of different time 
resolutions, by labeling the response at each time with the number of spikes occurring within  
that bin, thereby transforming the response into a discrete integer sequence. (B) The information 
rate (information per unit time) about whisker deflections carried by VPm thalamic neurons  
as a function of bin width, ∆t, used to bin neural responses (data from Montemurro et al. (2007)  
were redrawn and reanalyzed to create this panel). Information rate increased when decreasing  
the bin width even down to a resolution as fine as 0.5 ms, the limit of the experimental setup.  
This shows that a very fine temporal resolution is needed to read out the sensory messages carried 
by these thalamic spike trains.
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many neurophysiological laboratories without 
previous information theoretic expertise. Given 
that neurophysiological data, collected in such 
laboratories with a different question in mind, 
could be very valuable to address other questions 
on neural coding, it is likely that the availability 
of such new software may lead to new results on 
how neurons process information, even through 
reanalyzing already collected datasets; thereby, 
potentially reducing the use of animals.
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reproducibility, costs, time management, quality 
and standardization of algorithms. Over the next 
few years, the combination of publicly available 
neurophysiological databases, and of software 
tools able to draw together empirical informa-
tion collected at different scales, will provide 
the opportunity to tackle questions about brain 
function which cannot be addressed with a more 
traditional single laboratory approach.

The information theoretic toolboxes specifi-
cally highlighted and exemplified in this focused 
review offer a number of advanced techniques to 
study neural population codes. These tools can 
facilitate the comparison between computational 
and experimental insights into neural informa-
tion processing, and can contribute to increasing 
our knowledge about neural codes. In particular, 
the open availability of analysis techniques, which 
would otherwise be demanding to implement, 
will ensure that they are now also accessible to 
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Figure 5 | Encoding of information by spike count and phase of firing. LFPs and spiking activity were recorded 
from primary visual cortex of anesthetized macaques during binocular presentation of a naturalistic color movie. 
(A) Delta band (1–4 Hz) LFP traces from an example recording site during five repetitions of the same visual stimulus. 
The line is colored according to the phase quadrant of the instantaneous LFP phase. (B) Multiunit spiking activity from  
the same site over thirty repetitions of the same movie stimulus. (C) The same multiunit activity as in (B), but with spikes 
colored according to the concurrent instantaneous LFP phase quadrant at which they were emitted (phase of firing).  
The movie scenes indicated by green and blue arrows can be better discriminated by considering phase of firing (colored 
spikes) than by using the spike counts alone (black spikes). (D) Black circles show information carried by the LFP phase  
of firing as a function of the LFP frequency (mean ± SEM over the entire dataset). The black dashed line shows the spike 
count information (averaged over the dataset, with grey area showing SEM). For LFP frequencies below 20 Hz the phase 
of firing carries more information than the spike count. (E) Information carried by delta band phase of firing was calculated 
for movie scenes eliciting exactly the same spike rate and was plotted as a function of the elicited spike rate.  
This shows that the information carried by phase of firing is not redundant with spike rate, since it is able to disambiguate 
stimuli eliciting exactly the same spike rate. Figure reproduced (with permission) from Montemurro et al. (2008).
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