
Frontiers in Neuroscience www.frontiersin.org December 2009 | Volume 3 | Issue 3 | 374

FOCUSED REVIEW
published: 15 December 2009

doi: 10.3389/neuro.01.036.2009

Trends in programming languages
for neuroscience simulations

Andrew P. Davison1*, Michael L. Hines2 and Eilif Muller3

1 Unité de Neurosciences Intégratives et Computationnelles, Centre National de la Recherche Scientifique, Gif sur Yvette,
France

2 Computer Science, Yale University, New Haven, CT, USA
3 Laboratory for Computational Neuroscience, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland

Neuroscience simulators allow scientists to express models in terms of biological concepts,
without having to concern themselves with low-level computational details of their implementation.
The expressiveness, power and ease-of-use of the simulator interface is critical in efficiently
and accurately translating ideas into a working simulation. We review long-term trends in the
development of programmable simulator interfaces, and examine the benefits of moving from
proprietary, domain-specific languages to modern dynamic general-purpose languages, in
particular Python, which provide neuroscientists with an interactive and expressive simulation
development environment and easy access to state-of-the-art general-purpose tools for scientific
computing.

Keywords: Python, simulation, computational neuroscience

Edited by:
Rolf Kötter, Radboud University
Nijmegen, The Netherlands

Reviewed by:
Felix Schürmann, Ecole Polytechnique
Fédérale de Lausanne, Switzerland
Marc-Oliver Gewaltig, Honda Research
Institute Europe GmbH, Germany
Volker Steuber, University of
Hertfordshire, UK

* Correspondence:

Andrew P. Davison is a research scientist
in the Unité de Neurosciences Intégratives
et Computationnelles of the Centre
National de la Recherche Scientifique,
France. He is interested in large-scale,
data-constrained, biologically-detailed
modeling of neuronal networks; in
bridging the gaps between different levels
of modeling; and in the development
of tools to facilitate collaborative
modeling and reproducible simulations.
He is co-founder of the NeuralEnsemble
initiative (http://neuralensemble.org),
which aims to promote collaborative
software development in neuroscience.
andrew.davison@unic.cnrs-gif.fr

IntroductIon
Many models in computational neuroscience
can be expressed by equations that have exact
 mathematical solutions, but a far greater number
cannot, and approximate solutions must be found
using numerical methods, a technique commonly
referred to as simulation.

The earliest neuroscience simulations were
 perhaps those of Andrew Huxley, using a Brunsviga
mechanical calculator (Hodgkin, 1976), for his
Nobel prize-winning work with Alan Hodgkin
on the action potential (Hodgkin and Huxley,
1952). Huxley performed his calculations by
hand only because the Cambridge University
electronic computer was undergoing an upgrade,
but soon enough simulations of nerve cell mem-
branes were being performed by computers, with
 programs written in languages such as FOCAL
and FORTRAN (Moore, 1994).

The programs for such early simulations were
designed from the ground up, with investiga-
tors concerning themselves with the technical

details of early computers, the biological details
of the system under study, and with devising
efficient algorithms for numerically solving the
 differential equations (Figure 1A). With the
maturation of the field, however, the details of
the numerical methods began to be standard-
ized, and an increase in research productivity
could be achieved by hiding the details of solv-
ing the equations from the investigator, allowing
them to focus on the biological concepts. Thus a
number of general-purpose neuroscience simu-
lation programs (“simulators”) began to appear
in the late 1980s and early 1990s (Figure 1B),
such as CABLE (the forerunner of NEURON;
Hines, 1989), GENESIS (Wilson et al., 1989),
NODUS (De Schutter, 1989), Axontree (Manor
et al., 1991), Nemosys (Eeckman et al., 1993) and
SWIM (Ekeberg et al., 1994) (see Moore, 1994
for much more detail on this era).

