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permit accurate estimation of error rates (e.g., genes were selected 
by “fold-change” alone).

An alternative approach to surveying author-reported “hit lists” 
is to perform a more formal meta-analysis, in which the results are 
combined statistically to evaluate changes in expression in each 
gene (Borenstein et al., 2009). This would be appropriate for cases 
where p-values or effect sizes are reported for each gene. Because 
in general researchers only report such values for positive fi nd-
ings, performing a meta-analysis of gene expression microarray 
data typically involves reanalyzing the expression data, rather than 
simply using the published summary statistics. Once one is con-
templating reanalyzing all the data, we might ask if the data can 
be directly combined in a single analysis. Such an analysis should 
be more powerful, if inter-laboratory variation can be corrected 
or accounted for. Meta-analysis approaches have been successfully 
applied to cancer data in the past (Rhodes et al., 2004; Grützmann 
et al., 2005; Chan et al., 2008), but so far have not been utilized for 
brain injury data.

In this paper, we describe two different types of combined analy-
sis of kindling in rat hippocampus. We used both a “traditional” 
meta-analysis method as well as a method for directly combin-
ing the data using analysis of variance (ANOVA). We show that 
in addition to confi rming many essential features of the effect of 
kindling in agreement with Wang et al. (2009) and other review 
studies, meta-analysis uncovers many differentially expressed genes 
which were not reported in the original studies (or review articles 
summarizing expression studies), and which are not statistically 
signifi cantly expressed in any individual study. We conclude that 
combined data analysis is a useful tool for making effi cient use of 

INTRODUCTION
Epilepsy is a common disorder characterized by uncontrolled neu-
ronal activity and behavioral seizures. Because millions of individu-
als are affected by epilepsy, there is intense interest in understanding 
how epilepsy develops. For many years researchers have used animal 
models as a tool for studying the basic mechanisms of epilepsy. In 
the kindling model, a brief exposure to a neurochemical or other 
insult results in development of epilepsy with a delay of several 
days to weeks (McNamara et al., 2006). As is the case for many 
areas of neurology, these models have been investigated using high-
throughput molecular methods such as gene expression microar-
rays, often using the hippocampus as the brain region of study 
(Zagulska-Szymczak et al., 2001). The main topic of this paper 
is the combined or meta-analysis of such data sets, in an effort to 
increase our understanding of the molecular changes occurring in 
the hippocampus of rodents undergoing kindling protocols.

Recently, Wang et al. (2009) reviewed 18 expression studies of 
kindling, using comparisons of the differentially expressed gene 
lists reported in those studies. They identifi ed 72 genes that were 
reported as differentially expressed in more than one study, in 
contrast to nearly 2000 reported in any study. A wide range of 
biological processes were implicated, including cellular metabolism, 
immune response and synaptic transmission. Wang et al. (2009) 
concluded that this apparent poor agreement between studies was 
a cause of some confusion in the fi eld, rather than resulting in 
substantial progress, and recommend that experimental designs be 
improved. As pointed out by Wang et al. (2009), one limitation of 
such a review was that each study used different criteria for selecting 
genes. Some of the approaches used in individual studies do not 
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accumulated expression data, and these methods can be fruitfully 
applied to the analysis of epilepsy.

MATERIALS AND METHODS
MICROARRAY DATASETS
We searched two microarray data repositories, Gene Expression 
Omnibus (GEO) (Barrett et al., 2007) and ArrayExpress (Parkinson 
et al., 2009), for datasets related to chemically induced seizures/
brain-injuries. Focusing our search on rat as experimental animal, 
we identifi ed only two publicly available datasets. We further per-
formed an exhaustive literature search and identifi ed a number of 
papers presenting relevant data not in the public repositories, and 
were able to obtain data directly from the authors for two additional 
studies. In total we identifi ed two datasets on chemically-induced 
kindling we considered highly comparable for studying the effects 
after 24 h, and three studies for examining effects 10 days following 
treatment. The studies are summarized in Table 1, and some details 
about the datasets are given below.

Dataset GSE4236 was described by Wilson et al. (2005). The 
purpose of the study was to compare differences in gene expression 
after kainic acid (KA) treatment between mature (P30) and imma-
ture (P15) rats. The brain samples were taken from hippocampus 
at fi ve different timepoints after KA administration: 1, 6, 24, 72, 
and 240 h. There are three biological replicates for each age group, 
timepoint and treatment (KA and control), resulting in 60 samples 
all together. For the purpose of our analysis we used only data for 
P30 rats and for two timepoints, 24 and 240 h.

