
Frontiers in Neuroscience www.frontiersin.org September 2009 | Volume 3 | Issue 2 | 192

FOCUSED REVIEW
published: 15 September 2009
doi: 10.3389/neuro.01.026.2009

The Brian simulator

Dan F. M. Goodman1,2* and Romain Brette1,2*

1 Laboratoire Psychologie de la Perception, CNRS and Université Paris Descartes, Paris, France
2 Département d’Etudes Cognitives, Ecole Normale Supérieure, Paris, France

“Brian” is a simulator for spiking neural networks (http://www.briansimulator.org). The focus
is on making the writing of simulation code as quick and easy as possible for the user, and on
fl exibility: new and non-standard models are no more diffi cult to defi ne than standard ones.
This allows scientists to spend more time on the details of their models, and less on their
implementation. Neuron models are defi ned by writing differential equations in standard
mathematical notation, facilitating scientifi c communication. Brian is written in the Python
programming language, and uses vector-based computation to allow for effi cient simulations.
It is particularly useful for neuroscientifi c modelling at the systems level, and for teaching
computational neuroscience.

Keywords: Python, spiking neural networks, simulation, teaching, systems neuroscience

INTRODUCTION
Computational modelling of neural networks
plays an increasing role in neuroscience research.
Writing simulation code from scratch (typically
in Matlab or C) can be very time-consuming and
in all but the simplest cases requires expertise in
programming and knowledge of neural simula-
tion algorithms. This can discourage researchers
from investigating non-standard models or more
complex network structures.

Several successful neural simulators already exist
(Brette et al., 2007), such as Neuron (Carnevale and
Hines, 2006) and Genesis (Bower and Beeman,
1998) for compartmental modelling, and NEST
(Gewaltig and Diesmann, 2007) for large scale
network modelling. These simulators implement
computationally effi cient algorithms and are
widely used for large-scale modelling and complex
biophysical models. However, computational effi -
ciency is not always the main limiting factor when
simulating neural models. Efforts have been made
in several simulators to make it as easy as possible,
such as Neuron’s NMODL language described in
Hines and Carnevale (2000) and graphical user
interface. In many practical cases; however, it still

takes considerably more time to write the code
than to run the simulations. Minimising learn-
ing and development time rather than simulation
time implies different design choices, putting more
emphasis on fl exibility, readability, and simplicity
of the syntax.

There are various projects underway to address
these issues. All of the major simulation pack-
ages now include Python interfaces (Eppler et al.,
2008; Hines et al., 2009) and the PyNN project
(Davison et al., 2008) is working towards provid-
ing a unifi ed interface to them. Because it is both
easy and powerful, Python is rapidly becoming
the standard high-level language for the fi eld of
computational neuroscience, and for scientifi c
computing more generally (Bassi, 2007).

We took those approaches one step further by
developing a new neural simulator, Brian, which
is an extension package for the Python program-
ming language (Goodman and Brette, 2008).
A simulation using Brian is a Python program
either executed from a script or interactively from
a Python shell. The primary focus is on making
the development of a model by the user as rapid
and fl exible as possible. For that purpose, the

Edited by:
Jan G. Bjaalie, International
Neuroinformatics Coordination Facility,
Sweden; University of Oslo, Norway

Reviewed by:
Eilif Muller, Ecole Polytechnique
Fédérale de Lausanne, Switzerland
Nicholas T. Carnevale, Yale
University School of Medicine, USA
Örjan Ekeberg, Royal Institute
of Technology, Sweden

* Correspondence:

Dan F. M. Goodman obtained a degree
in Mathematics from the University of
Cambridge and a Ph.D. in Mathematics
from the University of Warwick.
He is currently doing post-doctoral
research in Theoretical and Computational
Neuroscience at the Ecole Normale
Supérieure in Paris. His research
interests are in the role of spike-timing
based coding and computation,
and neural simulation technologies.
At the moment, he is working on
developing spiking neural network
models of sound localisation
and GPU-based parallel processing
algorithms for Brian.
dan.goodman@ens.fr

Frontiers in Neuroscience www.frontiersin.org September 2009 | Volume 3 | Issue 2 | 193