The major advantages of using simulation
software rather than writing simulation programs
from scratch are: increased productivity, since

Frontiers in Neuroscience www.frontiersin.org December 2009 | Volume 3 | Issue 3 | 375

Davison et al. Programming languages for neuroscience simulations

and we considered it more expressive than the
BASIC-like interpreter, FOCAL, previously used
in our lab for interactively calling functions and
assigning/evaluating variables in C or FORTRAN
compiled libraries. In 1984, the precursor to the
NEURON simulation environment, CABLE,
switched from FOCAL to Hoc for setup and con-
trol of neural simulations. A fundamental exten-
sion to Hoc syntax was made in the late 1980s in
order to represent the notion of continuous cables,
called sections. Sections are connected to form a
tree shaped structure and their principle purpose
is to allow the user to specify the physical prop-
erties of a neuron without regard for the purely
numerical issue of how many compartments are
used to represent each of the cable sections. In the
early 1990s, Hoc syntax was again extended to pro-
vide some limited support for classes and objects,
that is, data encapsulation and polymorphism, but
not inheritance; useful containers for numerical
data, such as vectors and matrices, were added and
a graphical interface was developed.

Hoc is now a fairly full-featured, general pro-
gramming language that serves its purpose well.
However, it has turned out to be an orphan lan-
guage limited to NEURON users and, along with
all other DSLs for neural simulators, inevitably
suffers in comparison with mainstream, general-
purpose interpreted languages such as Python
(http://www.python.org), Ruby (http://www.
ruby-lang.org/) or Scheme (Abelson et al., 1998),
or with general scientific programming environ-
ments such as MATLAB (The Mathworks, Inc.),
which have hundreds of developers and many
thousands of users in all domains of science and
engineering. Furthermore, continuing develop-
ment and maintenance of the general program-
ming language features of a DSL steals significant
time and effort from neurobiology domain-spe-
cific improvements.

Given these limitations and costs of domain-
specific languages for simulators, the natural next
step in the evolution of programming languages
for neural simulators is to replace home-grown
DSLs with a general purpose programming
language, with neurobiology-specific concepts
implemented in the general purpose language
(Figure 1C). This relieves the simulator devel-
oper of the need to develop and maintain
standard programming language features, con-
nects both developers and users to a wider sci-
entific and technical programming community,
and in most cases enables an enhanced repre-
sentation of domain-specific concepts, since
modern, widely-used languages are almost
inevitably more powerful and expressive than
home-grown DSLs.

much less code has to be written; fewer bugs, since
the simulator will be used by many people, not
just one or two, and hence bugs are encountered
and fixed earlier; improved conceptual control of
the simulation, since low-level computation and
book-keeping are done by the simulator, allowing
the user to focus on the scientific concepts.

There are several ways in which models and
their environment (inputs, parameterization,
instrumentation, output files, etc.) can be speci-
fied in a simulator: through a text-based con-
figuration file, through a graphical interface,
or through a special-purpose, domain-specific
programming language, either compiled or,
more commonly, interpreted. The advantages
of configuration files or graphical interfaces are
that the user need not have any knowledge of
programming, and that it is much more difficult,
or impossible, to introduce an error or incon-
sistency into the model (though, of course, the
model defined by the user may differ from his
or her intention). This is particularly important
when using a simulator as an educational tool.
For research, however, the greater flexibility
introduced by a domain-specific programming
language is often indispensable.

ProgrammIng languages
for neural sImulators
Until very recently, with few exceptions, each
simulator that offered the option of a domain-
specific programming language (DSL) came
with its own proprietary language, specific to
that simulator.

These languages often started out restricted in
scope, then gradually added functionality as the
software was developed (Cannon et al., 2007). At
a minimum, a DSL for a neural simulator needs to
be able to represent neuroscience concepts, such
as ion channels, synapses, dendrites, neurons, and
to interact with the operating system by reading
and writing files and accepting user input. Beyond
this minimum, the following features are desir-
able: features for structured programming, at
least functions/procedures and preferably classes
and objects; a variety of data structures such as
lists, associative arrays, matrices; a mathematical
library; a graphical interface.

To illustrate this trend of gradual accumu-
lation of features, consider the interpreter for
the NEURON simulation environment. Hoc
(Kernighan and Pike, 1984) was incrementally
developed by those authors within the context
of a tutorial on “Program Development” using
 standard UNIX software tools. As a language devel-
opment example, Hoc had a syntax for expressions
and control flow vaguely similar to the C language

Simulator
A simulator is a computer program
that numerically solves the equations
used to represent a particular model,
resulting in a simulation of the system
being modelled.

Interpreted language
An interpreted language is one in which
each line of source code is translated
into machine code just before it is
executed. In contrast, in a compiled
language all the source code is
translated at once, to be executed later.
Interpreted languages allow interactive
programming, i.e., a user can type a line
of code, execute it, and then decide
what to do next based on the results
of that line.

