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Analysis of the timecourse of the orientation tuning of responses in primary visual cortex (V1) can provide insight into the circuitry
underlying tuning. Several studies have examined the temporal evolution of orientation selectivity in V1 neurons, but there is no consensus
regarding the stability of orientation tuning properties over the timecourse of the response. We have used reverse-correlation analysis
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tuning curve shape are stable in the majority of neurons; howeve
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circuit connectivity, we analyzed the timecourse of responses as a
position. Simple cells are more selective, and reach peak selectivity
in the timing of responses: middle layer cells respond faster, deep
intermediate in timing. The average timing of neurons near and fa
timecourse of responses near pinwheel centers. This result was re
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INTRODUCTION
The temporal evolution, or dynamics, of the orientation tuning of responses
of V1 neurons can provide insight into the circuit and the mechanisms
underlying tuning. Several previous studies have analyzed the orienta-
tion tuning dynamics of V1 neurons (Celebrini et al., 1993; Chen et al.,
2005; Gillespie et al., 2001; Mazer et al., 2002; Nishimoto et al., 2005;
Ringach et al., 2003; Sharon and Grinvald, 2002; Shevelev et al., 1993;
Volgushev et al., 1995). In particular, this type of analysis has been used
to distinguish between thalamocortical inputs and intracortical excitatory
or inhibitory inputs, and thus, to estimate their respective roles in the
generation of orientation selectivity. The rationale of such an approach
is that the numerous different sources of synaptic input that contribute
to the response may be separable in time, and the influence of each
may therefore be relatively more prominent at different periods of the
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e in cat V1 neurons. We find that the preferred orientation and
re than forty percent of cells show a significant change in either
of the response. To examine the influence of the local cortical

ction of receptive field type, laminar position, and orientation map
lier, than complex cells. There are pronounced laminar differences
er cells have prolonged response decay, and superficial cells are
m pinwheel centers is similar, but there is more variability in the
uced in an established network model of V1 operating in a regime
g previous results. Thus, response dynamics of cortical neurons

ortical networks.

electivity, reverse-correlation, large-scale network, network model

esponse. For instance, if orientation selectivity is generated by the con-
ergence of inputs from the lateral geniculate nucleus (LGN) (Hubel and
iesel, 1962), neurons should be equally selective during the initial and

ate periods of the response. Alternatively, if orientation selectivity arises
rom specific intracortical amplification of responses to some orientations,
s several models have proposed (Ben-Yishai et al., 1995; Douglas et al.,
995; Somers et al., 1995), the neuron should be less selective during the

nitial period of the response than later on. Therefore, measurements of
he timecourse of response enhancement and suppression may be able
o distinguish between these models.

Some studies have demonstrated that the tuning curves derived from

arly portions of the visual response are quite different from those derived
rom later in the response (Chen et al., 2005; Ringach et al., 2003; Sharon
nd Grinvald, 2002; Shevelev et al., 1993; Volgushev et al., 1995), whereas
thers have found that orientation selectivity is relatively constant through-
ut the duration of the visual response (Celebrini et al., 1993; Gillespie
t al., 2001; Mazer et al., 2002; Nishimoto et al., 2005). We reasoned that
ifferent dynamics might result from differences in local cortical inputs.
he diversity of results regarding the timecourse of orientation tuning, as
ell as recent results demonstrating diversity in the mechanisms generat-

ng this selectivity (Martinez et al., 2002; Monier et al., 2003; Schummers
t al., 2002), suggest that many factors, including cell class, laminar loca-
ion, and position within the map of orientation preference, may influence
he orientation dynamics of V1 neurons.

Here, we describe experiments aimed at clarifying these issues by
easuring the response dynamics of different classes of neurons with
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known laminar and orientation map location. We have developed a prin-
cipled Bayesian framework for analyzing the responses of cells, and in
particular for determining whether or not tuning dynamics change to a
significant extent. Moreover, we show that orientation map dependence
of the response dynamics can be reproduced in a network model of
V1 with balanced contributions of the excitatory and inhibitory recurrent
connections.

MATERIALS AND METHODS
Animal preparation
All experiments were performed in adult female cats, in accordance with
protocols approved by the MIT Committee on Animal Care and conforming
with NIH guidelines. Details of animal surgery and recording techniques
were as described in previous published reports (Dragoi et al., 2000;
Rivadulla et al., 2001; Schummers et al., 2002). Briefly, cats were initially
anesthetized with a mixture of Ketamine and Xylazine (15 mg/kg and
1.5 mg/kg; I.M.) and maintained on Isoflurane delivered in a 70:30 mixture
of N2O and O2. A craniotomy and durotomy was performed over area 17,
a recording chamber was attached to the surrounding skull with dental
cement, and skull screws were placed for EEG recording. All incisions and
pressure points were pre-treated with lidocaine. Core body temperature
was maintained at 37.5 degrees by a regulated heating blanket, and
expired CO2 was maintained at 4% by adjustments of the respirator stroke
rate and volume. Neuromuscular blockade was achieved by I.V. infusion of
vercuronium bromide (0.2 mg/kg h, in 50% lactated ringers solution, 50%
5% dextrose). Corneas were fitted with zero power contact lenses, pupils
were dilated with 1% atropine drops and nictitating membranes were
retracted with 0.1% phenylephrine drops. Anesthesia was assessed by
continuous monitoring of the heart rate and the degree of synchronization
of the EEG. Experiments were terminated with a lethal dose of pentobarbital
in excess of 100 mg/kg body weight I.V.

Optical imaging of intrinsic signals
Orientation preference maps were obtained by optical imaging of intrin-
sic signals, following previously published protocols (Dragoi et al., 2001;
Sharma et al., 2000). Full-field, high contrast square-wave gratings
(0.5 cycles/deg, 2 cycles/s) of four orientations, drifting in each of two
directions were presented using STIM (courtesy of Kaare Christian, Rock-
efeller University) on a 17 inch CRT monitor placed at a viewing distance
of 30 cm. Images were obtained using a slow-scan video camera (Bischke
CCD-5024, Japan), equipped with a tandem macrolens arrangement, and
fed into a differential amplifier (Imager 2001, Optical Imaging Inc., NY).
The cortex was illuminated with 604 nm light, and the focus was adjusted
to ∼500 �m below the cortical surface during imaging. Care was taken
to obtain reference images of the surface vasculature several times over
the course of the imaging session to detect any shift of the cortex relative
to the camera, and increase the accuracy of electrode penetrations.

Single unit recording

Following optical imaging, single unit recordings were performed using
an array of four parylene-coated tungsten microelectrodes (2–4 M�).
Recording procedures have been described previously (Dragoi et al., 2001;
Rivadulla et al., 2001). Briefly, signals were amplified, band-pass filtered
(250–4000 Hz) and digitized. Data were acquired to disk under control of
Datawave software, by capturing all waveforms that exceeded a manually
determined threshold. Single units were sorted offline using strict criteria
of waveform shape and refractory periods. Care was taken to align elec-
trode penetrations perpendicular to the pial surface. Pilot experiments in
which electrolytic lesions were made along the electrode track (data not
shown), confirmed the angles obtained with this approach.