Goodman and Brette The Brian simulator

language that is both intuitive and well established,
and secondly, to let users defi ne models in a form
that is as close as possible to their mathemati-
cal defi nitions. As in other simulation projects,
we identifi ed Python as an ideal choice for the
programming language. Python is a well estab-
lished language that is intuitive, easy to learn
and benefi ts from a large user community and
many extension packages (in particular for sci-
entifi c computing and visualisation). While other
simulators use Python as an interface to lower
level simulation code, the Brian simulator itself
is written in Python. The most original aspect
of Brian is the emphasis on defi ning models as
directly as possible by providing their mathemati-
cal defi nition, consisting of differential equations
and discrete events (the effect of spikes) written in
standard mathematical notation. One of the sim-
plest examples is a leaky integrate-and-fi re neu-
ron, which has a single variable V which decays
to a resting potential V

0
 over time according to

the equation τdV/dt = −(V − V
0
). If this variable

reaches a threshold V > V
T
 the neuron fi res a

spike and then resets to a value V
R
. If neuron i is

connected to neuron j with a synaptic weight W
ij

then neuron i fi ring causes V
j
 to jump to V

j
 + W

ij
.

This is represented in Brian with the following
code for a group of N neurons with all-to-all
connectivity:

equations = ‘‘’
dV/dt = -(V-V0)/tau : volt
‘’’
G = NeuronGroup(N, equations,
 threshold=’V>VT’,
 reset=’V=VR’)
C = Connection(G, G, ‘V’)

As can be seen in this code, the thresholding
condition and the reset operation are also given
in standard mathematical form. In fact it is pos-
sible to give arbitrary Python expressions for
these, including calling user-defi ned functions.
This gives greater generality, but using only math-
ematical expressions improves clarity. In addition
to the mathematical defi nitions, the physical units
are specifi ed explicitly for all variables, enforc-
ing dimensional consistency (here variable V has
units of volts). In order to avoid ambiguities and
make the code more readable, there is no stand-
ard scale for physical quantities (e.g. mV for volt-
ages) and the user provides the units explicitly.
For example, the potential of the neurons is set to
−70 mV by writing G.V=-70*mV or equivalently
G.V=-.07*volt.

Making differential equations the basis of
models in Brian may seem like a fundamental

models are defi ned directly in the main script in
their mathematical form (differential equations
and discrete events). This design choice addresses
the three issues mentioned earlier: fl exibility, as the
user can change the model by changing the equa-
tions; readability, as equations are unambiguous
and do not require any specifi c knowledge of the
Brian simulator to understand them; and simplic-
ity of the syntax, as models are expressed in their
original mathematical form, with little syntax to
learn that is specifi c to Brian. Computational effi -
ciency is achieved using vector-based computa-
tion techniques.

We expect that the availability of this new tool
will have the strongest impact in two areas: fi rstly
in systems neuroscience, by making it easy to
explore spiking models with custom architectures
and properties, and secondly in teaching com-
putational neuroscience, by making it possible
to write the code for a functional neural model
within a single tutorial, and without strong pro-
gramming skills required. In this review, we start
by describing the core principles of Brian, then we
discuss a few concrete examples for which Brian is
particularly useful. Finally, we outline directions
for future research.

Brian can be downloaded from http://
briansimulator.org. It is open source and freely
available under the CeCILL license (compatible
with the GPL license).

THE SPIRIT OF BRIAN
The main goal of the Brian project is to minimise
the development time for a neural model, and in
particular the time spent writing code, so that sci-
entists can spend their time on the details of their
model rather than the details of its implementa-
tion. The development time also includes the time
spent learning how to use the simulator. Ease of
learning is important because it opens the pos-
sibility for people who would not previously have
considered computational modelling to try it out.
It is also helpful for teaching (see Teaching). More
generally, it is desirable to minimise the time it
takes to read and understand someone else’s code.
It helps peers to verify and evaluate research based
on computational modelling, and it makes it eas-
ier for researchers to share their models. Finally, in
order to minimise the time spent on writing code,
the translation of the model defi nition into code
should be as direct as possible. Execution speed
and memory usage of the code is also an issue, but
only inasmuch as it puts a constraint on what can
be done with it. It is therefore most important in
the case of large neural networks.

These goals led us to make the following two
choices: fi rstly, to use a standard programming

* Correspondence:

Romain Brette obtained a Ph.D.
in Computational Neuroscience from
the Paris VI University in France.
He did post-doctoral studies in Alain
Destexhe’s group in Gif-sur-Yvette
(France) and Wulfram Gerstner’s group
in Lausanne (Switzerland).
He is now an Assistant Professor
of Computational Neuroscience
at Ecole Normale Supérieure, Paris.
His group investigates spike-based
neural computation, theory and
simulation of spiking neuron models,
with a special focus on the auditory
system.
romain.brette@ens.fr

Frontiers in Neuroscience www.frontiersin.org September 2009 | Volume 3 | Issue 2 | 194

Goodman and Brette The Brian simulator

equations = ‘’’
dV/dt = (V0-V)/tau : volt
dVT/dt = (VT0-VT)/tau_t : volt
‘’’
G = NeuronGroup(N, equations,
 threshold=’V>VT’, reset=’’’
 V = V0
 VT += delta’’’)

Two things can be noted in this code: the
threshold condition can be any boolean condi-
tion on the variables of the model (not only a fi xed
threshold), and the reset can be any sequence of
Python instructions.