Domain-specific language
In contrast to a general-purpose
programming language, a domain-
specific language is a language
dedicated to a particular problem
domain, which allows concepts from
that domain to be expressed more
clearly than with a general-purpose
language. Examples outside
neuroscience include spreadsheet
formulas, the PostScript language for
page rendering, and the typesetting
language .

NEURON simulation environment
NEURON is a simulator for modelling
individual neurons and networks
of neurons. It provides tools for
conveniently building, managing,
and using models in a way that is
numerically sound and computationally
efficient. It is particularly well-suited
to problems that are closely linked
to experimental data, especially those
that involve cells with complex
anatomical and biophysical properties.

Frontiers in Neuroscience www.frontiersin.org December 2009 | Volume 3 | Issue 3 | 376

Davison et al. Programming languages for neuroscience simulations

MOOSE (Ray and Bhalla, 2008), STEPS (Wils and
De Schutter, 2009), Topographica (Bednar, 2009)
and NCS (Drewes et al., 2009), and in the choice of
Python as the sole or principal interface language
for new simulators such as Brian (Goodman and
Brette, 2008) and PCSIM (Pecevski et al., 2009).

The latter examples demonstrate that new
simulators need not inevitably reprise the path
described above, and nowadays can adopt a
 general-purpose language from the beginning.
It is also possible to replace one general-purpose
 language with another, as was done in the rewrite
of CSIM (which originally used MATLAB) to
produce PCSIM, and by Topographica, which
initially adopted Scheme before replacing it
with Python.

Python as a ProgrammIng language
for neural sImulatIon
Python is a dynamic object-oriented programming
language that is widely used in both commercial
and academic settings for systems integration, as
a scripting language, as a web-development lan-
guage, and for scientific computing.

Such a general purpose language should:
(i) be interpreted, allowing interactive use of the
simulator; (ii) be easy to learn, given that most
of its users will be neuroscientists with little for-
mal computer science training or experience;
(iii) provide support for modularity, facilitating
the construction and maintenance of complex
programs; (iv) have a large scientific/engineer-
ing user base (not restricted to neuroscience),
providing a ready-made library of tools for data
analysis and visualization; (v) have a large general
user base outside of science, providing general
purpose tools for database access, graphical inter-
faces, network access, debugging, etc.

A number of languages, among them Python,
Perl (http://www.perl.org), Ruby and Scheme, meet
these criteria and would be suitable candidates for
a simulator interface language. For a number of
reasons, it is the Python programming language
that has seen widespread uptake among simulator
developers in recent years, resulting in the addition
of Python interfaces to several existing simulators,
including NEURON (Hines et al., 2009), NEST
(Eppler et al., 2008), Nengo (Stewart et al., 2009),

Figure 1 | (A) The earliest approach to computational simulations: the user
(neuroscientist) is also the software developer, and simulation code is written
from the ground up. (B) Development of general-purpose neural simulators.
The simulator is developed by a small group of people, and has its own
domain-specific language (DSL) for representing neuroscience concepts.
The DSL also contains functionality for visualizing results and performing
numerical analysis. The simulator is used by a larger group of scientists, who
may not be programming experts, and who use the DSL to create their
simulations. (C) The DSL is replaced or augmented by a general-purpose

interpreted programming language. The simulator developers are able to
concentrate on the domain-specific functionality, and to leverage tools
for visualization, analysis, database access, network access, etc., developed by
third-party developers external to neuroscience. The users benefit from greatly
expanded functionality and easier extensibility of the simulator. The programmer
icon was originally created by David Vignoni, and is reused here under the terms
of the GNU Lesser General Public Licence (LGPL) (http://www.gnu.org/licenses/
lgpl.html). As a consequence, this image is also licensed under the LGPL.
Copies of the image file are available on request from the corresponding author.

Frontiers in Neuroscience www.frontiersin.org December 2009 | Volume 3 | Issue 3 | 377

Davison et al. Programming languages for neuroscience simulations

The advantages of using Python in the context
of neuronal simulations are:

•	 it	is	an	interpreted	language,	making	interac-
tive exploration of code or data possible, and
providing immediate feedback to the user.