Visual stimuli
Visual stimuli for single-unit recording were generated offline using rou-
tines written in Matlab, and played in movie mode in Cortex v 5.5 (NIH).
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igure 1. Schematic representation of reverse-correlation in orientation
pace. As time proceeds from left to right, spikes times are recorded (tick
arks), in response to the random grating stimulus sequence. An example of
short segment of the stimulus is shown below – a new random orientation

s presented every 20 ms. For a set value of τ a histogram of the stimulus
rientation present τ ms before each spike is computed. The schematic RF of
he neuron is oriented at 45 degrees, so the majority of spikes are in response
o gratings oriented near 45 degrees.

timuli were presented on a 17 inch CRT monitor placed at a distance
f 57 cm from the eyes, running with a vertical refresh rate of 100 Hz.
he luminance values were linearized by adjusting the color lookup tables
ased on the measured output of the monitor using a photometer. Drift-

ng gratings were presented in a window covering 10 × 10 degrees
f visual angle, centered on the aggregate receptive field (RF) of the
ecorded neurons. Gratings were high contrast, spatial frequency was
.25–.5 cycles/deg, temporal frequency was 2 cycles/s and the orientation
esolution was 22.5 degrees. Each trial consisted of 2s movie, consisting
f a series of gratings, the orientation and spatial phase of which was
hosen pseudorandomly every 20 or 30 ms (2 or 3 video frames). The
eural spike times could be synchronized to the precise time of stimu-

us presentation with 1 ms resolution, equal to the spike time-stamping
esolution.

everse-correlation analysis
he reverse-correlation procedure, depicted in Figure 1, was similar
o previous reports (Ringach et al., 1997a; Ringach et al., 1997b). For
ach time delay (τ), the distribution of stimulus conditions preceding the
pikes is tabulated. The four spatial phases were averaged, yielding dis-

ributions over orientation. For simple cells, this analysis neglects the
hase-specificity of simple cell RFs. Other than changes in the absolute
esponse magnitude, we did not observe substantial differences when
nly the optimal phase was analyzed. For each τ, the value for the blank
ondition was subtracted from the tuning curves. For ease of comparison,
ach tuning curve was then aligned to peak at 90 degrees and normal-

zed by dividing the tuning curves at all τs by the maximum value at any
. This scales all the tuning curves such that the maximum possible is
. Negative values, on the other hand are unbounded, though they still
epresent the fraction of the maximum positive value. Since suppression
s almost always smaller than enhancement, almost all cells have values
ower in magnitude than −1.
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The degree of orientation selectivity was defined as the orientation
selectivity index (OSI) (Swindale, 1998), calculated as:

OSI =

√
(
∑n

i=1R(θi) cos(2θi))
2 + (

∑n

i=1R(θi) sin(2θi))
2∑n

i=1Ri

,

where R is average response during grating presentation and θ is
orientation from 0 to 157.5, indexed by i = 1 to 8. The OSI is a con-
tinuous measure with values ranging from 0 (unselective) to 1 (perfectly
selective).

From 111 single units isolated, 86 were selected for analysis because
they met two criteria: response amplitude reached 150% of baseline
amplitude and OSI reached three SDs above baseline levels. Simple and
complex cells were differentiated based on the ratio of the magnitude of
the F1 Fourier component of the response (the response component at
the temporal frequency of the stimulus) to the F0 component (mean, or
DC component of the response, Skottun et al., 1991).

Bayesian model for fitting data
We used a generative Bayesian model to obtain a detailed descrip-
tion of the relationship between the oriented movie stimulus and the
spiking response of each cell (Carlin et al., 2003; Sahani and Linden,
2003). This approach allowed us to determine whether the tuning
curves are significantly different at different delays. We employed Markov
chain Monte Carlo (MCMC) sampling techniques to estimate the dis-
tribution of the parameters of the model for each cell. The results of
these MCMC sampling runs provide estimates of the expected values
of the tuning curve parameters, as well as estimates of the remaining
uncertainty

To model the orientation tuning of each cell, we assumed that the
neuron’s response at each moment in time following the presentation of a
particular stimulus orientation can be characterized by a circular Gaussian
(CG) tuning curve, where the parameters of this Gaussian curve change as
a function of the time lag after stimulus presentation. Each CG can be com-
pletely described by four parameters: the baseline, amplitude, preferred
orientation (mean), and tuning width (standard deviation). Because we bin
the spike trains at 5 ms for this analysis, a total of 20 such curves would
be needed to describe the response of the cell in the 100 ms following
each stimulus frame. We further assumed that the CG parameters change
smoothly over the time course of the neuron’s response. This assumption
is implemented as a ‘‘smoothness prior,’’ the particular form of which is
described below.

The basic premise of the model is that each time a particular stimulus
frame is presented, the firing rate of the neuron is modulated in a charac-
teristic, time-lag-dependent way over the subsequent time window. The
instantaneous firing rate of the cell is a summation of the influence of
the preceding stimulus frames whose windows ‘‘cover’’ the current time
point.
Formally, the model is completely characterized by a specification of
the joint probability distribution of the model parameters and the observed
data. This joint probability factorizes as follows:

Pr(n(t), S(t), λ(τ), ςλ) = Pr(n(t)|µ(t)) Pr(µ(t)|S(t), λ(τ)) Pr(S(t))

×Pr(λ(τ)|ςλ) Pr(ςλ).

The factors on the right-hand side of the above equation will be
specified in turn. All symbols are explained in Table 1.

1. Data likelihood: The orientation selectivity of the neuron at each 5 ms
time bin after stimulus presentation is assumed to follow the form of
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a CG curve. That is,

∆µ(S, τ) =




B(τ) + A(τ)

∞∑
j=−∞

exp

{
−(S − PO(τ) − jπ)2

2TW2(τ)

}
S = θ

Bl(τ) S = blank

.

The maximum delay is a value chosen to be appropriate to the response
window of each cell. The firing rate is the sum of all stimulus-induced
spiking propensities that are currently active. The firing rate at time t
is therefore calculated as:

µ̃(t) =
[

T/∆f∑
i=1

∆µ(S(t − i∆f ), T − i∆f + k)

]
+
.

Here, the [·]+ notation indicates that the firing rate is half-rectified in
order to ensure that it is non-negative. The quantity µ̃(t) is a deter-
ministic function of the tuning curve parameters. Its realization as a
random variable is therefore (trivially) formulated as:

Pr(µ(t)|λ(τ), S(t)) = δ(µ(t), µ̃(t)).

The likelihood of the observed spike train can then be evaluated directly
from p(t), as a series of Poisson trials:

Pr (n(t)|µ(t)) =
M∏
t=1

µ(i)n(i)e−µ(i)

n(i)!
.

. Tuning curve parameters: The distribution of the CG tuning curve
parameters B, A, PO, TW, as well as the blank response Bl, are
described below. The value of each of these parameters as a function
of the lag τ is assumed to be characterized by a discrete-time random
walk, whose step size is drawn from a zero-mean normal distribution.
That is, γ (τ) − γ (τ − 1) ≡ ∆γ ∼ N (0, ς2

γ ). Furthermore, because
the step sizes are independently drawn, the probability of observing a
particular parameter time course is simply the product over Gaussian
likelihoods:

Pr(γ|ς2
γ ) ∝

T∏
τ=2

exp

{−(γ (τ) − γ (τ − 1))2

2ς2
γ

}
.

. Hyperprior parameters: The variances of the random walks are dis-
tributed as a scaled inverse Chi-squared random variable with T −1
degrees of freedom:

Pr(ς2
γ ) = Inv − χ2(T − 1, s2

∆γ ).

This is one formulation of an ‘ùninformative’’ prior over the variance
of normally distributed data.

. Inference and sampling. The goal of Bayesian inference is to describe
the posterior distribution of the model parameters, given both the
observed data and our prior knowledge about the distribution of
these random variables. Using Bayes’ Rule and substituting the model
described above, this posterior is as follows:
Pr(λ(τ), ςλ) ∝ Pr(n(t), S(t)|λ(τ), ςλ)Pr(λ(τ)|ςλ, n(t), S(t))

×Pr(ςλ, n(t), S(t)).