INVESTIGATING PLASTICITY MECHANISMS
The mechanisms of spike-timing-dependent plas-
ticity are an active line of research, so that many
different models coexist and we might expect new
models to emerge in the near future. Figure 1 shows
a Brian script replicating some of the results of
Song et al. (2000), where a neuron receives random
inputs through plastic synapses. The STDP rule
is exponential with all-to-all interactions between
spike pairs and results in a bimodal stationary dis-
tribution of synaptic weights. Although the expo-
nential STDP rule can be most simply used in Brian
with the ExponentialSTDP object, the most
general way to defi ne such a mechanism in Brian
is to give its equations. As is shown in Figure 1,
a synaptic plasticity model is defi ned by three
components: differential equations for synaptic
variables (here A

pre
 and A

post
); events at presynaptic

spike times; and events at postsynaptic spike times.
This formalism encompasses a very broad class of
plasticity rules. For example, triplet-based STDP
rules (Pfi ster and Gerstner, 2006) can be imple-
mented by inserting a third differential equation;
and nearest- neighbour rules can be obtained by
replacing the presynaptic code A_pre+=dA_pre
by A_pre=dA_pre and the postsynaptic code
A_post+=dA_post by A_post=dA_post.

MODELLING A FUNCTIONAL NEURAL SYSTEM
Figure 2 shows a Brian script adapted from Stürzl
et al. (2000), which models the neural mechanisms
of prey localisation by a sand scorpion. This model
is fairly complex and includes in particular noise
and delays, which would make equivalent code in
Matlab or C very long, whereas the full script takes
only about 20 lines with Brian (plus the defi nition
of parameter values). The script illustrates the fact
that the code is close to the mathematical defi ni-
tion of the model, which makes it relatively easy
to understand. Many (if not most) neurocompu-
tational studies at the systems level are not pub-
lished along with the code, which might be because

restriction. For example, we may want to defi ne
an α post-synaptic current by g(t) = (t/τ)e1 − t/τ
rather than a differential equation. However,
this is just the integrated formulation of the
associated kinetic model:
where presynaptic spikes act on y (that is, cause
an instantaneous increase in y). More generally,
biophysical neural models can almost always
be expressed as differential equations, whose
solutions are the post-synaptic potentials or
currents.

In the same way, short-term plasticity (Tsodyks
and Markram, 1997) and spike-timing- dependent
plasticity (STDP, Song et al., 2000) can also be
defi ned by differential equations with discrete
events. In fact, although STDP is often described
by the modifi cation of the synaptic weight for a
given pair of presynaptic and postsynaptic spikes,
this phenomenological description is ambiguous
because it does not specify how pairs interact (e.g.
all-to-all or nearest neighbours). These considera-
tions motivated our choice to defi ne all models
unambiguously with differential equations and
discrete events.

Brian emphasises this approach more strongly
than any other simulator package, and it has
some crucial benefi ts. Foremost, it separates the
defi nition of the model from its implementa-
tion, which makes the code highly reproducible
and readable. The equations defi ne the models
unambiguously, independently of the simula-
tor itself, which makes it easy to share the code
with other researchers, even though they might
use a different simulator or no simulator at all.
Second, it minimises the amount of simulator
specifi c syntax that needs to be learnt. For exam-
ple, users do not need to look up the names of
the model parameters since they defi ne them
themselves. Third, simulating custom models is
as simple as simulating standard models. In the
following, we illustrate these features in a few
concrete cases.

CASE STUDIES
In this section, we discuss several examples that
illustrate the key features of Brian.

INVESTIGATING A NEW NEURON MODEL
Several recent experimental (Badel et al., 2008) and
theoretical studies (Deneve, 2008) have suggested
that the threshold for spike initiation should increase
after each spike and decay to a stationary value. A
simple model is given by a differential equation
for the threshold V

T
: τ

t
dV

T
/dt = V

T0
 − V

T
, and an

instantaneous increase at spike time: V
T
 ← V

T
 + δ.

