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“Brian” is a simulator for spiking neural networks (http://www.briansimulator.org). The focus 
is on making the writing of simulation code as quick and easy as possible for the user, and on 
fl exibility: new and non-standard models are no more diffi cult to defi ne than standard ones. 
This allows scientists to spend more time on the details of their models, and less on their 
implementation. Neuron models are defi ned by writing differential equations in standard 
mathematical notation, facilitating scientifi c communication. Brian is written in the Python 
programming language, and uses vector-based computation to allow for effi cient simulations. 
It is particularly useful for neuroscientifi c modelling at the systems level, and for teaching 
computational neuroscience.
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INTRODUCTION
Computational modelling of neural networks 
plays an increasing role in neuroscience research. 
Writing simulation code from scratch (typically 
in Matlab or C) can be very time-consuming and 
in all but the simplest cases requires expertise in 
programming and knowledge of neural simula-
tion algorithms. This can discourage researchers 
from investigating non-standard models or more 
complex network structures.

Several successful neural simulators already exist 
(Brette et al., 2007), such as Neuron (Carnevale and 
Hines, 2006) and Genesis (Bower and Beeman, 
1998) for compartmental modelling, and NEST 
(Gewaltig and Diesmann, 2007) for large scale 
network modelling. These simulators implement 
computationally effi cient algorithms and are 
widely used for large-scale modelling and complex 
biophysical models. However, computational effi -
ciency is not always the main limiting factor when 
simulating neural models. Efforts have been made 
in several simulators to make it as easy as possible, 
such as Neuron’s NMODL language described in 
Hines and Carnevale (2000) and graphical user 
interface. In many practical cases; however, it still 

takes considerably more time to write the code 
than to run the  simulations. Minimising learn-
ing and development time rather than simulation 
time implies different design choices, putting more 
emphasis on fl exibility, readability, and simplicity 
of the syntax.

There are various projects underway to address 
these issues. All of the major simulation pack-
ages now include Python interfaces (Eppler et al., 
2008; Hines et al., 2009) and the PyNN project 
(Davison et al., 2008) is working towards provid-
ing a unifi ed interface to them. Because it is both 
easy and powerful, Python is rapidly becoming 
the standard high-level language for the fi eld of 
computational neuroscience, and for scientifi c 
computing more generally (Bassi, 2007).

We took those approaches one step further by 
developing a new neural simulator, Brian, which 
is an extension package for the Python program-
ming language (Goodman and Brette, 2008). 
A simulation using Brian is a Python program 
either executed from a script or interactively from 
a Python shell. The primary focus is on making 
the development of a model by the user as rapid 
and fl exible as possible. For that purpose, the 
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language that is both intuitive and well  established, 
and secondly, to let users defi ne models in a form 
that is as close as possible to their mathemati-
cal defi nitions. As in other simulation projects, 
we identifi ed Python as an ideal choice for the 
programming language. Python is a well estab-
lished language that is intuitive, easy to learn 
and benefi ts from a large user community and 
many extension packages (in particular for sci-
entifi c computing and visualisation). While other 
simulators use Python as an interface to lower 
level simulation code, the Brian simulator itself 
is written in Python. The most original aspect 
of Brian is the emphasis on defi ning models as 
directly as possible by providing their mathemati-
cal defi nition, consisting of differential equations 
and discrete events (the effect of spikes) written in 
standard mathematical notation. One of the sim-
plest examples is a leaky integrate-and-fi re neu-
ron, which has a single variable V which decays 
to a resting potential V

0
 over time according to 

the equation τdV/dt = −(V − V
0
). If this variable 

reaches a threshold V > V
T
 the neuron fi res a 

spike and then resets to a value V
R
. If neuron i is 

connected to neuron j with a synaptic weight W
ij
 

then neuron i fi ring causes V
j
 to jump to V

j
 + W

ij
. 