We used MCMC sampling methods to obtain an approximation of the
posterior distribution. In particular, we use Gibbs sampling to sample
the values of the random walk parameters, and Metropolis sampling
for the tuning curve parameters.

The distributions of the tuning curve parameters do not have a simple
orm, and we therefore turn to Metropolis sampling to infer their values.
e use a jumping distribution which moves along directions in parameter

pace which correspond to individual components of the discrete cosine
ransform (DCT) of the previous sample. Briefly, the procedure is as fol-
ows. At each sampling step, we randomly choose one of the parameter
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Table 1. Symbols and definitions used.
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Each current Iint is described by a Hodgkin–Huxley equation

I int (t) = ḡM
m (t)hN (t)(V (t) − E),

where ḡ is the peak conductance, E is the reversal potential, and m(t)
and h(t) are the activation and inactivation variables. We included three
voltage dependent currents: a fast Na+ current and a delayed-rectifier K+

current for the generation of action potentials, and a slow non-inactivating
K+ current responsible for spike frequency adaptation. These active con-
ductances were modeled as described in Destexhe and Pare (1999). The
peak conductance of the non-inactivating K+-current is multiplied by the
factor 0.1 for inhibitory neurons, thereby reducing the spike-frequency
adaptation.

Table 2. Single cell properties.

Parameter Description Value

148
Symbol Definition/Units

n(t) Non-negative integer
S(t) Stimulus orientation or blank
µ(t) Spike rate
B(τ) Change in firing rate
A(τ) Change in firing rate
PO(τ) Radiance
TW2(τ) Squared radians
Bl(τ) Change in firing rate
λ(τ) = {B(τ), A(τ), PO(τ), TW2(τ), Bl(
γ (τ) ∈ {B(τ), A(τ), PO(τ), TW2(τ), Bl(τ
ςγ Variable, depending on units of γ

types (B, A, PO, TW, or blank), and we calculate the DCT of this cho-
sen parameter vector. We then choose one frequency at random, favoring
the low-frequency components (which are the ‘‘smoothest’’), and perturb
this one frequency component by a small amount. Finally, we perform
the inverse DCT to transform the parameter values back into the original
space. The result is a proposed parameter time course which is smoothly
deformed from the previous sample.

In practice, the Bayesian model was able to provide reasonable sam-
pling results on the 70/86 cells for which 400 or more recorded spikes were
available. Of these 70 cells with sufficient spikes, evidence for orientation
tuning at some delay after stimulus onset could be reliably found in 58 cells
(determined by checking whether the amplitude parameter of at least one
of the CG tuning curves was significantly above it’s ‘‘resting’’ value with a
confidence level of 95%). The remaining 12 cells were either untuned, or
(more likely) exhibited orientation-specific responses which were too noisy
for the statistical model to reliably identify. In this regard, it is noteworthy
that many of these 12 ‘ìnconclusive’’ cells exhibited low spike counts,
which resulted in greater uncertainty about their response properties and
correspondingly larger error margins in the sampling results.

Computational model
Overview. We used a two–dimensional large-scale Hodgkin–Huxley net-
work model to analyze response dynamics in relation to the orientation
map. The model was based on a previous model (Marĩno et al., 2005).
We used a grid of 50 × 50 neurons for the excitatory layer and 1/3 × 502

neurons placed at random locations in the inhibitory layer. The model thus
contained 75% excitatory and 25% inhibitory cells. All model cells received
synaptic background activity, afferent and recurrent input from AMPA,
NMDA, and GABAA synapses. Cells were arranged in a two-dimensional
grid, connecting to other cells according to a spatially isotropic connec-
tivity profile. The afferent input to each cell was given by its location in an

artificial orientation map consisting of four pinwheels (Kang et al., 2003;
McLaughlin et al., 2000; Figure 9A). Extending the model described in
Marĩno et al. (2005), time-dependence of the input was introduced: an
artificial reverse-correlation stimulus was created by generating a time
series consisting of 20 ms blocks of one of 16 orientations or ‘‘blanks’’.
For each neuron, this stimulus was then filtered with a Gaussian orien-
tation tuning curve according to the preferred orientation of the neuron.
To capture the temporal characteristics of the inputs each cell received
one out of four differently parameterized temporal kernels, which capture
the variability present in LGN and V1 simple cell responses (Alonso et al.,
2001; Wolfe and Palmer, 1998, see Figure 9B). Using this filtered input as
a time-varying firing rate, 20 Poisson input spike trains were generated
for each cell. The network was simulated for 250 s with 0.25 ms resolu-
tion. The spike output of the excitatory cells was then analyzed using the
reverse-correlation technique described above.

C

B

Description

Binned spike counts
Stimulus sequence
Mean number of spikes per 5 ms time bin
DC component of CG
Amplitude of CG
Preferred orientation/mean of CG
Tuning width/variance of CG
Blank stimulus response
Set of all tuning curve parameters
One type of tuning curve parameters
Step size of smoothness prior random walk

Single cell description. The dynamics of the membrane potential V
s described by

m

dV
dt

= −gL(V − EL) −
∑

int

I int − Isyn,

here Isyn and Iint denote the synaptic and the intrinsic voltage-dependent
urrents, gL and EL denote the leak conductance and its reversal potential,
m denotes the membrane capacitance, and t the time (for parameters
ee Table 2).
ell properties
Cm Membrane capacity 0.35 nF
gE

L Leak conductance of excitatory cells 15.7 nS
gI

L Leak conductance of inhibitory cells 31.4 nS
EL Leak reversal potential −80 mV

ackground activity
ge0 Mean excitatory background conductance 0.56 gL

gi0 Mean inhibitory background conductance 1.84 gL

τe Excitatory time constant 2.7 ms
τ i Inhibitory time constant 10.5 ms
σe Standard deviation of excitatory conductance 0.01 gL

σ i Standard deviation of inhibitory conductance 0.01 gL

Ee Reversal potential of excitatory conductance −5 mV
Ei Reversal potential of inhibitory conductance −70 mV
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All model neurons received background synaptic inputs, described by
an excitatory and an inhibitory background, conductance, each indepen-
dently following a stochastic process similar to an Ornstein–Uhlenbeck
process. The following update rule was used (Destexhe et al., 2001):

gbg(t + ∆t) = g0
bg + [gbg(t) − g0

bg] exp(−∆t/τ) + AN (0, 1),

where g0 is the average conductance, τ is the background synaptic time
constant, A is the amplitude coefficient and N(0,1) is a normally dis-
tributed random number with zero mean and unit standard deviation. The
amplitude coefficient has the following analytic expression:

A =
√

D · τ

2

[
1 − exp

(
−2

∆t

τ

)]
,

where D = 2�2/� is the diffusion coefficient.
Numerical values for the background conductances are given in

Table 2.
Synaptic input. Each neuron receives recurrent excitatory input from

Ne = 100 and recurrent inhibitory input from Ni = 50 neurons. All recurrent
connections to a given neuron were sampled based on a rotationally
symmetric Gaussian probability distribution:

P (x) =




0 for |x| = 0 (no self − connections)

1√
2πσ

exp

(
− x2

2σ2

)
otherwise,

where x is the distance in pixels and σ = 4 pixels (corresponding to
σ = 125 �m).