This model can be simulated directly with Brian,
even though it is not a predefi ned model:

Python
A high-level programming language.
Programs can be run from a script
or interactively from a shell (as in
Matlab). It is often used for providing
a high-level interface to low-level code.
The Python community has developed
a large number of third party packages,
including NumPy and SciPy, which
are commonly used for effi cient
numerical and scientifi c computation.

Interface
A mechanism for interacting with
software, often simplifi ed and using
abstractions, such as a graphical
user interface (GUI) for interacting
directly with the user, or an application
programming interface (API) for
interacting via code, possibly written
in another language.

High-level language
A programming language providing
data abstraction and hiding low-level
implementation details specifi c
to the CPU, memory management,
and other technical details.

Package
A self-contained collection of objects
and functions, often written by
a third party to provide easily usable
implementations of various algorithms.

Script
A fi le containing a sequence
of statements in a high-level language
which are run as a whole rather
than interactively.

Shell
A computer environment or program
in which single statements can be
entered interactively, where the results
are evaluated immediately and are
then available for use in subsequently
entered statements.

Vector-based computation
A technique for achieving
computational effi ciency in high-level
languages. It consists of replacing
repeated operations by single
operations on vectors (e.g. arithmetic
operations) that are implemented
in a dedicated effi cient package
(e.g. NumPy for Python).

Frontiers in Neuroscience www.frontiersin.org September 2009 | Volume 3 | Issue 2 | 195

Goodman and Brette The Brian simulator

a computational neuroscience course which
included a weekly two hour tutorial on comput-
ers (http://www.di.ens.fr/∼brette/coursneurones/
coursneurones.html). A single tutorial was
dedicated to learning Python and Brian, while
every subsequent one illustrated the lecture
which preceded it. For example, in one tutorial
the students implemented a spiking version of
the sound source localisation model of Jeffress
(1948) and another sound localisation model
that was recently proposed for small mammals
(McAlpine et al., 2001). In another tutorial, the
students implemented the synfi re chain model
described in Diesmann et al. (1999). The year
before, when students used Scilab for simula-

the authors fi nd their code less informative and
usable for readers than the article describing it.
Code readability has several benefi ts: fi rstly, the
code can be provided to the reviewers, who can
run it or at least understand precisely how the
authors produced the fi gures; secondly, the code
can be published along with the article and provide
information to readers even though they might
not be familiar with the simulator; and thirdly,
readers can work from the authors’ code without
rewriting everything from scratch.

TEACHING
We end this section with the experience of one
of the authors (Romain Brette) on teaching

Figure 1 | Implementing spike-timing-dependent plasticity with Brian. The source code in panel (C) shows the complete
implementation of the network shown in panel (D), adapted from Song et al. (2000). A set of N = 1000 neurons (the object
named input in the code) fi ring spikes at random times with Poisson statistics are connected via excitatory synapses (the
object synapses) to a leaky integrate-and-fi re neuron (the object neuron evolving according to the differential equations
in the string eqs_neuron). The initially random synaptic weights are modifi ed according to the STDP rule (the object stdp)
in panel (E): for all pairs of pre- and post-synaptic fi ring times tpre, tpost, the weight of the synapse is modifi ed by an amount Δw
depending on the difference in spike times Δt = tpost − tpre. The equation for Δw is when Δt > 0 or when
Δt < 0. This is equivalent to the following system of equations. Each synapse has two variables Apre, Apost evolving according
to the equations τpredApre/dt = −Apre and τpostdApost/dt = −Apost (the eqs string in the STDP declaration). A presynaptic spike
causes Apre to increase by Δpre and the weight w to jump by Apost (the pre string), and a postsynaptic spikes causes Apost
to increase by Δpost and w by Apre (the post string). The STDP rule causes the population fi ring rate shown in panel (A)
to adapt, and the fi nal distribution of synaptic weights shown in panel (B) to tend towards a bimodal distribution.

Frontiers in Neuroscience www.frontiersin.org September 2009 | Volume 3 | Issue 2 | 196

Goodman and Brette The Brian simulator

tions (a free equivalent of Matlab), the synfi re
chain model was a 2-month student project. This
experience illustrates the fact that choosing to
minimise the time spent on learning and writ-
ing code has qualitative implications: what was
before a full project can now be done by students
in a single tutorial, allowing for a much richer
course content.