•	 clear,	 expressive	 syntax.	 This	 makes	 code	
easy to write and, perhaps more importantly,
easy to read, facilitating sharing, debugging
and re-use. Python code is generally concise
enough to make it easy to see and understand
the overall structure, but not so concise as to
be confusing.

•	 powerful	data	structures	such	as	lists	and	dic-
tionaries are built-in to the language.

•	 it	has	an	extremely	flexible	implementation	
of object-oriented programming, which is
important in producing well-structured,
reusable code, making it possible to create
models of high complexity (almost inevita-
ble in neuroscience) with non-complicated
code.

•	 it	has	a	large	standard	library,	providing	built-
in, extensive functionality for data processing,
database access, network programming, etc.

•	 a	 large	 number	 of	 freely-available,	 third-
party libraries for graphical interfaces,
scientific computing, etc., are available. Of
particular note is the SciPy package (http://
www.scipy.org), which provides extensive
and high-speed facilities for manipulation of
 numerical data.

•	 it	is	easy	to	interface	Python	with	code	writ-
ten in other programming languages. A com-
mon approach is to develop a user interface
in Python, with its ease-of-use and rapid
development time, and to implement com-
putationally-expensive code in a fast, compi-
led language such as C, C++ or FORTRAN.

•	 it	 is	 easy	 to	 learn	 (Raymond, 2000), due
mainly to the first three points in this list.

Although many of the above are also true of
other programming languages, taken together
Python seems to have the best combination.
There is also a virtuous circle effect: as Python
is more widely used in scientific computing, the
range of available libraries, of teaching materi-
als, and of expertise becomes wider, making it
yet more attractive.

the Python Interface to neuron
To give a concrete example of the use of Python
in a neuroscience simulator, we present here the
Python interface to NEURON, which coexists, and
interoperates with, the original Hoc interpreter.
NEURON with Python works on Windows, Mac

OS X, Linux, and many other platforms such as the
IBM Blue Gene/L/P and Cray XT3 supercomputers.
Downloads and installation instructions can be
found at http://www.neuron.yale.edu.

The fundamental objects for representing
neurons in NEURON are the membrane section
(an un-branched piece of a dendrite, axon or
soma), and the membrane mechanism, which
may either be inserted at a particular point in a
section, as for synapses or electrodes, or distrib-
uted over the entire surface of the section, as for
ion channels.

Each of these objects is represented by a
Python class. In the following listing we create
a section for the soma, a section for a dendrite,
connect them together, insert Hodgkin-
Huxley sodium and potassium channels in the
soma, and place a synapse near the end of the
dendrite:

>>> from neuron import h
>>> soma = h.Section()
>>> dend = h.Section()
>>> dend.connect(soma, 0, 0)
>>> soma.insert(’hh’)
>>> syn = h.ExpSyn(0.9, sec=dend)

This code is not very far removed from the code
used to perform the same task in Hoc, the main
difference being that Hoc has special keywords
create, connect and insert, whereas the
Python interface uses the standard syntax for cre-
ating a new object and calling “methods” (object-
oriented programming terminology for functions
that are bound to an individual object).

The gain in representing membrane sections
as standard objects, rather than using special key-
words to create and manipulate them, is that the
full power of Python’s object-oriented approach
can be brought to bear, allowing sub-classes to
inherit behaviour from their parent classes, encap-
sulation of data and functionality within the class,
and allowing sections to be passed as arguments to
functions, all of which lead to cleaner, easier-to-
understand code. Hoc does have object-oriented
capabilities, but they do not apply to sections, and
do not support inheritance.

While the syntax improvements are valu-
able, a much greater benefit of moving from
a special-purpose to a widely-used, general-
purpose language is the availability of all the
libraries and modules developed in the general-
purpose language. This is described in the next
section.

Despite these gains, the move away from the
special-purpose language might nevertheless
be negative overall if some of the capabilities of

SciPy
SciPy is perhaps the most important
of many open-source packages
for scientific computing that use
the Python programming language.
It is an excellent example of the sort
of powerful tool that becomes available
to simulator users when the simulator
interface is a general-purpose
programming language such as Python.