This is represented in Brian with the following 
code for a group of N neurons with all-to-all 
connectivity:

equations = ‘‘’
dV/dt = -(V-V0)/tau : volt
‘’’
G = NeuronGroup(N, equations,
 threshold=’V>VT’,
 reset=’V=VR’)
C = Connection(G, G, ‘V’)

As can be seen in this code, the thresholding 
condition and the reset operation are also given 
in standard mathematical form. In fact it is pos-
sible to give arbitrary Python expressions for 
these, including calling user-defi ned functions. 
This gives greater generality, but using only math-
ematical expressions improves clarity. In addition 
to the mathematical defi nitions, the physical units 
are specifi ed explicitly for all variables, enforc-
ing dimensional consistency (here variable V has 
units of volts). In order to avoid ambiguities and 
make the code more readable, there is no stand-
ard scale for physical quantities (e.g. mV for volt-
ages) and the user provides the units explicitly. 
For example, the potential of the neurons is set to 
−70 mV by writing G.V=-70*mV or equivalently 
G.V=-.07*volt.

Making differential equations the basis of 
models in Brian may seem like a fundamental 

models are defi ned directly in the main script in 
their mathematical form (differential  equations 
and discrete events). This design choice addresses 
the three issues mentioned earlier: fl exibility, as the 
user can change the model by changing the equa-
tions; readability, as equations are unambiguous 
and do not require any specifi c knowledge of the 
Brian simulator to understand them; and simplic-
ity of the syntax, as models are expressed in their 
original mathematical form, with little syntax to 
learn that is specifi c to Brian. Computational effi -
ciency is achieved using  vector-based computa-
tion techniques.

We expect that the availability of this new tool 
will have the strongest impact in two areas: fi rstly 
in systems neuroscience, by making it easy to 
explore spiking models with custom architectures 
and properties, and secondly in teaching com-
putational neuroscience, by making it possible 
to write the code for a functional neural model 
within a single tutorial, and without strong pro-
gramming skills required. In this review, we start 
by describing the core principles of Brian, then we 
discuss a few concrete examples for which Brian is 
particularly useful. Finally, we outline directions 
for future research.

Brian can be downloaded from http:// 
briansimulator.org. It is open source and freely 
available under the CeCILL license (compatible 
with the GPL license).

THE SPIRIT OF BRIAN
The main goal of the Brian project is to  minimise 
the development time for a neural model, and in 
particular the time spent writing code, so that sci-
entists can spend their time on the details of their 
model rather than the details of its implementa-
tion. The development time also includes the time 
spent learning how to use the simulator. Ease of 
learning is important because it opens the pos-
sibility for people who would not previously have 
considered computational modelling to try it out. 
It is also helpful for teaching (see Teaching). More 
generally, it is desirable to minimise the time it 
takes to read and understand someone else’s code. 
It helps peers to verify and evaluate research based 
on computational modelling, and it makes it eas-
ier for researchers to share their models. Finally, in 
order to minimise the time spent on writing code, 
the translation of the model defi nition into code 
should be as direct as possible. Execution speed 
and memory usage of the code is also an issue, but 
only inasmuch as it puts a constraint on what can 
be done with it. It is therefore most important in 
the case of large neural networks.

These goals led us to make the following two 
choices: fi rstly, to use a standard  programming 
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equations = ‘’’
dV/dt  = (V0-V)/tau     : volt
dVT/dt = (VT0-VT)/tau_t : volt
‘’’
G = NeuronGroup(N, equations,
      threshold=’V>VT’, reset=’’’
      V = V0
      VT += delta’’’)

Two things can be noted in this code: the 
threshold condition can be any boolean condi-
tion on the variables of the model (not only a fi xed 
threshold), and the reset can be any sequence of 
Python instructions.

