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Calcium imaging using fl uorescent reporters is the most widely used optical approach to 
investigate activity in intact neuronal circuits with single-cell resolution. Calcium signals, however, 
are often diffi cult to interpret, especially if the desired output quantity is membrane voltage or 
instantaneous fi ring rates. Combining dendritic intracellular electrophysiology and multi-photon 
calcium imaging in vivo, we recently investigated the relationship between optical signals 
recorded with the fl uorescent calcium indicator Oregon Green BAPTA-1 (OGB-1) and spike 
output in principal neurons in the locust antennal lobe. We derived from these experiments a 
simple, empirical and easily adaptable method requiring minimal calibration to reconstruct fi ring 
rates from calcium signals with good accuracy and 50-ms temporal resolution.
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Despite the wide availability of optical voltage 
reporters to estimate activity in intact neuronal 
circuits with single-cell resolution (Chanda et al., 
2005; Cohen et al., 1978; Ferezou et al., 2006; 
Nuriya et al., 2006; Obaid et al., 1999; Sjulson 
and Miesenbock, 2006; Zhou et al., 2007), cal-
cium imaging using fl uorescent reporters (Denk 
and Svoboda, 1997; Helmchen and Waters, 2002; 
Smetters et al., 1999; Tsien, 1999; Yuste and Katz, 
1991) remains the most used optical approach to 
achieve similar goals. The robustness of exogenous 
and endogenous labeling with calcium reporters 
and the minimal impact they have on neuronal 
viability make them, in principle, excellent tools to 
probe activity at the level of neuron populations, 
single neurons, or single sub- cellular compart-
ments (e.g., dendrites, spines, presynaptic bou-
tons). The availability of genetically engineered 
calcium indicators (Mank and Griesbeck, 2008; 
Miyawaki et al., 1997, 1999; Reiff et al., 2005) and 
the possibility of controlling their selective expres-
sion (Feng et al., 2000; Hebert and McConnell, 
2000; Jefferis et al., 2001, 2007; Zong et al., 2005) 

reinforce their use and promise. Despite impor-
tant remaining issues related to indicator response 
kinetics (see below), the constant refi nement of 
fl uorescent calcium  indicator proteins (Garaschuk 
et al., 2007; Mank et al., 2006; Mao et al., 2008; 
Wallace et al. 2008), combined with improvements 
in optical microscopy techniques (Deisseroth 
et al., 2006; Dombeck et al., 2007; Engelbrecht 
et al., 2008; Holekamp et al., 2008; Llewellyn et al., 
2008) makes calcium imaging a major tool to elu-
cidate activity and  function in neuronal circuits 
(Carlsson et al. 2005; Friedrich and Korsching, 
1997; Galizia et al., 1999; Holekamp et al., 2008; 
Ohki et al., 2005; Sobel and Tank, 1994; Spors et al., 
2006; Tabor et al., 2008; Wachowiak and Cohen, 
2001; Wang et al. 2003, 2004). Often deempha-
sized, however, is the fact that calcium signals are 
not always straightforward to interpret, especially 
if the desired output quantity is membrane voltage 
or instantaneous fi ring rates. This study (and its 
source, Moreaux and Laurent, 2007) proposes a 
simple empirical method to estimate instantane-
ous fi ring rates of single neurons from fl uores-
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cence signals obtained in vivo, using the calcium 
indicator Oregon Green BAPTA-1.

PROBLEMS ARISING WHEN CONVERTING 
CALCIUM SIGNALS INTO VOLTAGE 
OR FIRING RATES
In the study of neuronal systems, signals from 
calcium indicators are, given an appropriately 
selected indicator with adequate calcium sensi-
tivity, usually interpreted as indicating spiking 
activity; whereas calcium signals and voltage 
are generally indeed correlated, calcium signals 
can also be generated by sub-threshold voltage 
events or infl ux through ionotropic ion channels 
(Goldberg et al., 1999; Kovalchuk et al., 2000; 
Lin et al., 2007; Perez-Reyes, 2003; Soler-Llavina 
and Sabatini, 2006). Conversely, an indicator’s 
sensitivity may not be matched to the fi ring 
statistics of the neurons under study. Correctly 
interpreting a calcium signal – being in a posi-
tion to separate synaptic inputs from spike out-
put for example, or estimating the fraction of 
spike output detected – thus depends on a judi-
cious match between the indicator’s sensitivity 
and the properties of the neurons under study. 
Often, this match is diffi cult or impossible to 
optimize, for lack of information on the neurons 
sampled, or for lack of prior testing, especially 
in the precise conditions in which imaging will 
be used (the operating range of neurons can 
differ dramatically between in vitro and in vivo 
conditions, for example). This match becomes 
increasingly important as the desired temporal 
resolution of activity estimates approaches the 
temporal scale of single action potentials. We 
note that neuronal activity often consists simply 
of modulations around baselines rates (them-
selves sometimes elevated, e.g., 30 spikes/s, or 
as low as 0) to instantaneous peaks up to several 
hundred spikes/s. In short, one should be both 
careful and realistic about what can be reason-
ably achieved.