The synaptic currents Isyn were then computed using the following
equation:

Isyn(t) =
∑

j

ḡjgj (t)(V (t) − Ej ),

where gj and Ej are the time-dependent conductance and the reversal
potential for the j-th synapse, and ḡj is a scale factor (for values see Table
3). We distinguish between an inhibitory GABAA-like, a fast AMPA-like exci-
tatory and a slow NMDA-like excitatory component for recurrent synaptic
connections. The total excitatory postsynaptic potential is hence the sum
of a fast and a slow component with the time-integrated contribution of
each component being 70% and 30% respectively. The dynamics of the
fast excitatory and of the inhibitory synaptic conductances are described
by (Destexhe et al., 1998)

d
dt

gj (t) = −gj (t)
τj

+
∑

k

δ(t − tkj ),
where τ j is the time-constant of the j-th synapse, and where the presynap-
tic spike train with spike times tkj is described by the sum of δ-functions.
The dynamics of the NMDA-like component is given by (Destexhe et al.,
1998)

gj (t) =
∑
tk<t

1
τ1 − τ2

(exp(−tkj /τ) − exp(−tkj /τ2)),

with time constantsτ1 = 80 ms and τ2 = 2 ms.
The ḡj for an individual synapse was determined by normalizing the

values with respect to the number of synapses of the corresponding type
connected to the neuron.

Afferent input. Each neuron receives afferent input from NAff = 20
excitatory synapses. This feedforward input consists of Poisson spike
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rains generated from a time varying firing rate fAff. For a cell c, this firing
ate is given by

c
Aff(t) =

∫ t

0

rc(θ(τ))hc(t − τ)dτ,

here θ(t) is the presented orientation at time t, rc is the orientation tuning
urve, and hc is the temporal response envelope of cell c. The response
c as a function of stimulus orientation is given by a Gaussian distribution
dded to a baseline

c(θ) = 30sp/s

[
(1 − rbase) exp

(
− (θ − θc)2

2σ2

)
+ rbase

]
,

here θc is the preferred orientation of the neuron c (chosen according
o the artificial orientation map shown in Figure 9A), σ = 27.5◦ is the
rientation tuning width, and rbase = 0.1 is the baseline response. For each
ell, one of four temporal kernels h1. . . h4 was chosen with probability
.3, 0.3, 0.2, and 0.2, respectively. This randomness in the temporal input
haracteristics modeled the variability observed in the temporal responses
f LGN and V1 simple cells in cat (Alonso et al., 2001; Wolfe and Palmer,
998). The four kernels were all modeled as Gamma functions multiplied
ith a cosine, a description that has been shown to generate temporal
rofiles closely resembling those of V1 simple cells (Chen et al., 2001):

(t) =




1
�(a)τα

tα−1 exp

(
−1

t

)
cos (ωo

t t + �t ) t ≥ 0

0 t < 0

,

here �(a) is the standard gamma function. The parameters we used for
he temporal kernels are summarized in Table 4 (see also Figure 9B).
ach kernel was scaled such that, if the neurons were driven by afferent

nput of that kernel alone, this neuron would fire at 6 Hz for the preferred
rientation stimulus. In the simulations with more uniform afferent input
Figure 9D), the temporal kernels were assigned randomly to the individual
fferent input synapses instead of assigning one temporal kernel to all
ynapses of a given cell. Therefore, each cell received input from afferent
ynapses with different temporal behavior. This had the effect of making
he effective afferent input time course more similar across cells.

ESULTS
o examine the dynamics of orientation selectivity in V1, RFs were stim-
lated with a dynamic grating sequence protocol similar to those in
reviously published reports (Ringach et al., 1997a; Ringach et al., 1997b).
he spike times were reverse-correlated with the stimulus sequence to
stimate the linear relationship between stimulus orientation and firing
robability. Summing over all spikes, the probability distribution of stim-
lus orientation occurring τ ms before the occurrence of a spike was

enerated. The relative probability of different orientations eliciting spikes
s a function of time was estimated over a series of τs. In this paper, we
ill refer to these probability distribution functions simply as orientation

uning curves.

volution of the orientation tuning curve
e first describe the basic features of the tuning curves and their changes

ver time. Tuning curves were calculated at τs ranging from −20 ms
before stimulus onset), up to times exceeding the response duration
150 ms), in steps of 1–10 ms. Many of the basic features of the responses
n our population of cat V1 neurons were similar to those previously
eported using similar protocols in macaque monkey V1 neurons (Dragoi
t al., 2002; Mazer et al., 2002; Ringach et al., 1997a; Ringach et al.,
997b). As expected, the tuning curves at τs <25 ms were generally flat,

ndicating that the stimulus had not yet influenced the firing probability of
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Table 3. Parameters for connectivity and synapses.

Parameter Description Value

Connectivity
Ne Number of excitatory synaptic connections per cell 100
Ni Number of inhibitory synaptic connections per cell 50
σ Standard deviation of Gaussian connectivity σ = 4 units (corresponding to 125 �m)
Synaptic properties
Ee Reversal potential excitatory synapses 0 mV
Ei Reversal potential inhibitory synapses −80 mV
τe Time constant AMPA-like synapses 5 ms
τ I Time constant GABAA-like synapses 5 ms
τ1 Time constant NMDA-like synapses 80 ms
τ2 Time constant NMDA-like synapses 2 ms
De Excitatory synaptic delay Gaussian distributed (mean 4 ms, std.dev. 2 ms)
Di Inhibitory synaptic delay Gaussian distributed (mean 1.25 ms, std.dev. 1 ms)
Afferent synaptic strengths
ḡE

Aff Peak conductance afferent input excitatory cells 30gE
L

ḡI
Aff Peak conductance afferent input inhibitory cells 0.73ḡE

Aff

Recurrent synaptic strengths
ḡEI Peak conductance exc. → exc. cells 1.11ḡE

Aff
ḡII Peak conductance exc. → inh. Cells 1.32ḡE

Aff
ḡEE Peak conductance inh. → inh. cells 0.48ḡE

Aff
ḡIE Peak conductance inh. → exc. Cells 0.66ḡE

Aff

Figure 2. Example of orientation dynamics. (A). A series of tuning curves taken at �s ranging between 15 and 125 ms after stimulus onset, as indicated to
the right of each plot. The height of the tuning curves at each orientation represents the normalized probability that a spike was fired, plotted between −1 and
1, as indicated by the scale for the bottom curve. The solid line represents zero. (B). The timecourse of response for each orientation, from � = −20 to � = 145.
The vertical scale and the position of the reference lines are identical to those in panel A.
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There is no horizontal line that could be contained within the confidence
Figure 3. Histograms of three indices of the timecourse of responses. The
middle panel shows the time of peak response (τpeak). The top panel shows
the timepoint τdev, at which the response is half the amplitude reached at
τpeak. The bottom panel shows the time point τdec after the peak at which the
tuning curve amplitude has fallen to half of the peak value.

the neuron. Beginning at τs between 25 and 50 ms, orientation selectivity

began to emerge.

Figure 2 shows the timecourse of responses for a typical cell. Panel
A depicts the tuning curves at τs ranging from 0 at the bottom to 110 ms
at the top. For τ < 30 ms, the tuning curve is flat. At 30 ms, tuning begins
to emerge, and peak amplitude of the tuning curve is reached at 50 ms.
Thereafter, the tuning curve gradually becomes flatter, until it is almost flat
at 110 ms. The tuning width is fairly constant at all τs, but the amplitude
and the offset change over the course of the response. Panel B shows
the response for each orientation individually. In these plots, which depict
the impulse response, or the height of the tuning curve bin for one ori-
entation as a function of time, the response to each orientation can be
seen more clearly. This type of display is analogous to the peri-stimulus
time histogram, typically used to display steady-state responses to flashed
stimuli, and we therefore refer to them as PSTH plots. The response to
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Table 4. Parameters for the temporal input kernels.