DISCUSSION
With the Brian project, we chose a different
emphasis from previous simulation projects: fl ex-

ibility, readability, and simplicity of the syntax.
Two choices followed from those goals: fi rstly,
Brian is an extension package of Python, a simple
and popular programming language, and sec-
ondly Brian is equation-oriented, that is models
are written in a form that is as close as possible to
their mathematical expression, with differential
equations and discrete events. This makes Brian
a convenient simulation tool for exploring new
spiking neural models, modelling complex neural
models at the systems level, and teaching compu-
tational neuroscience.

Figure 2 | Brian implementation of a model of prey localisation in the sand scorpion, adapted from Stürzl et al. (2000).

The movement of the prey causes a surface wave [function wave in the code in panel (C)] which is detected by
mechanoreceptors [the red points in panel (A)] at the ends of each of the scorpion’s legs. The mechanoreceptors are
modelled by noisy, leaky integrate-and-fi re neurons with an input current defi ned by the surface wave displacement
at the ends of the legs (object legs in the code, defi ned by the equations eqs_legs. These neurons send an excitatory
signal (the object synapses_ex) to corresponding command neurons (the blue points) modelled by leaky integrate-and-
fi re neurons (object neurons with equations eqs_neuron), which also receive delayed inhibitory signals (the object
synapses_inh) from the three legs on the other side (the for loop). A wave arriving fi rst at one side of the scorpion
will cause an excitatory signal to be sent to the command neurons on that side causing them to fi re, and an inhibitory
signal to the command neurons on the other side, stopping them from fi ring when the wave reaches the other side.
The result is that command neurons are associated to the directions of the corresponding legs, fi ring at a high rate
if the prey is in that direction. Panel (B) shows the fi ring rates for the eight command neurons in a polar plot for a prey
at an angle of 60 degrees relative to the scorpion.

Frontiers in Neuroscience www.frontiersin.org September 2009 | Volume 3 | Issue 2 | 197

Goodman and Brette The Brian simulator

at much lower cost. Early work in the case of
auditory fi ltering and the solution of nonlinear
differential equations gives an indication of the
speed improvements to be gained from using
GPUs. Applying a bank of 6000 auditory fi lters
(approximately the number of cochlear fi lters
in the human auditory system) was around
7 times faster with a GPU than with a CPU, and
for an even larger bank of fi lters approached
10–12 times faster (GPUs generally perform bet-
ter as the data set gets larger). For solving non-
linear differential equations, a key step in the
simulation of many biophysically realistic neuron
models, GPU performance was between 2 and
60 times better than the CPU depending on the
equations and the number of neurons.

We initiated the Brian project with the goal
of providing a simple simulation tool to explore
spiking neural models without spending too
much time on their implementation. Our hope
is that our efforts in developing Brian will make
spiking neuron models more widely accessible for
systems neuroscience research.

ACKNOWLEDGMENTS
This work was partially supported by the French
ANR (ANR HIT), the CNRS and the Ecole
Normale Supérieure. The authors would like to
thank all those who have been involved in testing
Brian and making suggestions for improving it.

Python is an interpreted language, and
although it is fast there is an overhead for every
Python operation. Brian can achieve good per-
formance by using the technique of vectorisation,
similar to the same technique familiar to Matlab
users, which makes the interpretation overhead
small relative to overall simulation times for
large networks. Brian is typically much faster
than simulations coded in Matlab, and a little
slower than simulations coded in C (Goodman
and Brette, 2008). Brian is proportionally slower
for small networks, which seems like a reason-
able trade off given that smaller networks tend
to take less time to run in absolute terms than
larger networks.

Currently, the main limitation of Brian is that
it cannot run distributed simulations (although
independent simulations can be run with job
scheduling software such as Condor (Frey et al.,
2002). Our plan for the future is to include
some support for parallel processing with the
same goals of simplicity and accessibility. For
that purpose, we are focusing on using graphics
cards with general purpose graphics processing
units (GPUs), an inexpensive piece of hardware
(around several hundred dollars) consisting of
a large number of parallel processing cores (in
the hundreds for the latest models (Luebke et al.,
2004)). Using these cards gives the equivalent
of a small parallel cluster in a single machine

Interpreted language
A language in which code is translated
into machine code continuously
as the program runs rather than being
entirely translated into machine code
once before running (compiled).
Interpreted languages are more fl exible
than compiled ones but at the cost o
f being slower.

REFERENCES
Badel, L., Lefort, S., Brette, R.,

Petersen, C. C. H., Gerstner, W.,
and Richardson, M. J. E. (2008).
Dynamic I–V curves are reliable
predictors of naturalistic pyramidal-
neuron voltage traces. J. Neurophysiol.
99, 656–66.