Dataset GSE1833 (Koh et al., 2005) was produced for the 
purpose of studying an effect of the environment on KA-treated 
rats. Hippocampus samples of P20–P25 old rats were extracted 
10 days after KA treatment. There are three biological replicates 
for each combination of treatment (KA, control) and environment 
(enriched, control), resulting in 12 samples. We used only samples 
corresponding to control environment.

Dataset “Tang” was obtained directly from the authors. Tang et al. 
(2002) studied gene expression changes after various brain insults: 
ischemic stroke, intracerebral haemorrhage, kainate-induced sei-
zures, insulin-induced hypoglycemia, and hypoxia. For KA-treated 
and control animals parietal cortex was used for microarray experi-
ments, which were performed 24 h after the treatment. The dataset 
contains 27 samples in total of which we used only kainate treated 
(3) and controls (3).

The fi nal dataset, “Elliott”, was described by Elliott et al. (2003) 
and was obtained directly from the authors. The study aimed to fi nd 
genes that are similarly regulated during normal nervous  system 

development and epileptogenesis. The seizures were induced using 
pilocarpine injection, while control animals were treated with 
saline. The samples were taken from dentate gyrus 14 days after 
pilocarpine treatment. The total number of samples is 12 of which 
we used only pilocarpine treated (3) and controls (3).

The datasets were combined according to matching timepoints: 
GSE4236 (24 h) and Tang datasets were used for the meta-analysis 
of gene expression 24 h after KA-treatment and GSE4236 (240 h), 
GSE1833 and Elliott datasets were combined for a 240+-h time-
point. The probesets for each array design (Affymetrix U34A and 
230) were mapped to known and predicted genes using the UCSC 
GoldenPath annotation database (Hinrichs et al., 2006) essentially 
as described by Barnes et al. (2005). The 24-h meta-datasets con-
tained expression values from GSE4236 and Tang datasets for all the 
genes that had specifi c Affymetrix U34A probe sets (i.e., aligned to 
only one place in the genome). The 240+-h dataset, which combined 
datasets from two different platforms, contained the expression 
values from GSE4236, GSE1833 and Elliott datasets for all the genes 
that were present on both platforms.

For genes represented by more than one probe set, a fi nal gene 
expression value was computed by averaging the expression values 
of all the probesets that mapped to that gene. The original datasets 
were pre-processed by the authors and we did not do any further 
processing before assembling the meta-datasets except for log

2
 trans-

form for the datasets where the expression values were on the linear 
scale. Finally, the meta-datasets were quantile normalized across all 
samples to help correct for any scale differences between datasets.

REFERENCE GENE LIST
For evaluation purposes, we compiled a list of genes that have been 
previously linked to epileptogenesis or excitotoxic-brain injury by 
studies of gene expression. We used four review articles (Zagulska-
Szymczak et al., 2001; Lukasiuk and Pitkänen, 2004; Lukasiuk et al., 
2006; Wang et al., 2009) that provide lists of relevant genes based 
on the existing literature. Zagulska-Szymczak et al. (2001) reviewed 
the spatio-temporal patterns of gene expression in hippocampus 
and listed genes found to be induced in all hippocampal subfi elds 
after KA injection in previous studies. The list is focused on genes 
up-regulated within early to immediate time interval after KA 
injection (usually the fi rst 24 h). Lukasiuk and Pitkänen (2004) 
reviewed nine articles that describe use of microarray experiments 
for studying temporal lobe epilepsy in humans or in animal models. 
The gene list they assembled contains the genes that are identi-
fi ed as differentially expressed in at least two of the studies. The 
follow-up study reviewed 15 papers describing global analysis of 

Table 1 | Microarray datasets used in the study. The microarray experiments were conducted on two different strains of rats: Long Evans (LE) and Sprague 

Dawley (SD). The total number of samples in the dataset is shown, while the number in parenthesis indicate how many samples were used for the meta-

analysis. All experimental animals were male and the administrated doses of excitotoxins were 10 mg/kg for KA and 340 mg/kg for pilocarpine.

Dataset Authors Species and  Microarray  Number of  Age of  Timepoints Experimental

  strain platform samples animals  factors

GSE4236 Wilson et al. (2005) Rat(LE) Affy U34A 60 (12) P15 and P30 1, 6, 24, 72, 240 h KA treatment and age

GSE1833 Koh et al. (2005) Rat(LE) Affy 230 12 (6) P20–P25 10 days KA treatment and environment

Tang Tang et al. (2002) Rat(SD) Affy U34A 6 Adult 24 h KA treatment

Elliott Elliott et al. (2003) Rat(SD) Affy U34A 6 Adult 14 days Pilocarpine treatment
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gene expression in two models of epileptogenic brain insult: status 
epilepticus and traumatic brain injury (Lukasiuk et al., 2006). The 
gene list contains genes that were reported to have altered expres-
sion in at least three studies. Finally, the most recent review article 
(Wang et al., 2009) addressed global expression studies of mesial 
temporal epilepsy that arises in hippocampus, parahippocampal 
gyrus and amygdala. The authors compared results published in 
18 different studies that used various epileptogenesis models and 
methodologies for gene expression analysis and assembled a list of 
genes reported to be regulated in two or more studies.