Parameter Description Value

h1

τ Time constant 16 ms
α Skewness of the gamma distribution 2
ωo

t Frequency 7.2 H
�t Phase shift 0.1

www.frontiersin.org
ntation tuning in cat V1 neurons depend on location within layers and orientation maps

he preferred orientation (90 degree) begins at 30 ms, peaks at 50 ms,
nd then decays back to zero in two stages. The response to the orthog-
nal orientation is very small, but shows a small initial positive response,
ollowed by a small negative dip.

Across the population of cells recorded (n = 86), the time of the first
ignificantly selective tuning curve was 34.3 ± 4.3 ms (Figure 3). The
ime of peak response amplitude was 55.8 ± 3.2 ms. In general, the tem-
oral profile of selectivity was similar across the population (Sahani and
inden, 2003); the selectivity increased rapidly after onset, peaked for a
hort period of time (<10 ms), and then decayed back to a flat, untuned
urve. The largest variability in timing came during the declining phase
f the response (τs greater than ∼60 ms). Some neurons were only
elective for short durations (<30 ms), whereas others continued to be
elective for τs up to 150 ms. The diversity of decay dynamics is appar-
nt in the spread of the distribution of τdec, the time point at which the
esponse to the preferred orientation has relaxed to half the peak value
Figure 3C).

uning curve stability
e next assessed the degree of stability of tuning curves as a function

f time during the response. One of the difficulties in judging stability of
uning curves is to determine the confidence (or conversely uncertainty)
n parameters of the tuning curves extracted from repeated presentations
f the same stimulus. To address this issue, we have used a generative
ayesian model to define confidence bounds on the tuning curve param-
ters at each τ, under the assumptions of a Gaussian tuning curve, and
mooth changes in tuning curve parameters with time. This model has
he advantage that probabilities are assigned to all combinations of tuning
urve parameters, and thus the likelihoods of different tuning curves at
ach τ (e. g. the probability of a shift versus. no shift in preferred orien-
ation) can be directly compared. Figure 4A–4D shows an example of a
ell that showed no significant changes in tuning width or preferred ori-
ntation. The confidence bounds overlap throughout the entire response,
hus not indicating any significant change in either parameter. Intuitively,
his can be readily visualized: the parameter does not change because

horizontal line would fall within the confidence bounds at all τs. In
nother example in Figure 4 (Cell 2; Figure 4E–4H), this is not the case.
ounds for preferred orientation (Figure 4G); therefore, we can say with
onfidence that the preferred orientation changes between τ = 60 and
0 msec. Likewise, it is clear that the tuning width of Cell 3 decreases
ignificantly (Figure 4L).

With this approach we determined that a substantial number of cells
how statistically significant changes in tuning curve parameters over a
eriod of the response between the peak of the response, and τs later in
he response. Twenty-six percent (15/58) of cells showed a significant shift
n preferred orientation. The mean size of these shifts was 12 degrees,
ith a standard deviation of 6 degrees; the largest observed shift was 24
egrees. Seventeen percent of cells (10/58) showed a sharpening of tun-

ng, and 7% (4/58) showed a broadening. When observed, these changes
n tuning width typically continued to increase in magnitude throughout
he later portion of the response (as in the example cells in Figure 4). The

s for the four considered profiles

h2 h3 h4

16 ms 16 ms 30 ms
2 2 1

z·2� 7.2 Hz·2� 7.2 Hz·2� 5 Hz·2�
−0.15 0.4 −0.5
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Figure 4. Bayesian model fitting results for three example cells. A–D. Results from a cell which does not show evidence for a shift in either preferred
orientation or tuning width. (A) The stimulus-triggered average response of the cell to stimuli of different orientations. The values shown indicate the total
number of spikes which were observed to follow each stimulus orientation by a particular time lag (binned at 5 ms). (B) The expected response of the cell, as a
function of stimulus orientation and time lag, as estimated by the Bayesian model fitting procedure. Plotted values indicate the estimated change in firing rate
that is induced by each stimulus orientation at a particular time lag. (C) The time course of the preferred orientation parameter of the Bayesian model, showing
the expected value (thick line) and 95% error margins (thin lines). (D) The time course of the tuning width parameter of the Bayesian model, again showing the
expected value and 95% error margins at each time lag. (E-H) A cell which undergoes a shift in preferred orientation (in G) over the time course of its response;
conventions as in (A-D). (I-L) A cell which sharpens its tuning (in L) over the time course of its response; conventions as in (A-D).
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Figure 5. Comparison of the timecourse of selectivity in simple and com-
plex cells. (A) The average ± SEM of the OSI is plotted as a function of τ for
the population of simple (n = 26) and complex cells (n = 60).

mean magnitude of the tuning width changes (including both broadening
and sharpening) was 12 degrees, with a standard deviation of 6 degrees.
Overall, 38% (22/58) of cells showed some significant change in tuning
curve parameters. Thus, a substantial minority of cells showed signifi-
cant changes in either tuning width, preferred orientation, or both. The
changes were typically small, but reliable, indicating that subtly different
inputs during different phases of the responses can be reliably detected
with our stimulation protocol and analysis tools.

Comparison of simple and complex cells
Two main classes of RFs have been described in V1 neurons: simple
and complex. The two types are distinguished largely by the linearity
of their spatial transformation of visual input to spiking response (Hubel
and Wiesel, 1962; Movshon et al., 1978; Skottun et al., 1991). Figure 5
shows the average timecourse of the OSI for the populations of simple
and complex cells. The timecourses differ in three aspects. First, simple
cells are more selective, seen as a higher peak OSI, as is found using
standard steady state recordings (Heggelund and Albus, 1978; Leventhal
and Hirsch, 1978; Ringach et al., 2002). Second, the time of peak OSI is
earlier for simple cells (44 vs. 54 ms). Third, the baseline OSI is higher
for simple cells. Otherwise, the evolution of selectivity is similar between
the two cell classes. The earlier peak in selectivity of simple cells is
consistent with the hierarchical description of information flow through
V1: simple cells predominate at the input stages of V1 whereas complex
cells are in the majority at later stages. There is a wealth of anatomical
and physiological data supporting this arrangement (Alonso and Martinez,
1998; Ferster and Lindstrom, 1983; Gilbert, 1977; Martin and Whitteridge,
1984).
Dependence on cortical depth
Inputs from the LGN impinge mostly in layer IV, but also project to layer
VI and lower layer III (Douglas and Martin, 1991; Ferster and Lindstrom,
1983; Humphrey et al., 1985). Layer IV neurons, in turn, send strong pro-
jections to the superficial layers, which send strong projections deeper
layers (Gilbert and Wiesel, 1979). It is therefore to be expected that the
timecourse of responses might be subtly different in the different corti-
cal layers, due to the synaptic latencies at each stage of the circuit. To
test whether reverse-correlation can discern these different ‘‘stages’’ of
visual processing, and whether orientation dynamics are layer specific,
the dynamics of tuning properties were analyzed separately for different
layers. Due to the uncertainty of the exact laminar position of our record-
ing sites, this was done by pooling those neurons estimated to be in the
supragranular layers (<600 �m), the middle layers (600–1200 �m) and
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ntation tuning in cat V1 neurons depend on location within layers and orientation maps

he infragranular layers (>1200 �m). The assignment to laminar groups
s corroborated by an analysis of the F1/F0 ratio as a function of depth; the
ighest ratio of simple cells is found between 600 and 1200 �m, providing
upport for the assignment of laminar location on the basis of microdrive
epth readings (data not shown).