To make possible a reasonable extraction 
of spiking activity, the relationship between 
calcium signals and voltage should be care-
fully addressed in a neuron-specifi c manner. 
We believe that this is fundamental for a cor-
rect functional interpretation of imaging data. 
Plainly, the functional calibration of indicators 
should be done in the cell type in which calcium 
will later be used as a substitute for electrical 
recordings, and ideally, in the same physiologi-
cal conditions. Such conditions are harsh, prob-
ably even sometimes impossible. Yet, if we do 
not keep in mind their necessity, we run the risk 
of having to later re-interpret calcium-imaging 
data, causing unnecessary revisions.

Recently, the correspondence between odor-
evoked, somatic and dendritic calcium signals 
and spike output has been evaluated in vivo in 
Drosophila projection neurons (PNs) express-
ing the genetically encoded calcium reporter 
G-CaMP 1.3 (Jayaraman and Laurent, 2007). A 
recent investigation combining calcium imaging 
and voltage recordings in a nose and brain prepa-
ration of Xenopus laevis revealed the underesti-
mated cell-specifi city of the correlation between 
spontaneous and odor-evoked spiking activity 
and mitral and granule cells’ somatic calcium 
signals (Lin et al., 2007). In vivo somatic calcium 
signals were combined with simultaneous voltage 
recordings in anesthetized rats to identify tem-
porally sparse spontaneous activity (∼1 Hz) and 
compared to somatic calcium recordings alone in 
awake animals (Greenberg et al., 2008). Spiking 
activity was restricted to single action potentials 
or short bursts; an original template-matching 
method (Greenberg et al., 2008, SI) applied to the 
calcium signal alone successfully extracted spike 
times with good accuracy. In adult zebrafi sh brain 
and nose explants, in a study combining soma 
calcium-signal and voltage recordings, Yaksi and 
Friedrich (2006) used a deconvolution method to 
extract spiking activity of sensory neurons stimu-
lated with odors. The method assumed that each 
action potential gives rise to a stereotyped somatic 
calcium transient with mono-exponential decay 
over time, and that calcium summation caused by 
a train of action potentials is described well by a 
simple convolution of a mono-exponential ker-
nel with the spike-train. This approach gave good 
fi ring-rate reconstructions with image sampling 
rates of ∼30 Hz on neuronal populations of adult 
zebrafi sh (Tabor et al., 2008; Yaksi and Friedrich, 
2006), a remarkable achievement.

Note that most past attempts to extract spiking 
activity from single neurons have been performed 
using the fl uorescence of calcium indicators 
recorded at the soma. In invertebrates such as 
insects, spike-related calcium/fl uorescence tran-
sients are usually smaller from the soma (some-
times even absent, as in locust PNs; Moreaux and 
Laurent, 2007) than from dendrites; importantly, 
they can also be slower (∼1 s vs. ∼50 ms, decay 
times), making the capture of neuronal fi r-
ing modulation questionable. Usually neurons’ 
somata are spread out in space (more so in larger 
brains) hindering the capture of a complete neu-
ronal population, even with fast scanning imaging 
techniques (Göbel et al. 2007; Holekamp et al., 
2008; Reddy et al., 2008), and imposing non-ideal 
trade-offs between spatio-temporal resolution 
and signal/noise. Each approach should thus be 
tailored to its experimental system; all methods 
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Calcium reporter/indicator
molecule emitting a fl uorescence 
signal that is modulated by the 
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Firing rate reconstruction
mathematical operations allowing 
the transformation of intracellular 
calcium variations into estimates 
of fi ring rates.
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do not fi t all experimental and biological situa-
tions. Here we focus on one system, the locust 
olfactory system, and propose an easily modi-
fi ed method to extract fi ring-rate estimates from 
 calcium- dendritic signals recorded in vivo using 
the common calcium indicator OGB-1.