Our reference gene list was created by taking a union of these 
four published gene lists. The number of genes in each original 
list was 43, 48, 70 and 69, in the order they were described above. 
There were a number of genes that were present on more than one 
gene list, partially due to fact that the same papers were reviewed 
multiple times. A large number of gene symbols in the original 
lists were outdated and we had to consult sources such as the Rat 
Genome Database (Twigger et al., 2007) to resolve identifi ers. For 
gene symbols and names that were ambiguous (referred to more 
than one gene) we checked the cited primary publications for a 
more specifi c reference. There were 14 gene names or symbols 
which we were not able to resolve.

The fi nal list of genes contained 183 rat genes that have been 
found to be differentially expressed during epileptogenesis in 
more than one study. The complete list is given as Supplementary 
Material. Out of 182 genes, there are 42 that do not have probes on 
the Affymetrix U34A platform, 40 that do not have probes on the 
Affymetrix 230 platform, 4 that are mapped by nonspecifi c probes 
(which have multiple alignments in the genome) on the Affymetrix 
U34A platform, and 3 genes for which expression was below back-
ground level on the Affymetrix 230 platform. After removing these, 
there are 136 and 130 genes from the reference list that could be 
tested for altered gene expression at 24- and 240+-h timepoint, 
respectively, in the present study.

META-ANALYSIS
We used two approaches to analyze data for each timepoint. The 
fi rst approach, Fisher’s meta-analysis (Fisher, 1925, 1948), is a 
standard, commonly used method that combines results from 
multiple independent tests all having the same null hypothesis 
(H

0
). The method combines p-values resulting from the statisti-

cal analysis of individual datasets into one test statistics (F) in the 
following way:

F p
i

k

i= −
=
∑2

1

ln( )
 

(1)

An important characteristic of Fisher’s test statistic is that under 
the null hypothesis it has a χ2 distribution and thus p-values for F 
can be computed from that distribution using 2k degrees of free-
dom, where k is the number of tests being combined. As usual, H

0
 

is rejected if p-value is less than the selected signifi cance level α, 
which in our case is 0.05.

For the purposes of our analysis p-values that go into computa-
tion of F statistic are computed for each individual dataset using 
Welch’s two-sided t-test for unequal variance. The null hypothesis 
tested for each gene in the dataset is that the mean for treated 
 samples is the same as the mean for control samples. Signifi cant 

p-values (p-value <0.05) indicate that there is differential  expression 
between the two treatments, however, the direction of expression 
change is not considered. In order to compute meaningful F statis-
tics we can combine p-values only if their corresponding t-statistics, 
which indicate direction of expression change, are of the same 
sign. If the t-statistics for a gene are not of the same sign for all 
of the tests we assign value of 0.1 to F deeming it insignifi cant in 
the meta-analysis. The resulting p-values were further adjusted for 
multiple testing using the q-value method (Storey and Tibshirani, 
2003) to control the false discovery rate.

The other meta-analytical approach we used was analysis of 
variance (ANOVA) using a fi xed-effect model (FEM). FEM attempt 
to partition the observed variance between samples into compo-
nents due to different explanatory variables (factors). The effects 
are considered “fi xed” if they are associated with certain, specifi cally 
selected, repeatable levels of experimental factor (e.g., treatment 
with levels “kainate” and “control”). In this study we treated “labo-
ratory” as a fi xed effect because we only had two studies per condi-
tion. Were more studies used, a random effects model would likely 
be more appropriate for modeling variation among laboratories. 
Our FEM model can be expressed as follows:

y
ij
 = α

i
 + β

j
 + ε

ij
, i = 1,…,n, j = 1,…,m, ε

ij
 ∼ N (0,σ2)

where y
ij
 is the expression level of a gene for the treatment’s level 

i in dataset j, β
i
 is the fi xed effect of the treatment level i, b

j
 is the 

fi xed effect of the laboratories j, and ε
ij
 is a random residual error, 

assumed to be normally distributed for the purposes of hypothesis 
testing. In our current study n = 2 for two levels of experimen-
tal factor treatment, “excitotoxin” and “control”, and m, which is 
the number of datasets, is 2 and 3 for 24- and 240+-h timepoint, 
respectively.