Figure 6 shows the average tuning curves and timecourses from the
hree laminar groups. Figure 6A shows the tuning curves at a series of τs,
nd Figure 6B shows the PSTH plots for each orientation. As expected,
everal subtle patterns can be discerned. First, the time of peak response
s slightly earlier for cells in the middle layers than for the superficial and
eep neurons. Second, the responses of middle layer neurons are slightly
horter, the responses of deep layer neurons are substantially longer, and
he responses of superficial layer neurons are intermediate in duration.
he median peak time for middle layers is 45.5 ms, 7.5 ms earlier than the
edian peak time for the superficial group, and 5.5 ms earlier than for the

eep layers. These differences can be seen more clearly in the expanded
lots of the responses to the preferred and orthogonal orientations (Figure
C and 9D). The intermediate peak time for the deep layers is most likely
ecause it comprises a mixture of layer VI, which receives direct LGN input,
nd layer V, which only receives multi-synaptic inputs from the LGN. The
esponse decay is also different in the different layers, with the middle
ayers falling off the fastest followed by the superficial and then the deep
ayers. Thus, the reverse-correlation procedure is capable of resolving
mall timing differences between neurons in different laminae.

Other than these differences in the timing of responses, the overall tun-
ng characteristics of all three groups are fairly similar. The tuning widths,
he OSI and the general tuning curve shape are nearly indistinguishable
or the three groups. There is no evidence of substantial changes in the
uning curve shape over time for any of the laminar groups. Suppression
t the orthogonal orientation is slightly earlier and larger in the middle

ayers than in the other two groups (Figure 6D). The timing difference
s consistent with overall faster responses resulting from strong direct
halamocortical projections to middle layer neurons. The larger size of
uppression could reflect the strong inhibition that both feedforward and
ecurrent models find to be necessary to suppress thalamocortical inputs
t orthogonal orientations. Overall, the analysis of orientation dynamics
t different cortical depths is consistent with known differences in the
ircuitry.

ependence on location within the orientation map
e also tested the hypothesis that neurons situated near pinwheel centers

n the map of orientation preference have different dynamics than neurons
ar from pinwheel centers. Neurons near pinwheel centers receive intra-
ortical inputs from a wider range of orientations (Schummers et al., 2002;
ousef et al., 2001) than neurons in the center of orientation domains.
uning curves of pinwheel center and orientation domain neurons were
nalyzed separately to determine if any features of the tuning curves
eveal the different inputs they receive. Figure 7A shows the average
uning curves of the two populations over the timecourse of the response.

he tuning curves demonstrate, as with previous measurements of steady
tate responses (Dragoi et al., 2001; Maldonado et al., 1997; Schummers
t al., 2002), that cells have equally sharp tuning at pinwheel and orien-
ation domain locations. Furthermore, there is no evidence of instability,
hifts, multiple peaks, or any other gross differences in tuning in the cells
ear pinwheel centers. For all τs up to 45 ms, the average tuning curves
f the two populations are nearly indistinguishable. The first small differ-
nce is that the peak of the tuning curve for orientation domain neurons

s slightly higher at τ = 45. This is seen more clearly in the PSTH plots
hown in Figure 7B. Given the normalization procedure applied to these
lots, the explanation for this difference is that there is more spread in
he time of the peak response in pinwheel neurons. Since each neuron is
ormalized to the maximum response at any τ, if all neurons peaked at
he same time, the peak of the average plot would be one. Thus, the dif-
erence in the amplitude of the peak response is indicative of a spread in
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Figure 6. Average dynamics of tuning as a function of laminar position
n = 18), middle layers (600–1200 µm; n = 40) and deep layers (>1200 µm; n
±2 SDs have been omitted for clarity. (B) The timecourse of responses for th
the responses to the preferred orientation (90 degrees), to highlight the differ
of the responses to the orthogonal orientation (0 degrees).
peak time, rather than a difference in response magnitude. This suggests
that there is more spread in the timing of responses in the population of
neurons in the pinwheel group.

To explore this possibility in more detail, we examined the timecourse
of responses for each cell individually. Figure 8 plots the PSTH plot for the
preferred orientation of each orientation domain cell (left) and each pin-
wheel cell (right). It is clear from visual inspection of these plots that there
is indeed more variability in the timing of responses in the population of
pinwheel neurons. This impression is confirmed by a quantification of the
variance as a function of time in the population of cells in the pinwheel and
orientation domain groups. Figure 8B plots the timecourse of variance for
pinwheel (red) and domain (blue) cells for each stimulus orientation. For
the preferred orientation, higher variance in the pinwheel population was
most prominently following the peak response, during the decay phase.
For all orientations, the variance was higher in pinwheel cells for the entire
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Average tuning curves of neurons recorded in superficial layers (<600 µm;
). The scaling and conventions are the same as in Figure 2. Lines representing
ee laminar groups plotted in panel A. (C) Expanded view of the PSTH plot of
s between the different laminar groups. (D) Expanded view of the PSTH plot
esponse duration, particularly after the peak of the response. This sug-
ests that the timing in orientation domain cells is much more uniform,
hile the timing of pinwheel center cells is much more heterogeneous.

o examine the possibility that the differences in the timing of pinwheel
nd domain responses are due simply to differences in the distributions of

aminar position in the two groups, we plotted the differences in timing for
ach layer independently. Figure 8C shows the timecourse of the response
o the preferred orientation as a function of map location (columns), and
aminar position (rows). There is more variability in pinwheel neurons in
ll three layers. Despite this variability, the main laminar differences of
arlier peak time in middle layers, and prolonged response in deep lay-
rs are apparent in both pinwheel and domain populations. Thus, laminar
osition seems to determine the average timing of responses, and map

ocation influences the variability of response timing about these means.
hese analyses suggest that despite having similar mean population tun-
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Figure 7. Orientation dynamics for pinwheel center and orientation doma
(red; n = 31) and orientation domain neurons (blue; n = 55) is plotted. The v
normalized individual tuning curves, with zero representing the blank respons
black line represents the response to the blank stimulus for each τ. Thus, p
whereas points below the dashed line represent suppression of firing. (B) Ave

ing curves, there is substantially more individual variability in the timing of
enhancement and suppression that shape the tuning curves of pinwheel
cells. One potential explanation for this effect is the local cortical net-
work surrounding the sites classified as pinwheel center, which are more
heterogeneous than those in orientation domains (Marĩno et al., 2005).

Modeling the differential response signatures close to
pinwheels and in the orientation domain
To elucidate the mechanisms behind the observation that pinwheel cells
show similar average response dynamics but have much higher variability
than their orientation domain counterparts, we simulated a large-scale
neural network of a patch of V1 containing four pinwheel centers (Figure
9A). To realistically model the timecourse of visual responses, the inputs
to the model were filtered using temporal kernels matched to the impulse
response functions of LGN cells (Figure 9B). The strength of the recurrent
connections was chosen such that excitation and inhibition were balanced
with one another and provide significant input to the model neurons, as

is necessary to account for the subthreshold membrane potential and
conductance tuning in pinwheel and orientation domain neurons (Marĩno
et al., 2005).