DENDRITIC CALCIUM IMAGING 
IN EARLY OLFACTORY CIRCUITS
The early olfactory system – olfactory bulb (ver-
tebrates) or antennal lobe (insects) – with its well 
organized glomerular anatomy offers a beauti-
ful opportunity to use dendritic calcium imaging 
to help decipher basic rules of sensory process-
ing (Buck and Axel, 1991; Hallem et al., 2004; 
Mombaerts et al., 1996; Vosshall et al., 2000). In 
the exploration of such a sensory system, intrin-
sic and calcium imaging of glomeruli have been 
used in vivo to investigate spatio- temporal activ-
ity patterns of input, output and local neurons. 
Typically, imaging of glomeruli using various 
kinds of fl uorescent calcium indicators has 
been used as a proxy for electro-physiological 
recordings (Carlsson et al., 2005; Fried et al., 
2002; Friedrich and Korsching, 1997; Galizia 
et al., 1999; Sachse and Galizia, 2002; Spors 
et al., 2006; Wachowiak and Cohen, 2001; Wang 
et al., 2003). An important point to elucidate in 
insect antennal lobe circuits is the true relation-
ship between spike output and imaging data in 
PNs, the antennal lobe’s sole output. We address 
this issue in locust, combining dendritic voltage 
recordings and two-photon calcium imaging 
in vivo during odor stimulation in intact, non-
anesthetized animals (Figure 1). Our goal was to 
identify the main causes of calcium signal fl uc-
tuations, to determine whether calcium signals 
might be used to estimate PNs spike output, and 
if so, with what accuracy.

Locust PNs are multiglomerular neurons, 
with projections to 10 or so individual glomer-
uli (∼30 μm diameter each). The adult locust 
 antennal lobe contains about 1,000 glomeruli, 
distributed in a sphere of about 300 μm diameter. 
The glomeruli visited by individual PNs, however, 
always lie in a plane. By correctly orienting the 
preparation, all the glomeruli of a stained PN can 
thus be observed in one plane of focus. The planes 
defi ned by all PNs are parallel to one another. For 
our experiments, a fi ne borosilicate micropipette 
was back-fi lled with OGB-1, gently advanced 
into the neuropil and used to impale one PN, 
usually in its principal omega-shaped dendrite, 
or in a secondary dendrite close to a glomeru-
lar tuft (Figure 1A). Recordings could often be 
held for several tens of minutes. Odors were pre-
sented to the animal in 1 s long pulses, and 24 s 

of  calcium- indicator and  intracellular- voltage 
data were collected (500 Hz image sampling) 
around the odor stimulus pulse (early fragment 
shown in Figures 1B,C). Our data thus contained 
long epochs of baseline activity,  stimulus-evoked 
responses and recovery periods. PN electri-
cal activity recorded in these experiments was 
identical (baseline activity; response character-
istics; peak fi ring rates; range of response types; 
oscillatory activity) to that previously described, 
using different recording methods (soma intra-
cellular recordings: Laurent and Davidowitz, 
1994; Laurent et al., 1996; tetrode extracellular 
recordings: Mazor and Laurent, 2005; Perez-Orive 
et al., 2002).

THE MULTIPLE COMPONENTS 
OF THE GLOMERULAR DENDRITIC 
CALCIUM SIGNAL
Locust PN dendritic calcium signals are 
 composed of multiple, distinct components. 
Our experiments suggested that at least three 
factors (Figure 2A) contribute to the variation 
of calcium in a glomerular dendrite (Moreaux 
and Laurent, 2007): calcium transients triggered 
by action potentials, voltage-dependent calcium 
entry caused by sub-threshold depolarization, and 
calcium clearance. First, we observed that a sin-
gle action potential always produced a detectable 
calcium increase; single-spike calcium decay time 
was fast (∼50 ms) after pharmacological block-
ade of nicotinic-Ach-receptor mediated synaptic 
input, but slower and non- stereotyped (variable 
across the glomerular dendrites of a single PN 
for example) in intact conditions. Spike trains 
always led to a calcium signal summation. Second, 
spontaneous or stimulus-evoked sub-threshold 
depolarizations caused, from a membrane volt-
age of about −60 mV, a detectable calcium sig-
nal (Figure 2B). While insect nicotinic receptors 
are known to be calcium permeable, much of 
this sub-threshold calcium signal seemed to be 
voltage-dependent, for it could be reproduced 
simply by depolarizing-current injection. By 
contrast with observations from somatic imag-
ing, calcium clearance after summation in the 
dendrite was not necessarily mono-exponential. 
This might be due to local hyper-polarizing inputs 
from inhibitory pathways. Because these multiple 
contributions to the calcium signal sampled may 
interact in complicated (or at least poorly under-
stood) ways, the extraction of a PN spike output 
is clearly not a straightforward exercise, especially 
if attaining single-spike resolution is required. 
We now summarize an empirical method for 
instantaneous fi ring-rate estimation, based on 
the above data and knowledge.