INVESTIGATING PLASTICITY MECHANISMS
The mechanisms of spike-timing-dependent plas-
ticity are an active line of research, so that many 
different models coexist and we might expect new 
models to emerge in the near future. Figure 1 shows 
a Brian script replicating some of the results of 
Song et al. (2000), where a neuron receives random 
inputs through plastic synapses. The STDP rule 
is exponential with all-to-all interactions between 
spike pairs and results in a bimodal stationary dis-
tribution of synaptic weights. Although the expo-
nential STDP rule can be most simply used in Brian 
with the ExponentialSTDP object, the most 
general way to defi ne such a mechanism in Brian 
is to give its equations. As is shown in Figure 1, 
a synaptic plasticity model is defi ned by three 
components: differential equations for synaptic 
variables (here A

pre
 and A

post
); events at presynaptic 

spike times; and events at postsynaptic spike times. 
This formalism encompasses a very broad class of 
plasticity rules. For example, triplet-based STDP 
rules (Pfi ster and Gerstner, 2006) can be imple-
mented by inserting a third differential equation; 
and nearest- neighbour rules can be obtained by 
replacing the presynaptic code A_pre+=dA_pre 
by A_pre=dA_pre and the postsynaptic code 
A_post+=dA_post by A_post=dA_post.

MODELLING A FUNCTIONAL NEURAL SYSTEM
Figure 2 shows a Brian script adapted from Stürzl 
et al. (2000), which models the neural mechanisms 
of prey localisation by a sand scorpion. This model 
is fairly complex and includes in particular noise 
and delays, which would make equivalent code in 
Matlab or C very long, whereas the full script takes 
only about 20 lines with Brian (plus the defi nition 
of parameter values). The script illustrates the fact 
that the code is close to the mathematical defi ni-
tion of the model, which makes it relatively easy 
to understand. Many (if not most) neurocompu-
tational studies at the systems level are not pub-
lished along with the code, which might be because 

restriction. For example, we may want to defi ne 
an α post-synaptic current by g(t) = (t/τ)e1 − t/τ 
rather than a differential equation. However, 
this is just the integrated formulation of the 
associated kinetic model:  
where presynaptic spikes act on y (that is, cause 
an instantaneous increase in y). More generally, 
biophysical neural models can almost always 
be expressed as differential equations, whose 
solutions are the post-synaptic potentials or 
currents.

In the same way, short-term plasticity (Tsodyks 
and Markram, 1997) and spike-timing- dependent 
plasticity (STDP, Song et al., 2000) can also be 
defi ned by differential equations with discrete 
events. In fact, although STDP is often described 
by the modifi cation of the synaptic weight for a 
given pair of presynaptic and postsynaptic spikes, 
this phenomenological description is ambiguous 
because it does not specify how pairs interact (e.g. 
all-to-all or nearest neighbours). These considera-
tions motivated our choice to defi ne all models 
unambiguously with differential equations and 
discrete events.

Brian emphasises this approach more strongly 
than any other simulator package, and it has 
some crucial benefi ts. Foremost, it separates the 
defi nition of the model from its implementa-
tion, which makes the code highly reproducible 
and readable. The equations defi ne the models 
unambiguously, independently of the simula-
tor itself, which makes it easy to share the code 
with other researchers, even though they might 
use a different simulator or no simulator at all. 
Second, it minimises the amount of simulator 
specifi c syntax that needs to be learnt. For exam-
ple, users do not need to look up the names of 
the model parameters since they defi ne them 
themselves. Third, simulating custom models is 
as simple as simulating standard models. In the 
following, we illustrate these features in a few 
concrete cases.

CASE STUDIES
In this section, we discuss several examples that 
illustrate the key features of Brian.

INVESTIGATING A NEW NEURON MODEL
Several recent experimental (Badel et al., 2008) and 
theoretical studies (Deneve, 2008) have suggested 
that the threshold for spike initiation should increase 
after each spike and decay to a stationary value. A 
simple model is given by a differential equation 
for the threshold V

T
: τ

t
dV

T
/dt = V

T0
 − V

T
, and an 

instantaneous increase at spike time: V
T
 ← V

T
 + δ. 

This model can be simulated directly with Brian, 
even though it is not a predefi ned model:

Python
A high-level programming language. 
Programs can be run from a script 
or interactively from a shell (as in 
Matlab). It is often used for providing 
a high-level interface to low-level code. 
The Python community has developed 
a large number of third party packages, 
including NumPy and SciPy, which 
are commonly used for effi cient 
numerical and scientifi c computation.