We chose to use an additive model because we are not inter-
ested in the interaction between the experimental treatment factor 
and the laboratory factor. The model implies that the difference in 
expression levels between two treatments will be the same for each 
laboratory (but the absolute expression levels for each treatment 
might be different) and if it is not the average difference between 
the laboratories is considered as treatment effect.

For each gene in a meta-dataset, we computed FEM parameters 
and p-values associated with fi xed effects using the expression val-
ues. Small p-values (p-value <0.05) for treatment effect indicate dif-
ferential expression between two treatments. To control for multiple 
testing, we also computed q-values. The direction of expression 
change was computed from FEM parameter estimates.

FUNCTIONAL SIMILARITY OF GENE SETS
To assess the functional similarity between the signifi cant genes 
obtained by meta-analysis and reference gene set we employed Gene 
Ontology (GO) term overlap method developed by Mistry and 
Pavlidis (2008). If annot

g
 is the set of all direct GO term annota-

tions for gene g including all associated parent terms, the GO term 
overlap score for two genes is calculated as the number of terms 
that occur in both gene annotation sets:

sim
TO

 (g
1
,g

2
) = |annot

g1
 ∩ annot

g2
| (2)

We used GO term overlap as a measure of functional similarity 
between genes (Mistry and Pavlidis, 2008). For comparison with 
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100,000 random pairs we computed the overlap scores between all 
possible pairs g

1
 and g

2
, where g

1
 is from the meta-analysis gene set 

and g
2
 is from the reference gene set. For Cytoscape’s illustration 

g
1
 and g

2
 are all possible pairs from the union of meta-analysis and 

reference gene set.
Both meta-analyses and all associated computations were 

conducted using the R statistical computing environment 
(R Development Core Team, 2007). Computation of q-values was 
performed using q-value (Storey and Tibshirani, 2003). As sug-
gested in qvalue manual1, instead of default “smoother” setting for 
parameter pi0.meth, we used the “bootstrap” setting for estimat-
ing π

0
 because the Fisher’s p-value distribution had an unusual 

shape (second peak at 1) due to our modifi cation of the method 
as described above.

RESULTS
ANALYSIS OF INDIVIDUAL DATASETS
We analyzed four microarray datasets relating to the excitotoxic 
brain insult in rats (Materials and Methods). We fi rst conducted 
differential expression analysis on the individual datasets using 
Welch’s two-sided t-test for unequal variance. The results are shown 
in Table 2. The table shows the number of signifi cant genes for each 
type of analysis after multiple-test correction (q-value <0.05). It can 
be seen that for individual datasets, with the exception of GSE4326 
for the 24-h timepoint, there is almost no evidence of differential 
expression after treatment. The same statistical test and criterion 
of signifi cance were used in two of the original publications (Koh 
et al., 2005; Wilson et al., 2005), however the fi rst study focused on 
the analysis of neuropeptides and the second on the comparison 
between two different environments and thus the results cannot 
be directly compared. The other two datasets were analyzed for 
changes in gene expression after excitotoxic insult using different 
statistical approaches and the number of differentially expressed 
genes reported in the original publications was 144 (276) for strin-
gent (less stringent) criteria for Tang dataset (Tang et al., 2002) and 
129 for the Elliott dataset (Elliott et al., 2003).

META-ANALYSIS
Previous studies have shown that alterations in gene expression 
after excitotoxic insult are transient and time-specifi c (Zagulska-
Szymczak et al., 2001; Lukasiuk and Pitkänen, 2004; Lukasiuk et al., 
2006). This can also be observed for GSE4236 dataset (Figure 1). 
The number of genes for which expression levels after the insult are 

signifi cantly different than in control animals increases up to 24 h, 
when it is the highest, and then it drops to 0 after 3 days. While the 
genes that have altered expression after 1 h remained differentially 
expressed at 6 h, there is a number of genes that are specifi c for the 
6- and 24-h timepoints.

Based on these observations and previous fi ndings it is clear 
that meta-analysis of differential expression during epileptogenesis 
needs to be time-specifi c. Therefore, we grouped the available data-
sets according to the timepoints as described in Section “Materials 
and Methods”.

Fisher’s method, described in Materials and Methods, identifi ed 
293 signifi cant genes for the 24-h timepoint and 8 genes for the later 
timepoint (see Table 2). Out of 293 genes, 174 were up-regulated 
and 119 down-regulated 24 h after the excitotoxic insult. For the 
240+-h timepoint, all of the signifi cant genes were up-regulated.