Two-photon imaging
optical technique allowing imaging of 
endogenous or exogenous fl uorescent 
molecules in cellular compartments 
in vivo in a non-invasive manner.
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A SIMPLE METHOD TO ESTIMATE SPIKE 
OUTPUT FROM DENDRITIC CALCIUM SIGNALS
Having access to simultaneously recorded voltage 
and fl uorescence, we investigated (Moreaux and 
Laurent, 2007) whether a PN’s fi ring rate could 
be extracted from its glomerular calcium signal 
recorded at high sampling rate (500 Hz) using 
empirically derived routines selective for spike-
dependent signals. The goal was to transform the 
fl uorescence of the calcium indicator into spiking 
activity, using consistent rules and ultimately, a 
small number of experiment-specifi c measure-

ments that require no physiological recording. We 
managed to estimate a PN’s fi ring activity with a 
50-ms time resolution from a single fl uorescence 
recording, using one experiment-specifi c param-
eter and a minimal neuron-specifi c calibration. 
In its principle, our estimation method relies on 
two assumptions: (1) when calcium summation 
occurs, the intracellular calcium value is linearly 
related to the average fi ring rate of the spike-train 
causing calcium integration, and (2) calcium 
decays are due either to cessation of fi ring or to 
inhibition. With this in mind, the main steps of 
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Figure 1 | In vivo simultaneous dendritic voltage recordings and two-photon calcium imaging in the locust projection 
neuron. (A) A frontal view of a PN labeled from a secondary dendrite via a microelectrode (el.) fi lled with the fl uorescent 
calcium indicator OGB-1. Eleven of the PN’s 12 glomerular tufts can be seen, forming a circle in one plane. The soma 
and axon of the neuron are respectively above and below the dendritic plane (not included in this view). Shortly after 
dendritic impalement, one of the several tufts of the PN is selected for fl uorescence imaging (horizontal white line). 
Calcium signal is then acquired simultaneously with voltage across the glomerular tuft using a line scan (typically 
30 μm × 24 s). (B) Example of a single 16 s-long line-scan trial during odor presentation [different PN from that in (A)]. 
(C) Glomerular calcium ΔF/F integrated along the scanned line [500 Hz sampling, PN in (B)] and simultaneous intracellular 
membrane potential Vm (15 kHz sampling). Stippled line: average baseline fl uorescence before odor presentation 
to the animal. Note the complex modulations of the calcium signal and their relationship to voltage.
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our algorithm are the following (see fl owchart in 
Figure 3). A fl uorescence single trial is smoothed 
with a Gaussian fi lter, to “enhance” the fl uores-
cence plateaus (or peaks) and the end of the 
fl uorescence-decays (called valleys). The level of 
fl uorescence representing the absence of fi ring at 
baseline (F

B
, see Figure 4) needs to be determined, 

so that the assumed linear relationship between 
the optical signal and fi ring can be used. F

B
 is 

the rest value of the spike- independent compo-
nents, due mainly to net, depolarizing synaptic 
bombardment. The fl uorescence trace is then 
normalized to this value. Then, peaks and val-
leys are detected to defi ne segments of activity. 
Practically, one has to check that the fi rst peak 
of the recording comes after the fi rst valley and 
the last peak comes after the last valley. The value 
read for a given valley is then subtracted from all 
following fl uorescence values, until the next peak 

is reached. This step sets all the ends of decay 
to 0 and guarantees a coherent proportionality 
between the normalized fl uorescence and the 
actual fi ring rate while not yet accounting for 
calcium summation. The values from a peak 
to the next valley are reset to 0 using a simple 
Gaussian-decay function. Calcium summation 
is now taken into consideration by comparing 
the time interval between a valley and the previ-
ous peak to a characteristic time, T

c
, the duration 

over which spike-evoked calcium summation is 
not relevant. If this time interval <T

c
, summa-

tion must be factored in: the valley value is added 
to the following values until the next peak. Only 
positive values of the reconstruction are kept and 
scaling is applied. Setting a threshold around the 
average spontaneous spiking activity fi lters out 
large time-resolved synaptic events.