The timecourse of the activity of the model neurons captures the
onset and the phasic part of the neuronal responses well (Figure 9C
and 9D, top). The decay phase is less well described: the real neurons
show a small second peak (100 ms) and a plateau of sustained activ-
ity following their initial decline; the model neurons, on the other hand,
decline further to below baseline. Nevertheless, as in the real neurons,
throughout the whole timecourse, the average responses of pinwheel
and orientation domain neurons are similar. This is despite the fact that
cells close to a pinwheel center receive recurrent input from cells with
a much broader range of preferred orientations. However, the difference
in the local circuitry does have an effect on the variance of the neuronal
responses: the variance of the pinwheel cell responses in the model is
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urons. (A) For each τ, the average tuning curve for all the pinwheel neurons
al scale is the same for all τs. The tuning curves represent the average of
d 1 representing the maximal response at all τs and orientations. The dashed

in the tuning curve above the dashed line indicate enhancement of firing,
PSTH plots for pinwheel and orientation domain cells.

arger than that in the orientation domain (Figure 9D, middle), which is
n fact, like for the experimental data, true for all orientations (data not
hown). Unlike for the real neurons, this larger variance in pinwheel neu-
on responses can be seen in the model only up to 90 ms after stimulus
nset.

Thus, the model is able to capture the main features of the responses
f the real neurons with the exception of the late part of the response. The
uppression of the model neurons following the phasic part of the response
an be linked to the spike-frequency adaptation in the model; removal
f this feature does not, however, produce the second response peak,
bserved in the real data (not shown). Thus, the discrepancy between
odel and real neurons during the late phase of the response is likely

o be found in the models simplicity; because of its restriction to the
ocal recurrent network it does not incorporate any long-range horizontal
nd feedback connectivity, which may cause sustained activation of the
eurons. Alternative explanations, such as global oscillatory behavior of
ortex in response to the flashed grating stimulation are also difficult to
eproduce in a simple one-layered network. Despite the simplicity of the

odel, the responses of model and real neurons are in good qualitative

greement during the first 90 ms.
The more variable responses of the pinwheel neurons may appear

rivial at first glance, since the recurrent inputs to the pinwheel cells
re less uniform. However, on closer inspection we find that rather than
aving the non-uniform recurrent connections of the pinwheel cells intro-
ucing variability into their responses, what actually happens is that the
ore uniform responses of orientation domain cells provide smoothing of

he temporal variability already present in the input to the V1 cells. This
an be seen in simulations where all network neurons received similar
nput: all cells then did in fact show smaller variance in their responses,
nd the difference between pinwheel and domain disappears (Figure 9D,
ottom).

The cause of the differential smoothing effect in pinwheel and orien-
ation domain can be observed directly by assessing the mean excitatory
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Figure 8. Response timing is more variable near pinwheel centers. (A)
neurons (left; n = 55) and pinwheel center neurons (right; n = 31). (B) Plots of
orientation. Pinwheel neurons are plotted in red and orientation domain neuro
position and orientation map position. Orientation domain cells are plotted in t
cells are plotted in blue in the top row, middle layer cells are plotted in red in
input conductances received from the different sources by pinwheel and
orientation domain neurons as a function of stimulated orientation (Figure
9E). The relative contribution of feedforward connections to a cell’s inputs
of the preferred orientation is far greater in the pinwheel than in the orien-
tation domain. This means that the afferent input drives pinwheel neurons
more effectively than orientation domain neurons, which receive strong
recurrent excitation. Thus, any variance present in this feedforward input
will have a more dominant effect on the cells response.

Factors other than the uniform afferent input can also be seen to
alleviate the location dependence of the response variance. In particular,
parameters which slow down the responsiveness of the network (like
increasing the proportion of NMDA synapses) result in a decrease of the
difference between pinwheel and orientation domain neurons. This is
intuitive: NMDA synapses have time constants of a magnitude similar to
the pulse-length received from the slowest population of afferent inputs.
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plots of responses to preferred orientation of individual orientation domain
lation variance in response amplitude as a function of time for each stimulus
blue. (C) PSTH plots of individual neurons, grouped as a function of laminar

ft column, and pinwheel center neurons in the right column. Superficial layer
iddle row and deep layer cells are plotted in green in the bottom row.
hus, they effectively prolong the fast afferent inputs, making them more
imilar to one another.

One may hypothesize that other parameter manipulations may also
esult in the variance differences between pinwheel and orientation
omain neurons, not requiring the variability to be present in the afferent

nput already. However, parameter changes, which may appear well-suited
or introducing more variance into pinwheel neurons, such as varying the
fferent input strength for different model cells or using a less symmet-
ic orientation map for assigning the preferred orientation of the afferent
nputs, did not lead to larger variance in the pinwheel neurons (data not
hown). Thus, the temporally variable afferent input appears essential to
eproducing the behavior of the real neurons in the model.

Taken together, the network model with balanced excitation and
nhibition was able to reproduce both, the observed similar time-
ourse and different variability of the responses of cells near and far
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Figure 9. Mean temporal response and variance of response timing in the network model of pinwheel and orientation domain cells. (A) The artificial
orientation map used in the model. (B) Temporal kernels of inputs to the model neurons. See Methods for details. (C) Experimental data. The mean temporal
response (top) and variance (bottom) across cells is plotted in red for pinwheel neurons and in blue for orientation domain neurons. (D) Plots of mean temporal
response (top) and variance (middle) in response to preferred orientation for the network model. Experimental data and model responses both have similar mean
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total
temporal response of pinwheel and orientation domain cells. In the late part
higher than in orientation domain cells. The bottom panel shows the variance
mix of the different afferent cell types (i.e. temporal kernels). Note that in t
for pinwheel and orientation domain cells. Black lines on top of the figures in
domain neurons. Significance was assessed using a bootstrap method, rand
compare the variance pinwheel and orientation domain neurons’ responses fo
of the variance of pinwheel neurons being larger than that of orientation dom
applied the same method, sampling a subset of 15 pinwheel and 15 orientati
orientation domain neurons (left panel, blue) and pinwheel neurons (right pan
and orientation domain cells. For the preferred orientation, the strength of the

neurons. For this analysis, the network received time-invariant input, simulating a

from pinwheel centers. The results indicate variability already present
in the afferent input as a likely cause of the variability in pinwheel
neurons.

DISCUSSION
We have investigated the influence of local circuit constitution on the
dynamics of orientation tuning in cat V1. While the general features of
response timing in our data are similar to those previously reported, we
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e response, the variance in the time course of pinwheel cells is significantly
the same model network, if individual neurons all received as input a similar
ase, the variance is much lower and there is no difference in the variance
te significantly higher variance in pinwheel neurons compared to orientation
choosing 50 pinwheel and 50 orientation domain neurons to compute and

h time lag τ, repeating this procedure 1000 times to estimate the probability
neurons, regarding it significant above 95%. For the experimental data, we
main neurons at each repetition. E. Tuning of the excitatory conductances of
d). The afferent input (dotted lines) has the same strength for both, pinwheel
recurrent excitatory conductance (solid lines) is higher in orientation domain

constant visual stimulation with a single orientation.

o find that a large proportion of cells showing clear changes in tuning
urve parameters during the response. We looked for subtle differences
n response timing which reflect known differences in the inputs to dif-
erent circuit locations. We found differences in timing in different cortical
ayers, and between simple and complex cells, all consistent with the
nown circuitry. We have also found that while the average timecourse of
esponses is similar in orientation domains and pinwheel centers, there is
uch more variability in the timing at pinwheel centers. Using a realistic,

arge scale model incorporating orientation map topology, we demon-
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strated that this previously unreported phenomenon is the natural result
of a regime with balanced excitation and inhibition receiving LGN inputs
with diverse temporal kernels.