Bassi, S. (2007). A primer on Python for
life science researchers. PLoS Comput.
Biol. 3, e199.

Bower, J. M., and Beeman, D. (1998). The
Book of GENESIS: Exploring Realistic
Neural Models with the GEneral
NEural SImulation System, 2nd Edn.
New York, Springer.

Brette, R., Rudolph, M., Carnevale, T., Hines,
M., Beeman, D., Bower, J. M., Diesmann,
M., Morrison, A., Goodman, P. H.,
Harris, F. C., Zirpe, M., Natschläger, T.,
Pecevski, D., Ermentrout, B., Djurfeldt,
M., Lansner, A., Rochel, O., Vieville, T.,
Muller, E., Davison, A. P., Boustani, S. E.,
and Destexhe, A. (2007). Simulation of
networks of spiking neurons: a review
of tools and strategies. J. Comput.
Neurosci. 23, 349–398.

Carnevale, N. T., and Hines, M. L. (2006).
The NEURON Book. Cambridge,
Cambridge University Press.

Davison, A. P., Brüderle, D., Eppler, J.,
Kremkow, J., Muller, E., Pecevski, D.,
Perrinet, L., and Yger, P. (2008).
PyNN: a common interface for neu-
ronal network simulators. Front.
Neuroinformatics 2, 11.

Deneve, S. (2008). Bayesian spiking neu-
rons I: inference. Neural Comput. 20,
91–117.

Diesmann, M., Gewaltig, M., and
Aertsen, A. (1999). Stable propagation
of synchronous spiking in cortical neu-
ral networks. Nature 402, 529–533.

Eppler, J. M., Helias, M., Muller, E.,
Diesmann, M., and Gewaltig, M.
(2008). PyNEST: a convenient inter-
face to the NEST simulator. Front.
Neuroinformatics 2, 12.

Frey, J., Tannenbaum, T., Livny, M.,
Foster, I., and Tuecke, S. (2002).
Condor-G: a computation manage-
ment agent for multi-institutional
grids. Cluster Comput. 5, 237–246.

Gewaltig, O., and Diesmann, M. (2007).
NEST (NEural Simulation Tool).
Scholarpedia 2, 1430.

Goodman, D., and Brette, R. (2008).
Brian: a simulator for spiking
 neural networks in Python. Front.
Neuroinformatics 2, 5.

Hines, M. L., and Carnevale, N. T. (2000).
Expanding NEURON’s repertoire of
mechanisms with NMODL. Neural
Comput. 12, 995–1007.

Hines, M. L., Davison, A. P., and Muller, E.
(2009). NEURON and Python. Front.
Neuroinformatics 3, 1.

Jeffress, L. A. (1948). A place theory of
sound localization. J. Comp. Physiol.
Psychol. 41, 35–9.

Luebke, D., Harris, M., Krüger, J.,
Purcel l , T. , Govindaraju, N.,
Buck, I., Woolley, C., and Lefohn, A.
(2004). GPGPU: General Purpose
Computation on Graphics Hardware.
Los Angeles, CA, ACM, p. 33.

McAlpine , D. , J iang , D. , and
Palmer, A. R. (2001). A neural code for
low-frequency sound localization in
mammals. Nat. Neurosci. 4, 396–401.

Pfi ster, J., and Gerstner, W. (2006). Triplets
of spikes in a model of spike timing-
dependent plasticity. J. Neurosci. 26,
9673–9682.

Song, S., Miller, K. D., and Abbott, L. F.
(2000). Competitive Hebbian learning
through spike-timing-dependent synap-
tic plasticity. Nat. Neurosci. 3, 919–926.

Stürzl, W., Kempter, R., and van
Hemmen, J. L. (2000). Theory of

arachnid prey localization. Phy. Rev.
Lett. 84, 5668–5671.

Tsodyks, M. V., and Markram, H. (1997).
The neural code between neocorti-
cal pyramidal neurons depends on
 neurotransmitter release probabil-
ity. Proc. Natl. Acad. Sci. U. S. A. 94,
719–723.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential confl ict
of interest.

Received: 22 April 2009; paper pending
published: 26 June 2009; accepted: 08 July
2009; published: 15 September 2009.
Citation: Front. Neurosci. (2009) 3, 2: 192-
197. doi: 10.3389/neuro.01.026.2009

Copyright © 2009 Goodman and Brette.
This is an open-access article subject to
an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages false
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages false
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages false
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