TWO CALIBRATION PARAMETERS (TC AND S)
A mapping between calcium signals and voltage (or 
fi ring rates) appropriate for integrative studies is 
probably attainable, regardless of the methodology, 
only if some prior calibration steps have been car-
ried out in the same preparation and experimental 
conditions. In practice, because simultaneous volt-
age and calcium recordings in vivo in non-anesthe-
tized animals tend to be diffi cult, the calibration 
steps should be as limited as possible. Our method 
relies on the knowledge of three parameters. The 
fi rst, F

B
 (see Figure 4), is  experiment-specifi c and 

requires no prior calibration (i.e., no paired imag-
ing and electrophysiology). The other two (time 
parameter, T

c
, and scaling factor, S), are the only 

two parameters requiring calibration through prior 
paired imaging and electrophysiology. With locust 
PNs and the calcium indicator OGB-1, these two 
parameters could be estimated satisfactorily from 
paired simultaneous voltage and calcium record-
ings in fi ve different animals and by optimizing the 
overall fi t between predicted (from calcium signal) 
and measured (with a microelectrode) fi ring rates 
(Figure 4).

Once the calibration done, our method was 
applied to predict PN fi ring patterns from calcium 
signals, using different paired recordings as tests. 
We obtained ∼80–90% mean accuracy. In each 
experiment, F

B
 was the only experiment-specifi c 

parameter required (Figure 5).

SOURCES OF VARIABILITY
When exogenous calcium indicators are used, a 
key issue for fi ring-rate-estimate accuracy is the 
consistency of cytoplasmic concentration of the 
indicator across experiments. With bolus loading 
techniques, great care (usually acquired after much 
practice) is required to minimize inter- experiment 
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Figure 2 | Projection neuron dendritic calcium signals have multiple components as illustrated 

in (A) with a simple schematic of a PN-glomerular dendritic compartment (circle). The majors 
sources of calcium variation are back-propagating spikes triggering fast calcium transients trough 
high-threshold voltage-dependent calcium-channels, sub-threshold depolarizing activity (through 
low-activated voltage-dependent calcium-channels, possibly also by activation of calcium-permeable 
ligand-gated channels), and clearance. (B) Calcium signals are not always correlated with spiking. 
Simultaneous fl uorescence and voltage PN-recording illustrates the occurrence of spike-independent 
components in the glomerular signal. Odor-evoked depolarizing synaptic input to the PN marked (*) 
can produce a signifi cant calcium elevation in the absence of spike.
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Measure
fluorescence F(t)

Smoothing

Identify first valley. 
First peak must follow 
first valley

Identify last valley.
Last peak must follow 
last valley

Is interval between 
peak p and following 

valley (v+1) longer than 
Tc?

Set at 0 all F(t) values
between peak p and 

following valley

Add F(t) measured at v+1 
to all values of F(t) until 
peak p+1

Set all negative 
values to 0

Scale

Threshold

Predicted firing rate R(t)

R(t)= [F(t)-FB]/FB

Find FB: minimum value of
F(t) at baseline

Detect Peaks and
Valleys

Interpolation

Subtract F(t) measured at 
valley v from all values in 
interval between v and 

following peak

No

Yes

Figure 3 | Simple algorithm used to transform the measure of a calcium indicator fl uorescence F(t) into 

a prediction of the fi ring rate R(t). The algorithm relies on the determination of two parameters: a time parameter Tc 
and a scaling factor S specifi c to the indicator and to the cell type under investigation.



Frontiers in Neuroscience www.frontiersin.org December 2008 | Volume 2 | Issue 2 | 182

Moreaux and Laurent From calcium to fi ring rate

30

20

10

0

–10

–20

ΔF/FB (%)

FB

Fl
uo

re
sc

en
ce

(s
p/

s)
 p

re
di

ct
ed

(s
p/

s)
 m

ea
su

re
d

20

10

0

20

10

0

Vm

cineole

20
 m

V

1s

*

Figure 4 | Calibration of our method with paired imaging and 

electrophysiology. The determination of the neuron-type/indicator’s two 
specifi c parameters (Tc, S) is done by optimizing the match between measured 
fi ring rate (blue trace, 50-ms Gaussian smoothing) obtained from intracellular 
trace (Vm) and predicted smoothed fi ring rate (green trace) reconstructed 

from the calcium trace (red) using the simple rules describe in the text. 
For the specifi c PN/OGB-1 combination, the two calibration parameters were 
extracted from only fi ve 16 s-long single trials with 1 s odor presentations 
on different PNs. Stippled line (fl uorescence trace) indicates FB, the only 
experiment-specifi c measurement.