Interface
A mechanism for interacting with 
software, often simplifi ed and using 
abstractions, such as a graphical 
user interface (GUI) for interacting 
directly with the user, or an application 
programming interface (API) for 
interacting via code, possibly written 
in another language.

High-level language
A programming language providing 
data abstraction and hiding low-level 
implementation details specifi c 
to the CPU, memory management, 
and other technical details.

Package
A self-contained collection of objects 
and functions, often written by 
a third party to provide easily usable 
implementations of various algorithms.

Script
A fi le containing a sequence 
of statements in a high-level language 
which are run as a whole rather 
than interactively.

Shell
A computer environment or program 
in which single statements can be 
entered interactively, where the results 
are evaluated immediately and are 
then available for use in subsequently 
entered statements.

Vector-based computation
A technique for achieving 
computational effi ciency in high-level 
languages. It consists of replacing 
repeated operations by single 
operations on vectors (e.g. arithmetic 
operations) that are implemented 
in a dedicated effi cient package 
(e.g. NumPy for Python).
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a computational neuroscience course which 
included a weekly two hour tutorial on comput-
ers (http://www.di.ens.fr/∼brette/coursneurones/
coursneurones.html). A single tutorial was 
dedicated to learning Python and Brian, while 
every subsequent one illustrated the lecture 
which preceded it. For example, in one tutorial 
the students implemented a spiking version of 
the sound source localisation model of Jeffress 
(1948) and another sound localisation model 
that was recently  proposed for small mammals 
(McAlpine et al., 2001). In another tutorial, the 
students implemented the synfi re chain model 
described in Diesmann et al. (1999). The year 
before, when students used Scilab for simula-

the authors fi nd their code less informative and 
usable for readers than the article describing it. 
Code readability has several benefi ts: fi rstly, the 
code can be provided to the reviewers, who can 
run it or at least understand precisely how the 
authors produced the fi gures; secondly, the code 
can be published along with the article and provide 
information to readers even though they might 
not be familiar with the simulator; and thirdly, 
readers can work from the authors’ code without 
rewriting everything from scratch.

TEACHING
We end this section with the experience of one 
of the authors (Romain Brette) on teaching 

Figure 1 | Implementing spike-timing-dependent plasticity with Brian. The source code in panel (C) shows the complete 
implementation of the network shown in panel (D), adapted from Song et al. (2000). A set of N = 1000 neurons (the object 
named input in the code) fi ring spikes at random times with Poisson statistics are connected via excitatory synapses (the 
object synapses) to a leaky integrate-and-fi re neuron (the object neuron evolving according to the differential equations
in the string eqs_neuron). The initially random synaptic weights are modifi ed according to the STDP rule (the object stdp) 
in panel (E): for all pairs of pre- and post-synaptic fi ring times tpre, tpost, the weight of the synapse is modifi ed by an amount Δw 
depending on the difference in spike times Δt = tpost − tpre. The equation for Δw is  when Δt > 0 or  when 
Δt < 0. This is equivalent to the following system of equations. Each synapse has two variables Apre, Apost evolving according 
to the equations τpredApre/dt = −Apre and τpostdApost/dt = −Apost (the eqs string in the STDP declaration). A presynaptic spike 
causes Apre to increase by Δpre and the weight w to jump by Apost (the pre string), and a postsynaptic spikes causes Apost 
to increase by Δpost and w by Apre (the post string). The STDP rule causes the population fi ring rate shown in panel (A) 
to adapt, and the fi nal distribution of synaptic weights shown in panel (B) to tend towards a bimodal distribution.
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tions (a free equivalent of Matlab), the synfi re 
chain model was a 2-month student project. This 
experience illustrates the fact that choosing to 
minimise the time spent on learning and writ-
ing code has qualitative implications: what was 
before a full project can now be done by students 
in a single tutorial, allowing for a much richer 
course content.