Frontiers in Neuroscience www.frontiersin.org December 2009 | Volume 3 | Issue 3 | 378

Davison et al. Programming languages for neuroscience simulations

brane potential trace is stored in a vector vm, the
following code saves it to HDF5:

>>> import tables, numpy
>>> h5 = tables.openFile(‘test.h5’,
... ‘w’)
>>> h5.createArray(‘/’, ‘V’,
... numpy.array(vm))
>>> h5.close()

MorphML (Crook et al., 2007) is an XML-based
format for exchanging neuronal morphology data.
An increasing number of neuron reconstructions
are available in this format, and it was desirable
to allow these morphologies to be imported into
NEURON. Hoc does not provide any tools for
processing XML data (it would be possible, but
time-consuming to create them), but Python pro-
vides a number of such tools. By using Hoc and
Python together, the process of adding MorphML
support was greatly accelerated. Taking lines of
code as a crude measure of development effort,
we can compare the 1180 lines of NEURON’s
NeuroLucida v3 import tool, written purely in
Hoc, to the 448 lines (78 lines of Hoc, 370 lines
of Python) needed for MorphML import. A fuller
description of the MorphML import is given in
Hines et al. (2009).

The availability of Python interfaces for mul-
tiple simulators allows two or more simulators
to be coupled via the interpreter to compose
compound models, as explored in Ray and
Bhalla (2008). With the addition of run-time
simulator interaction, such as provided by the
MUSIC library (Ekeberg and Djurfeldt, 2008),
such interactions become possible in distrib-
uted computing environments on a large-scale
while remaining controllable from a single
interactive Python prompt (in the distributed
case using the parallel capabilities of IPython).
Moreover, it becomes possible to provide a uni-
fied meta-interface to Python-based simula-
tors. PyNN (Davison et al., 2009) is one such
meta-interface, and allows network models of
point neurons (integrate-and-fire, single com-
partment Hodgkin-Huxley, etc.) to be simulated
on NEURON, NEST, Brian and PCSIM without
any modification of the code. Such a common
interface facilitates model cross-checking, trans-
lation, evaluation of the optimal simulator for a
given problem, and provides a simulator-agnos-
tic foundation upon which to develop higher-
level modelling abstractions.

In our opinion, the most promising future
applications of Python in neuroscience simula-
tion include the following:

the special-purpose language were lost, or if the
expertise built-up by modellers in that language
were no longer applicable. This is not the case for
NEURON, since all the functionality of Hoc is still
available through a special object representing the
Hoc interpreter (h in the code example above).
The h object allows us to use Hoc commands such
as create, e.g.:

>>> h(‘create soma’)
>>> h.soma
<nrn.Section object at 0x8194080>

and makes any of the classes defined in Hoc
 available to Python, such as the ExpSyn mech-
anism in the example above, or the important
Vector class, which is used for recording, graph-
ing and many other purposes. Through Python,
Hoc Vector objects can be used in most cases
where Numpy, Scipy, and Matplotlib (Hunter,
2007), the most important scientific modules,
accept lists or arrays:

>>> from numpy import array
>>> l1 = [1, 2, 3, 4, 5]
>>> a1 = array(l1)
>>> v1 = h.Vector(l1)
>>> v2 = h.Vector(a1)
>>> a2 = array(v1)
>>> l2 = list(v2)
>>> from matplotlib.pylab import plot
>>> plot(v1)

This easy interoperability between Hoc and
Python makes it easy to re-use existing code written
in Hoc in a new simulation using Python, without
needing to rewrite or convert the older code.

This has been a very brief introduction to using
Python with NEURON. A more extensive descrip-
tion is given in Hines et al. (2009). Although
the details differ, the general benefits described
above apply equally to other simulators that use
a general-purpose language, such as Python, as
their user interface.

current and future uses of Python
Python makes a vast library of third-party mod-
ules available to NEURON users for use in their
simulations. We give here two examples: export-
ing data and importing XML. Suppose the user
would like to export simulated voltage traces to
a standard binary format for scientific data, such
as HDF5 (http://www.hdfgroup.org/HDF5),
for later analysis in Python, MATLAB, etc. The
PyTables package (www.pytables.org) provides
the required functionality. Supposing the mem-

Frontiers in Neuroscience www.frontiersin.org December 2009 | Volume 3 | Issue 3 | 379

Davison et al. Programming languages for neuroscience simulations

•	 it	 frees	 up	 simulator	 developers	 to	 concen-
trate on neuroscience-specific features, leaving
ancillary functionality to the general language.