As expected, the more powerful FEM approach identifi ed more 
genes than Fisher’s approach (Table 2). For the 24-h timepoint FEM 
identifi ed 827 genes as differentially expressed, 381 with increased 
expression and 446 with decreased expression after the insult when 
compared to gene expression of control animals.

The agreement between the two methods is relatively high: the 
overlap between the identifi ed genes was 285 (8 unique to Fisher’s 
and 542 unique to FEM method) for 24-h timepoint and 7 (1 unique 
to Fisher’s and 52 unique to FEM method) for 240+-h timepoint. We 
also computed the overall agreement between the methods, by fi rst 
sorting all the genes by their q-values in each of the meta-datasets 
and than computing a Pearson correlation coeffi cient between the 
ranks. The rank correlations between the methods were r = 0.87 and 
r = 0.43 for 24- and 240+-h timepoints, respectively. These results 
indicate that FEM method identifi es a large number of genes in 
addition to the ones identifi ed by Fisher’s approach and both meth-
ods are more powerful than the simple overlap approach (Table 2), 
which has been used in the literature in the fi eld so far (Lukasiuk 
and Pitkänen, 2004; Lukasiuk et al., 2006; Wang et al., 2009).

Importantly, we identifi ed a number of genes that were not iden-
tifi ed as signifi cant in the individual datasets’ analyses. In other 
words, by combining data sets we were able to detect more subtle 
changes in expression. For the 24-h timepoint there are 454 that 
are found to be signifi cant by the FEM analysis, but not found 
by t-test analyses of the GSE4236 or Tang datasets. The 240+-h 
timepoint individual datasets do not yield any signifi cant genes by 
t-tests, while FEM identifi es 59. The apparent reason for this is that 
FEM, through careful modelling of different sources of variance in 
the data is utilizing the samples from all the included studies thus 
increasing the statistical power of the test.

Table 2 | The number of genes found to be differentially expressed in each analysis. The change in expression was considered signifi cant if q-value <0.05. 

The overlap method identifi es genes that have been found signifi cant in all of the considered studies. Dashes indicate that a dataset has not been used for a 

particular timepoint.

Timepoint (h) Individual analyses Meta-analyses

 GSE4236 GSE1833 Tang Elliott Overlap Fisher FEM

 24 456 − 1 − 1 293 827

240+   0 0 − 0 0   8  59

1http://genomics.princeton.edu/storeylab/qvalue/manual.pdf
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Usually the genes that are found to be signifi cant have consistent 
patterns of expression across all the studies, as shown in Figure 2. 
The heatmaps show the expression levels of top 50 up-regulated and 
down-regulated genes ranked by their q-values for 24-h timepoint 
and of all the signifi cant genes for 240+-h timepoint. The differ-
ence between expression values for control and treatment samples 
is more evident for the earlier timepoint (Figure 1). Differences 
in expression for the later timepoint are less numerous and more 
subtle, but FEM is still able to detect them.

CONSISTENCY WITH PREVIOUS FINDINGS
We compared the genes identifi ed to be signifi cant by two meta-
 analysis approaches with a reference list of genes previously  associated 
with epileptogenesis (see Materials and Methods). For the 24-h time-
point, Fisher’s and FEM methods identify 47 and 90 out of 136 genes 
on the reference list (46 genes did not have probes, see Materials and 
Methods), respectively. The majority of genes (30) that the FEM 
method failed to identify as signifi cant have been reported to have 
altered expression at earlier timepoints, 6 were reported only for 
traumatic brain injury models and for three genes we were not able 
to fi nd any reference in the original studies. This leaves only 7 genes 
missed by the FEM method. For 240+-h timepoint the numbers of 
identifi ed reference genes are 7 and 19 out of 130 genes. The reason 
why there are very few  reference genes identifi ed as signifi cant for 

240+-h timepoint is the fact that most of the genes on the reference list 
were implicated to be differentially expressed in the earlier timepoints 
after excitotoxic insult (Zagulska-Szymczak et al., 2001; Lukasiuk and 
Pitkänen, 2004; Lukasiuk et al., 2006; Wang et al., 2009). Another 
evident  discrepancy is between Fisher’s and FEM’s genes overlap with 
reference list and as noted earlier, FEM’s performance is superior.

In addition, we compared our FEM results with CarpeDB2, an 
epilepsy genetics database that currently contains 431 genes or loci 
genetically associated with epilepsy. After updating the offi cial gene 
symbols from CarpeDB and identifying rat homologues of human 
and mouse genes, we had a list of 255 rat genes. Of these 255, 43 
are genes from our 24-h gene list. This enrichment is statistically 
signifi cant (p < 0.001, computed from the hypergeometric distribu-
tion). Only 9 of these 43 genes were on the reference list. For the 
240+ timepoint the overlap was only four genes, but still statistically 
signifi cant (p < 0.05).