DISCUSSION
With the Brian project, we chose a different 
emphasis from previous simulation projects: fl ex-

ibility, readability, and simplicity of the syntax. 
Two choices followed from those goals: fi rstly, 
Brian is an extension package of Python, a  simple 
and popular programming language, and sec-
ondly Brian is equation-oriented, that is models 
are written in a form that is as close as possible to 
their mathematical expression, with differential 
equations and discrete events. This makes Brian 
a convenient simulation tool for exploring new 
spiking neural models, modelling complex neural 
models at the systems level, and teaching compu-
tational neuroscience.

Figure 2 | Brian implementation of a model of prey localisation in the sand scorpion, adapted from Stürzl et al. (2000). 

The movement of the prey causes a surface wave [function wave in the code in panel (C)] which is detected by 
mechanoreceptors [the red points in panel (A)] at the ends of each of the scorpion’s legs. The mechanoreceptors are 
modelled by noisy, leaky integrate-and-fi re neurons with an input current defi ned by the surface wave displacement 
at the ends of the legs (object legs in the code, defi ned by the equations eqs_legs. These neurons send an excitatory 
signal (the object synapses_ex) to corresponding command neurons (the blue points) modelled by leaky integrate-and-
fi re neurons (object neurons with equations eqs_neuron), which also receive delayed inhibitory signals (the object 
synapses_inh) from the three legs on the other side (the for loop). A wave arriving fi rst at one side of the scorpion 
will cause an excitatory signal to be sent to the command neurons on that side causing them to fi re, and an inhibitory 
signal to the command neurons on the other side, stopping them from fi ring when the wave reaches the other side. 
The result is that command neurons are associated to the directions of the corresponding legs, fi ring at a high rate 
if the prey is in that direction. Panel (B) shows the fi ring rates for the eight command neurons in a polar plot for a prey 
at an angle of 60 degrees relative to the scorpion.
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at much lower cost. Early work in the case of 
auditory fi ltering and the solution of nonlinear 
differential equations gives an indication of the 
speed improvements to be gained from using 
GPUs. Applying a bank of 6000 auditory fi lters 
(approximately the number of cochlear fi lters 
in the human auditory system) was around 
7 times faster with a GPU than with a CPU, and 
for an even larger bank of fi lters approached 
10–12 times faster (GPUs generally perform bet-
ter as the data set gets larger). For solving non-
linear differential equations, a key step in the 
simulation of many biophysically realistic neuron 
models, GPU performance was between 2 and 
60 times better than the CPU depending on the 
equations and the number of neurons.

We initiated the Brian project with the goal 
of providing a simple simulation tool to explore 
spiking neural models without spending too 
much time on their implementation. Our hope 
is that our efforts in developing Brian will make 
spiking neuron models more widely accessible for 
systems neuroscience research.
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Python is an interpreted language, and 
although it is fast there is an overhead for every 
Python operation. Brian can achieve good per-
formance by using the technique of vectorisation, 
similar to the same technique familiar to Matlab 
users, which makes the interpretation overhead 
small relative to overall simulation times for 
large networks. Brian is typically much faster 
than simulations coded in Matlab, and a little 
slower than simulations coded in C (Goodman 
and Brette, 2008). Brian is proportionally slower 
for small networks, which seems like a reason-
able trade off given that smaller networks tend 
to take less time to run in absolute terms than 
larger networks.

Currently, the main limitation of Brian is that 
it cannot run distributed simulations (although 
independent simulations can be run with job 
scheduling software such as Condor (Frey et al., 
2002). Our plan for the future is to include 
some support for parallel processing with the 
same goals of simplicity and accessibility. For 
that purpose, we are focusing on using graphics 
cards with general purpose graphics processing 
units (GPUs), an inexpensive piece of hardware 
(around several hundred dollars) consisting of 
a large number of parallel processing cores (in 
the hundreds for the latest models (Luebke et al., 
2004)). Using these cards gives the equivalent 
of a small parallel cluster in a single machine 

Interpreted language
A language in which code is translated 
into machine code continuously 
as the program runs rather than being 
entirely translated into machine code 
once before running (compiled). 
Interpreted languages are more fl exible 
than compiled ones but at the cost o
f being slower.
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