•	 it	 makes	 available	 to	 both	 developers	 and	
users an extensive collection of tools for data
analysis, visualization, debugging, testing, etc.

•	 it	provides	tools	for	well-structured	program-
ming, so that simulating complex models of
complex neural structures need not imply
complex, hard-to-understand code.

•	 competency	 gained	 in	 programming	 a	
 simulator is transferrable to other domains
of programming, both inside and outside
science.

•	 where	 multiple	 simulators	 adopt	 the	 same	
general purpose language, as is the case with
Python, the energy barrier for translating
models between simulators is lowered. Each
simulator still effectively has its own repre-
sentations for neuroscience domain-specific
concepts (but see Davison et al., 2009), but
now all simulators can access the same data
structures, and exploit the same built-in and
external libraries. Furthermore, it becomes
much easier to develop tools, for visualiza-
tion or data analysis, that will work with any
Python-supporting simulator.

From the point of view of the NEURON simu-
lator, we recommend that new users of NEURON
and those already familiar with Python should use
Python rather than Hoc to develop new models.
There is no need to rewrite legacy code in Python,
as it will continue to work using the Hoc inter-
preter or mixed in with new Python code and
accessed via the h object.

Our expectation is that the recent widespread
adoption of Python for simulator interfaces will
lead to accelerated progress in computational
neuroscience. Although part of the complexity
of neuroscience models comes from the una-
voidable complexity of the neural systems under
study, the extra complexity added by our software
systems can certainly be reduced. Python alone
is not a silver bullet that completely alleviates the
problem of avoidable complexity in neuroscience
modelling – simulation-based computational
neuroscience must at the least also adopt other
tools from mainstream software engineering –
but it provides a solid foundation for develop-
ing readable, modular, well-structured, reusable
models; developing and sharing tools for simula-
tion project management, data analysis and visu-
alisation, etc.; and leveraging the work of other
scientific and engineering communities, without
which we cannot hope to begin to tame the com-
plexity of the brain.

•	 more	 expressive,	 well-structured	 and	 easy-
to-understand models, as expanded on in
previous sections;

•	 development	 of	 graphical	 user	 interfaces	
using the power of the most recent cross-
platform GUI toolboxes such as Qt or
GTK+, either replacing or complementing
existing GUIs. The possibility of creating
a single GUI for multiple simulators (like
the existing neuroConstruct, Gleeson et al.,
2007, but fully interactive) is also very
interesting;

•	 integration	 of	 the	 simulator	 in	 a	 complete	
Python-based workflow for simulation
projects, including stimulus generation,
visualization, data analysis and databasing;

•	 support	 for	 declarative	 formats	 for	 neu-
roscience models (based on XML or other
formats), such as NeuroML (Goddard et al.,
2001, http://www.neuroml.org) or SBML
(Hucka et al., 2003).

dIscussIon

“About half the time spent on a typical
simulation project involves creating and
tuning the model. Thus, a good user inter-
face may contribute more to the overall
efficiency of a project than pure computa-
tion speed.”

De Schutter (1992)

“Increasingly, the real limit on what com-
putational scientists can accomplish is how
quickly and reliably they can translate their
ideas into working code.”

Wilson (2006)

Available, affordable computer power and the
amount of experimental data available to con-
strain models have both increased greatly in the
14 years that separate these two quotations. So,
however, have the ambition of computational
neuroscientists and the complexity of the simu-
lations they develop, so that the influence of the
simulator user interface on the efficiency and
correctness of a neuronal simulation project is
greater than ever.

In this article, we have coarsely sketched the
history of simulator interface development, and
have highlighted the most recent trend: for home-
grown interfaces to be replaced by modern, pow-
erful, general purpose programming languages,
particularly Python.

This trend has a number of positive
consequences:

Frontiers in Neuroscience www.frontiersin.org December 2009 | Volume 3 | Issue 3 | 380

Davison et al. Programming languages for neuroscience simulations

(FACETS), and by a grant from the Swiss
National Science Foundation. We would also
like to thank the reviewers, whose comments
have been very helpful in improving this
article.

acknowledgments
This work was supported by NIH grant
NS11613, by the European Union under the
Bio-inspired Intelligent Information Systems
program, project reference IST-2004-15879

references
Abelson, H., Dybvig, R., Haynes, C., Rozas,

G., Adams, N., Friedman, D., Kohlbecker,
E., Steele, G., Bartley, D., Halstead, R.,
Oxley, D., Sussman, G., Brooks, G.,
Hanson, C., Pitman, K., and Wand, M.
(1998). Revised5 report on the algorith-
mic language Scheme. Higher-Order
and Symbolic Computat. 11, 7–105.
doi:10.1023/A:1010051815785.