FUNCTIONAL ANALYSIS
We used Ingenuity Pathway Analysis (IPA; Ingenuity® Systems3) 
for the functional analysis of genes identifi ed to be differentially 
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FIGURE 1 | Gene expression over time after KA-treatment for GSE4236 

dataset. (A) Changes in the number of differentially expressed genes between 
different timepoints after treatment. The number in parenthesis represent the 

number of signifi cant genes for that timepoint (q-value <0.05). (B) Overlap in gene 
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if q-value <0.05 for both timepoints and the direction of change is the same.

2http://www.carpedb.ua.edu
3www.ingenuity.com
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expressed using FEM and for comparison between these genes 
and reference genes (see Materials and Methods). The functional 
analysis identifi ed the biological functions that were most sig-
nifi cantly enriched in the selected genes. IPA uses Fisher’s exact 

test to calculate a p-value representing the probability that each 
 biological  function assigned to the dataset is due to chance alone. 
In the next two sections we present analyses of IPA “Biological 
functions”, which are often broad groupings of genes akin to GO 
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FIGURE 2 | Visualization of expression values for some of the signifi cant 

genes identifi ed by FEM analysis. (A) Top 50 up-regulated genes and top 50 
down-regulated genes for 24-h timepoint. (B) Signifi cant genes for the 240+-h 
timepoint. In each heatmap the up-regulated and down-regulated genes are 
ranked separately by their q-values. The direction of change is indicated by the 
colour bars on the left of the heatmaps (red, up-regulated; blue, 

down-regulated). Colour bars on the top indicate control (green) and treated (red) 
samples. The columns correspond to samples and are labelled by the name of 
the dataset they are coming from. The colours in the heatmap indicate the 
relative level of expression (light brown for low expression and dark brown for 
high expression). The expression values for each gene were normalized to have 
mean 0 and variance 1 to facilitate comparison between genes.
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categories; and “Canonical pathways”, which are manually-curated 
pathways.

Biological functions
The most signifi cant biological functions associated with genes 
found to be differentially expressed 24 h after excitotoxic insult were 
related to cell death, nervous system development and  function, 
immunity, development and growth, signalling and basic  cellular 
processes, such as transcription and protein synthesis. For 240+-h 
timepoint, the most signifi cant biological functions were similarly 
related to immunity, cell death, development and growth and 
cell signalling. This is general agreement to what was previously 
reported in the literature. The proportion of genes associated with 
neurological disease is 48.3% and 54.2% for 24- and 240+-h gene set, 
respectively. For immunological disease these numbers are 27.2% 
and 50.8%.

When directly compared to reference genes in terms of biologi-
cal functions, the 24-h gene set is generally enriched in the same 
functions as the reference set but with signifi cantly more genes 
in each category, supporting the biological relevance of the 24-h 
gene set and suggesting that it is more complete than the refer-
ence set. One exception is that there are 105 genes in the 24-h 
gene set associated with protein synthesis while there are none for 
the reference set. Table 3 shows a comparison between functional 
categories identifi ed in our analysis of the 24-h gene set and in 
reference gene set.

The 240+-h gene set is mostly enriched in functions that relate 
to immunity, cell death and development. The biological func-
tions “organ development”, “protein synthesis” and “protein deg-
radation” are present for 240+-h gene set but not for the reference 

set. More details about functional grouping of 240+-h genes and 
the  comparison with 24-h and reference gene sets are given in 
Table 3.

Canonical pathways
We also used IPA’s “canonical pathways” to look at the representa-
tion of genes from the three different gene lists. In each canonical 
pathway relating to neurological function or disease, there were 
signifi cantly more 24-h genes than the reference genes, which rein-
forces the fi nding that our 24-h gene set contains more biologically 
relevant genes than the reference set. Table 4 lists these pathways 
and gives the total number of genes in the pathway, the number of 
24-h genes and the number of reference genes in the pathway. One 
specifi c illustrated example is given for reelin signalling in neurons 
pathway in Figure 3.

For 240+-h gene set there are just a few signifi cantly enriched 
canonical pathways, the most signifi cant being antigen presentation 
pathway with 6 out of 39 genes belonging to the pathway present 
on the 240+-h gene list (3 genes from the reference set).