General features of orientation tuning dynamics
The general features of the timing of tuning are similar in many respects to
previous analyses of reverse correlation with dynamic grating stimuli from
both cats and monkeys (Chen et al., 2005; Dragoi et al., 2002; Gillespie
et al., 2001; Mazer et al., 2002; Nishimoto et al., 2005; Ringach et al.,
2003). Previous studies have differed in whether they found changes in
tuning curve parameters over the course of the response. Several stud-
ies of orientation tuning dynamics have noted large changes in either
preferred orientation or tuning width (Chen et al., 2005; Ringach et al.,
1997a; Sharon and Grinvald, 2002; Shevelev et al., 1993; Volgushev et al.,
1995), whereas several others have found stable tuning curve parameters
(Celebrini et al., 1993; Dragoi et al., 2002; Gillespie et al., 2001; Mazer et
al., 2002; Nishimoto et al., 2005). Using sophisticated Bayesian analysis,
we demonstrated that in fact both phenomena occur in cat V1, with a
large minority of cells showing significant, albeit small, changes in either
tuning width or preferred orientation.

Influence of cell class and laminar position
The dynamics of orientation selectivity revealed differences in the time to
peak selectivity between simple and complex cells. The most likely expla-
nation for this finding is that simple cells receive strong direct thalamic
inputs, whereas the majority of the drive to complex cells is at least one
synapse removed from direct thalamic input. This is not surprising given
that anatomical and cross-correlation studies have provided strong sup-
port for such an arrangement (Alonso and Martinez, 1998; Douglas and
Martin, 1991).

The inputs to, and intrinsic connections within, different cortical layers
are stereotypically different (Douglas and Martin, 1991). Direct inputs from
LGN relay cells are limited to layers IV, VI, and lower layer III. Visually driven
inputs to neurons outside of these layers are therefore necessarily delayed
by at least one synapse, relative to the input layers. The exact laminar
positions of the neurons recorded were not histologically reconstructed,
but laminar location could be reasonably approximated by the depth read-
ings of the microdrive. The accuracy of this method is corroborated by the
higher probability of finding simple cells between 600 and 1200 �m. The
grouping used here was chosen such that the ‘‘superficial’’ neurons were
generally above the extent of LGN arbors, and therefore not thalamically
driven, the ‘‘middle’’ neurons were likely to be within the reach of the main
LGN arbors that target layer IV, and the ‘‘deep’’ neurons were likely to be
below this main LGN projection zone, but may have received some direct
projections via collateral projections to layer VI. Although these groupings
are necessarily rough approximations, the differences in response timing
among the groups bear out the accuracy of the estimates.

The major difference found between neurons in different layers is the
timing of responses. Neurons in the middle layers on average had peak
responses several milliseconds before those in the superficial or deep

layers. The duration of responses was also shorter in the middle layers,
and substantially longer in the deep layers. These differences are broadly
consistent with the degree of thalamic input to the different layers; i.e.,
neurons in layers with more thalamic input respond faster. Of course,
there are laminar differences in the proportions of simple and complex
cells; unfortunately, the number of cells recorded does not allow a robust
analysis of cell types in different layers. Regardless, the conclusion that
more thalamic drive results in faster responses appears to hold. Together,
these analyses demonstrate that different patterns of synaptic inputs to
different cortical compartments have clear signatures in the dynamics of
orientation tuning.

Orientation dynamics relative to location in the orientation map
The similar degree of orientation selectivity in pinwheel center neurons and
orientation domain neurons is consistent with previous studies of steady
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tate orientation tuning that have also found no difference in firing rate
uning curves near pinwheel centers (Dragoi et al., 2001; Maldonado et
l., 1997; Schummers et al., 2002). Previous studies have suggested that
eurons near pinwheel centers receive subthreshold inputs at all orienta-
ions (Schummers et al., 2002). It might therefore have been expected that
ue to the continuous stimulation during the reverse-correlation stimulus
rotocol, neurons would be constantly depolarized and otherwise sub-
hreshold inputs would be elevated above threshold, leading to broader
uning in this stimulus regime. Our results suggest, though, that the filter-
ng of inputs at non-optimal orientations occurs prior to spike generation,
egardless of the constant synaptic bombardment induced by the flashed
rating stimulus. This is particularly important for neurons near pinwheel
enters, where inhibition is critically required to balance strong excita-
ion at non-preferred orientations (Marĩno et al., 2005; Schummers et al.,
002). We have previously shown that the tuning of inhibitory conduc-
ances in pinwheel center neurons is nearly identical to the excitatory
onductances (Marĩno et al., 2005). This balance of excitation and inhibi-
ion ensures that suprathreshold tuning remains sharp even in the face of
ontinuous visually-evoked inputs.

The higher variability in response timing near pinwheel centers proba-
ly reflects difference in the local cortical circuits at those sites compared
o orientation domains. There is evidence that the local circuit connec-
ivity is isotropic in V1, and thus, in orientation domains, local inputs are
ntegrated from a patch of cortex that contains a representation of only a
arrow range of orientations. All cells classified as orientation domain cells
ave a similar pattern of local inputs arising from neurons with a narrow
ange of preferred orientations. By contrast, the circuits near pinwheel
enters are considerably more varied (Marĩno et al., 2005; Schummers et
l., 2004; Schummers et al., 2002; Yousef et al., 2001). In the network
odel, we implemented such a pattern of local recurrent connectivity, and

n our simulations, we were able to confirm that this higher variability can
eproduce the observed larger response variability near pinwheel centers.
ince the network’s input is matched to the output of LGN neurons, strictly
peaking the model only represents something akin to the input layers of
1. However, the basic result easily be extended to other layers of V1.
hese, too, will receive strong visually driven input, likely originating in V1
imple cells. Such quasi-afferent input mediated through layer IV simple
ells—while in timecourse shifted compared to LGN—nonetheless are
ery similar in their temporal characteristics to those of LGN cells (Alonso
t al., 2001; Wolfe and Palmer, 1998). Thus, the results regarding simi-

ar timecourses in pinwheel and orientation domain as well as regarding
ifferential variance generalize.

It is worth noting that the circuit variability alone is not sufficient to
ccount for the differential output variability. Rather than actually introduc-

ng this variability through variability in pinwheel cells’ connectivity, the
niform recurrent connectivity in the orientation domain removes vari-
bility by integrating over the different inputs of their neighbors. This
bility is reflected in the fact that the relative contribution of feedfor-
ard connections to a cell’s inputs of the preferred orientation is larger

or pinwheel cells than for orientation domain cells. The variability in

he temporal response properties is already present in the responses of
GN neurons (Alonso et al., 2001; Wolfe and Palmer, 1998) and remains
resent in the input receiving (simple) cells of V1 (ibid.). The recurrent
onnectivity of V1 thus not only provides a shift-invariant representa-
ion in the complex cells (Shams and von der Malsburg, 2002), but
lso appears to provide a representation that is uniform in its temporal
ynamics.

In sum, we demonstrate that reverse correlation analysis can detect
ubtle differences in neuronal responses that reflect their differential posi-
ion in the local circuitry of cortex. Besides the known response differences
etected, we also provide evidence for differing variability of the responses
epending on location in the orientation preference map. We were able to
emonstrate that this differential variability is consistent with a strongly
ecurrent network with balanced contributions of recurrent excitation and
nhibition. Such a network has previously been implicated as prerequi-
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site to account for orientation tuning observed in visual cortex (Marĩno et
al., 2005). Together, these studies highlight the importance of knowledge
about the local network connectivity in understanding and modeling the
orientation tuning in visual cortex.
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