Bednar, J. A. (2009). Topographica: build-
ing and analyzing map-level simula-
tions from Python, C/C++, MATLAB,
NEST, or NEURON components.
Front. Neuroinformatics 3, 8. doi:
10.3389/neuro.11.008.2009.

Cannon, R. C., Gewaltig, M. O., Gleeson, P.,
Bhalla, U. S., Cornelis, H., Hines, M. L.,
Howell, F. W., Muller, E., Stiles, J. R.,
Wils, S., and De Schutter, E. (2007).
Interoperability of neuroscience
modeling software: current status and
future directions. Neuroinformatics 5,
127–138.

Crook, S., Gleeson, P., Howell, F., Svitak, J.,
and Silver, R. (2007). MorphML: level 1
of the NeuroML standards for neuro-
nal morphology data and model speci-
fication. Neuroinformatics 5, 96–104.

Davison, A. P., Brüderle, D., Eppler, J.,
Kremkow, J., Muller, E., Pecevski, D.,
Perrinet, L., and Yger, P. (2009).
PyNN: a common interface for neu-
ronal network simulators. Front.
Neuroinformatics 2, 11. doi: 10.3389/
neuro.11.011.2008.

De Schutter, E. (1992). A consumer guide
to neuronal modeling software. Trends
Neurosci. 15, 462–464.

De Schutter, E. (1989). Computer software
for development and simulation of
compartmental models of neurons.
Comput. Biol. Med. 19, 71–81.

Drewes, R., Zou, Q., and Goodman, P. H.
(2009). Brainlab: a Python toolkit
to aid in the design, simulation, and
analysis of spiking neural networks
with the NeoCortical Simulator. Front.
Neuroinformatics 3, 16. doi: 10.3389/
neuro.11.016.2009.

Eeckman, F. H., Theunissen, F. E., and
Miller, J. P. (1993). NeMoSys: A neu-
ral modeling system. In: MASCOTS
’93, Proceedings of the International
Workshop on Modeling, Analysis,
and Simulation On Computer and
Telecommunication Systems. San
Diego, CA, USA, The Society for
Computer Simulation, International,
pp. 365–366.

Ekeberg, O. and Djurfeldt, M. (2008).
MUSIC – multisimulation coor-
dinator: request for comments.
Nat. Precedings. doi: http://dx.doi.
org/10.1038/npre.2008.1830.1.

Ekeberg, O., Hammarlund, P., Levin, B.,
and Lansner, A. (1994). SWIM – a
simulation environment for realistic
neural network modeling. In Neural
Network Simulation Environments, J.
Skrzypek, ed. (Hingham, MA, Kluwer),
pp. 47–71.

Eppler, J. M., Helias, M., Muller, E.,
Diesmann, M., and Gewaltig, M. O.
(2008). PyNEST: a convenient inter-
face to the NEST simulator. Front.
Neuroinformatics 2, 12. doi: 10.3389/
neuro.11.012.2008.

Gleeson, P., Steuber, V., and Silver, R. A.
(2007). neuroConstruct: a tool for
modeling networks of neurons in 3D
space. Neuron 54, 219–235.

Goddard, N., Hucka, M., Howell, F., Cornelis,
H., Shankar, K., and Beeman, D. (2001).
Towards NeuroML: model description
methods for collaborative modeling in
neuroscience. Philoso. Trans. R. Soc. B
356, 1209–1228.

Goodman, D., and Brette, R. (2008).
Brian: a simulator for spiking neu-
ral networks in Python. Front.
Neuroinformatics 2, 5. doi: 10.3389/
neuro.11.005.2008.

Hines, M. (1989). A program for simula-
tion of nerve equations with branch-
ing geometries. Int. J. Biomed. Comput.
24, 55–68.

Hines, M. L., Davison, A. P., and Muller, E.
(2009). NEURON and Python. Front.
Neuroinformatics 3, 1. doi: 10.3389/
neuro.11.001.2009.