GO term similarity
In order to investigate the degree of functional similarity between 
the meta-analysis gene sets and the reference set more directly, 
we computed the GO term overlap between all possible gene 
pairs from our gene set and reference gene set, as described in 
Section “Materials and Methods”. This was done separately for 24-h 
(135,043 gene pairs) and 240+-h gene sets (7461 gene pairs). We then 
compared the distributions of these scores with the distribution of 
GO term similarity scores for 100,000 random rat gene pairs. The 
mean (median) values of the GO term similarity scores are 10.20 
(8), 8.49 (7) and 3.79 (2) for 24-h – reference gene pairs, 240+-h 
– reference gene pairs and 100,000 random gene pairs, respectively. 
The differences between medians are highly signifi cant when our 
meta-analysis – reference gene pairs are compared to random 
gene pairs: p-value from Wilcoxon rank sum test is <2.2 × 10−16 
for both timepoints. This indicates that the GO term similarity 
is signifi cantly higher between meta-analysis and reference genes 
than expected at random. An illustration of level and degree of 
similarity between 24-h and reference genes is given in Figure 4, 
which is GO similarity network created in Cytoscape (Shannon 

Table 3 | Distribution of genes from the gene sets among IPA’s 

functional groups. Only the most signifi cant biological functions are shown 

(based on the p-values from Fisher’s exact test).

Functional group Number of genes

 24-h set 240+-h set Reference set

Cellular growth and proliferation 322 22 109

Cell death 314 30 115

Cellular development 240 21 84

Nervous system development  229 6 83

and function

Cellular movement 203 18 83

Cell-to-cell signaling and interaction 178 18 73

Cell-mediated immune response 169 31 93

Cell morphology 168 10 68

Cellular assembly and organization 151 12 34

Lipid metabolism 131 5 17

Infl ammatory response 107 24 63

Protein synthesis 105 12 0

Antigen presentation 100 23 63

Gene expression 91 5 63

DNA replication, recombination,  84 10 36

and repair

Humoral immune response 79 20 60

Table 4 | Representation of gene sets in IPA’s canonical pathways 

related to neurological functions or diseases. The pathways are ordered 

by their p-values which are computed using Fisher’s exact test.

Canonical pathway Number of genes in pathway

 Total 24-h set Reference set

Synaptic long-term depression 165 26 5

Reelin signalling in neurons 77 12 3

Huntington’s disease signalling 236 30 9

Glutamate receptor signalling 67 11 6

Synaptic long-term potentiation 115 17 7

Neurotrophin/TRK signalling 78 10 6

CREB signalling 191 23 9

Neuregulin signalling 100 13 3
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FIGURE 3 | Depiction of the “Reelin signalling in neurons” pathway generated by Ingenuity. The genes and complexes (double lines) highlighted in grey are form 
24-h gene set and the genes outlined in orange are also in the reference set. The genes from the 24-h list that are components of complexes are highlighted in blue.

FIGURE 4 | GO similarity network created in Cytoscape. Blue nodes 
represent genes that are only on our 24-h gene list; red nodes represent 
reference genes. The two types of nodes were grouped separately so that 
the interactions between two groups are easily visible. An edge between 
two nodes signifi es that there are at least 60 GO terms that are common for 

that pair of genes. Edges between reference and 24-h genes are shown in 
light blue, while grey nodes are between reference genes or between 
24 h genes. The size of a node correspond to its degree (its number of 
edges). Genes which lack GO similarity of at least 60 to another gene are not 
displayed.
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et al., 2003) for gene pairs between and within 24-h and reference 
gene sets that share at least 60 GO terms (this aribtrary threshold 
was chosen to facilitate visualization).

DISCUSSION
Our contribution in this report is twofold. First, we have reanalyzed 
four expression studies of epileptogenesis using meta-analytical 
techniques, providing a much more extensive characterization of 
expression changes. Second, from a methodological perspective, 
we show some advantages of combining data sets for reanalysis, 
as opposed to comparing “hit lists” or performing meta-analyses 
based on p-values.

A striking fi nding of previous reviews (Zagulska-Szymczak et al., 
2001; Lukasiuk and Pitkänen, 2004; Lukasiuk et al., 2006; Wang 
et al., 2009) was that most of the genes found to be differentially 
expressed in epileptogenesis are not reproduced by other studies 
(upwards of 1500 genes). The consensus list of affected genes was 
quite small: fewer than 100 genes. A potential explanation is that 
the gene selection procedures used in individual studies are sub-
optimal; many studies are also underpowered. In addition, simply 
taking overlaps between gene lists is a stringent way of comparing 
studies; its main advantage is simplicity, not sensitivity. Together 
these problems lead to an apparent poor reproducibility of fi nd-
ings across studies (very few genes are found by more than one 
study). In our view, reproducibility (or lack thereof) is a function 
of study design (small sample sizes being a major culprit), ad hoc 
gene selection methods (e.g., fold-change), and the method used 
to assess reproducibility.