variations. With multi- cellular labeling, spatial 
gradients of calcium indicator concentrations may 
clearly create problems (Göbel and Helmchen, 
2007). The time and scaling parameters are related 
to the calcium-buffering capacity added to the 
neuron’s own by the indicator. In our hands, fol-
lowing strict experimental procedures, the across-
 experiment variance of the time parameter T

c
 was 

very small (∼5%). The major source of error origi-
nated from the variance of the scaling parameter, 
due to a deviation from the assumed linearity 
between calcium elevation and fi ring rate. There 
are at least two distinct potential sources of non-
linearity: (1) from the fl uorescent calcium indica-
tor itself and (2) from intrinsic cellular properties. 
The latter especially makes defi ning a ceiling an 
empirical issue. With locust PNs and OGB1, we 
observed that the deviation from linear predic-
tion was usually small for short-lived bursts of 
high-fi ring rate (PNs rarely fi re at rates >60 sp/s), 
but larger (and always and underestimate) during 
prolonged periods of fi ring, presumably due to 
a contribution of sustained synaptic inputs and 
sub-linear summation with spike-related calcium 

entry. Under pharmacological blockade of syn-
aptic input (in conditions admittedly without 
much use for network issues), the variance of 
the scaling factor S was consistent with that of 
the time parameter measured in normal in vivo 
condition. Non-linear summation of spike-related 
events at high-fi ring rates and the superposition of 
sub-threshold and spike-dependent components, 
presumably non-linear, are probably responsible 
for the variance of the scaling factor.

CHOOSING THE RIGHT METHOD
If activity is sparse and stereotyped (e.g., short 
burst of few action potentials), if calcium decay 
time is shorter than the minimum inter-spike (or 
burst) interval, and if the correlation between 
calcium elevation and spiking has been properly 
established in a cell-specifi c manner (see Lin et al., 
2007 for a warning), then template-matching 
methods applied to somatic calcium signals can 
provide a good estimate of the “on/off” state of a 
single or population of neurons (Greenberg et al. 
2008). In the presence of sustained spiking activ-
ity, as in sensory receptor neurons for example, 



Frontiers in Neuroscience www.frontiersin.org December 2008 | Volume 2 | Issue 2 | 183

Moreaux and Laurent From calcium to fi ring rate

the task of estimating fi ring rates from calcium 
signals can be more delicate. The deconvolution 
approach of Yaksi and Friedrich (2006) assumes 
that spike-related calcium-transients are stere-
otyped. Deconvolution is performed in the fre-
quency domain, as a high-pass fi lter applied to 
the de-noised calcium spectrum. A calibration 
step requires the determination of the average 
fi lter parameters from simultaneous voltage and 
calcium recordings. Like all inverse problems, 
this method is very sensitive to signal-to-(high-
frequency) noise ratio. It is also computation-
ally intensive. Finally, the required stereotypy of 
calcium decay is probably met mainly when fast 
calcium fl uctuations are damped, as expected in 
somata. Our approach is the opposite. No assump-
tion is made about calcium decays associated with 
interruptions of fi ring. We impose a simple reset 

of those segments, detected in the time domain, 
and take calcium summation into account fol-
lowing a very simple rule. This method is com-
putationally trivial and less sensitive to noise: we 
detect extrema rather than invert matrices in the 
frequency domain. Reconstruction accuracy is 
∼80–90% on average – i.e., comparable to Yaksi 
and Friedrich’s method (2006) – using raw cal-
cium signals recorded at dendritic sites. The sim-
plicity of the approach should be an advantage 
if large datasets are to be analyzed. The counter-
point is that our method so far rests on acquiring 
fast/dendritic calcium signals. Those are poten-
tially well suited for systems such as the olfactory 
bulb and antennal lobe, where processing occurs 
in compact glomeruli. How the method fares in 
different systems, where dendrites are more wide-
spread, remains to be tested
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Figure 5 | Prediction of a PN’s fi ring profi les from its dendritic calcium 

signals. After the specifi c PN/OGB-1 calibration, the algorithm may be applied 
to single PN-odor calcium imaging alone, baseline FB being the only trial-
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