Hodgkin, A. L. (1976). Chance and design
in electrophysiology: an informal
account of certain experiments on
nerve carried out between 1934 and
1952. J. Physiol. 263, 1–21.

Hodgkin, A. L., and Huxley, A. F. (1952).
A quantitative description of mem-
brane current and its application to
conduction and excitation in nerve.
J. Physiol. 117, 500–544.

Hucka, M., Finney, A., Sauro, H. M.,
Bolouri, H., Doyle, J. C., Kitano, H.,
Arkin, A. P., Bornstein, B. J., Bray, D.,
Cornish-Bowden, A., Cuellar, A. A.,
Dronov, S., Gilles, E. D., Ginkel, M.,
Gor, V., Goryanin, I. I., Hedley, W. J.,
Hodgman, T. C., Hofmeyr, J. H.,
Hunter, P. J., Juty, N. S., Kasberger, J. L.,
Kremling, A., Kummer, U., Le

Novère, N., Loew, L. M., Lucio, D.,
Mendes, P., Minch, E., Mjolsness, E. D.,
Nakayama, Y., Nelson, M. R.,
Nielsen, P. F., Sakurada, T., Schaff, J. C.,
Shapiro, B. E., Shimizu, T. S.,
Spence, H. D., Stelling, J., Takahashi, K.,
Tomita, M., Wagner, J., and Wang, J.
(2003). The systems biology markup
language (SBML): a medium for rep-
resentation and exchange of biochemi-
cal network models. Bioinformatics 19,
524–531.

Hunter, J. D. (2007). Matplotlib: a 2D
graphics environment. IEEE Comput.
Sci. Eng. 9, 90–95.

Kernighan, B., and Pike, R. (1984). The Unix
Programming Environment. Englewood
Cliffs, New Jersey, Prentice Hall.

Manor, Y., Goncazarowski, J., and Segev, I.
(1991). Propagation of action poten-
tials along complex axonal trees.
Model and implementation. Biophys.
J. 60, 1411–1423. doi: 10.1016/S0006-
3495(91)82178-6.

Moore, J. W. (1994). Simulations with
NEURON. Available at: http://neuron.
duke.edu/userman/contents.html.

Pecevski, D., Natschläger, T., and
Schuch, K. (2009). PCSIM: a parallel
simulation environment for neural
circuits fully integrated with Python.
Front. Neuroinformatics 3, 11. doi:
10.3389/neuro.11.011.2009.

Ray, S., and Bhalla, U. S. (2008). PyMOOSE:
interoperable scripting in Python for
MOOSE. Front. Neuroinformatics 2, 6.
doi: 10.3389/neuro.11.006.2008.

Raymond, E. S. (2000). Why Python?
Linux J. Available at: www.linuxjour-
nal.com/article/3882.

Stewart, T. C., Tripp, B., and Eliasmith, C.
(2009). Python scripting in the Nengo
simulator. Front. Neuroinformatics 3, 7.
doi: 10.3389/neuro.11.007.2009.

Wils, S., and De Schutter, E. (2009).
STEPS: modeling and simulat-
ing complex reaction- diffusion
systems with Python. Front.
Neuroinformatics 3, 15. doi: 10.3389/
neuro.11.015.2009.

Wilson, G. (2006). Where’s the real bot-
tleneck in scientific computing? Am.
Sci. 94, 5. doi: 10.1511/2006.1.5.

Wilson, M. A., Bhalla, U. S., Uhley, J. D.,
and Bower, J. M. (1989). GENESIS: a
system for simulating neural networks.
In Advances in Neural Information
Processing Systems, D. Touretzky, ed.
(San Mateo, CA, Morgan Kaufmann),
pp. 485–492.

Conflict of Interest Statement: The
authors declare that the research pre-
sented in this paper was conducted in the
absence of any commercial or financial
relationships that could be construed as
a potential conflict of interest.

Received: 31 July 2009; paper pending
published: 04 September 2009; accepted:
02 October 2009; published: 15 December
2009.
Citation: Front. Neurosci. (2009) 3, 3: 374–
380. doi: 10.3389/neuro.01.036.2009

Copyright © 2009 Davison, Hines and
Muller. This is an open-access article subject
to an exclusive license agreement between
the authors and the Frontiers Research
Foundation, which permits unrestricted
use, distribution, and reproduction in any
medium, provided the original authors and
source are credited.