Combining studies across laboratories, while not always pos-
sible or appropriate, ameliorates all of these issues. Thus our results 
paint a somewhat different picture of the situation than the simple 
overlapping hit-list approach. Despite using only four small expres-
sion studies, we recaptured a large fraction of the genes identifi ed 
as reliable by a review of 18 studies. This suggests that these four 
studies (representing two timepoints after induction) share reliable 
biological signals, but were underpowered to pick up all of those 
changes by themselves.

Importantly, our analysis picks up many additional genes which 
were (1) not identifi ed by the original authors and (2) not found 
in surveys of 18 studies. It might be tempting to think these addi-
tional genes represent false positives from the meta-analysis, but 
our functional analysis shows that the vast majority of the genes 
are highly functionally related to genes deemed “reliable” by less 
sensitive methods (Figure 4). In other words, our reanalysis shows 
that the impact of kindling on pathways previously implicated is 
far more extensive than appreciated using a single study or the 
reference list. Rather than a random grab-bag of 2000 genes identi-
fi ed by pooling noisy hit lists across studies, the combined analysis 
yields a more focused list that is largely easily interpreted in light of 
previous reviews of the literature. For example, while three genes 
on the reference list are in the Reelin signalling pathway (Figure 3), 
our analysis shows that at least 12 additional genes are implicated, 
suggesting a widespread change in regulation of the pathway.

We found that our 24-h gene list was signifi cantly enriched 
for genes listed by CarpeDB as being implicated in the genetics 
of epilepsy. This was surprising, as we did not necessarily expect 
that genes which change expression in kindling are susceptibility 

genes for epilepsy. To our knowledge this has not previously been 
examined systematically. A simple (but speculative) hypothesis 
to explain this result is that many of the susceptibility genes we 
found are in some sense protective in the face of a excitotoxic 
injury. This model would predict that failure to change expression 
after the insult increases the likelihood of developing spontane-
ous seizures.

We hypothesized that in addition to “fl eshing out” expression 
changes in pathways already known to be affected by  epileptogenesis, 
we might identify novel genes and/or pathways that were not 
detected previously. As shown by the small cluster of blue nodes 
in Figure 4, there are genes which have documented functions 
that are less similar in function to the others. The small cluster 
in Figure 4 is predominantly made up of up-regulated proteo-
somal protein genes, which to our knowledge has not been noted in 
expression studies of epileptogenesis. This could refl ect a response 
to oxidative stress (Jung et al., 2007). Importantly, Figure 4 does 
not refl ect many other genes we found which are not as well “con-
nected” (Figure 4 is heavily fi ltered for display purposes). On closer 
inspection of such genes, we found plausible relationships between 
epilepsy and many of the genes we checked manually with literature 
searches. For example, fatty acid amide hydrolase (Faah), which is 
down-regulated 24 h after kainate injection, is involved in metabo-
lism of endocannabinoids, and inhibitors of Faah have been shown 
to reduce the damaging effects of kainate, if given within a few 
hours (Karanian et al., 2007). The expression results may refl ect 
one endogenous mechanism for increasing endocannabanoids after 
kainate injury, which has been shown to occur at shorter time scales 
(Marsicano et al., 2003). Another example is SLC4A3 (a Cl HCO− −/ 3  
exchanger), mutations in which are associated with idiopathic gen-
eralized epilepsy (Vilas et al., 2009).

These results give us confi dence that the genes identifi ed by 
careful reanalysis of RNA patterns can yield additional results 
of relevance to understanding the brain’s response to excito-
toxic insult. In addition to the proteasome expression changes 
noted above, numerous genes associated with lipid metabolism 
were altered in expression (Table 3). While a few genes in this 
group were on the reference list, lipid metabolism was not noted 
as a biological process of interest in any of the reviews used as 
sources for the list (Zagulska-Szymczak et al., 2001; Lukasiuk and 
Pitkänen, 2004; Lukasiuk et al., 2006; Wang et al., 2009). While 
the meaning of these patterns is not clear (“lipid metabolism” is 
a broad category of genes), it illustrates the ability of reanalysis 
and meta-analysis of expression data to help uncover biologically 
relevant patterns.

In conclusion, we have shown that combining even small num-
bers of data sets can greatly increase power to detect expression 
changes. Applied to excitotoxin models of epileptogenesis in the 
rodent hippocampus, we show that changes in RNA levels in several 
pathways, rather than being focused on a few genes, are much more 
widespread than seems to be appreciated. We suspect that expand-
ing the scope of our meta-analysis to include additional data sets 
and models will yield additional insights.
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