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Method of characteristics (MOC) is a commonly applied technique for solving

the Boltzmann form of the neutron transport equation. In the PANDAS-MOC

neutron transport code, MOC is used to determine the 2D radial solution.

However, in the whole-code OpenMP threading hybrid model (WCP) of

PANDAS-MOC, it is found that when using the classic parallelism, the MOC

sweeping performance is restricted by the overhead incurred by the

unbalanced workload and omp atomic clause. This article describes three

parallel algorithms for the MOC sweep in the WCP model: the long-track

schedule, equal-segment schedule, and no-atomic schedule. All algorithms are

accomplished by updating the partition approach and rearranging the sweeping

order of the characteristic rays, and their parallel performances are examined by

the C5G7 3D core. The results illustrate that the no-atomic schedule can reach

0.686 parallel efficiency when using 36 threads, which is larger than the parallel

efficiency obtained in the MPI-only parallelization model.
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1 Introduction

In a general sense, parallel computing stands for the simultaneous use of multiple

computational resources to solve a large and/or complex computational problem with a

shorter time to completion and less memory consumption (Quinn, 2003). In the past several

decades, with the rise of the supercomputers, parallel computing has been used to model

complex problems in many science and engineering fields. One such example is the area of

neutronics analysis, which needs significant amount of memory and is extremely time

consuming due to the complex geometry and complicated physics interactions in nuclear

reactors and, thus, makes the serial computing unpromising and improper for this kind of

problem. On the contrary, parallelism partitions a large domain to multiple subdomains and

assigns to individual computing nodes with amanageable size, and only the data corresponding

to the assigned subdomain are stored in each node. Therefore, it has substantially decreased the

memory requirement andmakes thewhole-core simulations possible.Moreover, since all nodes

could run their jobs concurrently, the overall runtime decreases with the increasing number of

devoted computing nodes/subdomains.
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In neutron transport analysis, the method of characteristics

(MOC) is the most popular deterministic method for solving the

3D Boltzmann neutron transport equation, which first discretizes

the problem into several characteristic spaces and then tracks the

characteristic rays for certain directions through the discretized

domain. In 2003, the DeCART has demonstrated that MOC was

applicable to the direct whole-core transport calculation (Joo

et al., 2003), and then, this method has been widely implemented

in the neutronics field. One capability that makes it more

promising than the rest of the methods is that it can

accurately handle arbitrary complicated geometries. However,

to accurately simulate a 3D problem, the necessitated number of

rays and of discretized regions has increased by the factor on the

order of 1000 compared to solving a 2D problem. Consequently,

MOC is usually considered as a 2D method for the neutronics

analysis, and the solution to the third dimension is approximated

by lower-order methods, given that there is less heterogeneity in

the LWR geometry in the axial direction (1D) compared to the

radial plane (2D). This method is referred to as the 2D/1D

method. In real LWR reactors, the heterogeneity of the geometry

design is quite large in the x–y plane and relatively small in the

z-direction. Meanwhile, the 2D/1D method assumes the solution

changes slightly in the axial direction, which allows coarse

discretization in the z-direction and only does fine mesh

discretization over the 2D radial domain. Therefore, the 2D/

1D method could balance between the accuracy and computing

time better than the direct 3D MOC method, which makes it a

perfect candidate for such problem. Until now, the 2D/1D

approximation technique has been applied to plentiful

advanced neutronics simulation tools, such as DeCART (Joo

et al., 2003), MPACT (Larsen et al., 2019), PROTEUS-MOC

(Jung et al., 2018), nTRACER (Choi et al., 2018), NECP-X

(Chen et al., 2018), OpenMOC (Boyd et al., 2014), and

PANDAS-MOC (Tao and Xu, 2022c). Moreover, other

deterministic methods, such as the variational nodal method

(VNM), also exhibit the capability in handling arbitrarily

complicated geometries and is developed and used in some

prestigious neutronics codes, such as VITAS (Zhang et al.,

2022).

The high-fidelity 3D neutron transport code PANDAS-

MOC (Purdue Advanced Neutronics Design and Analysis

System with Methods of Characteristics) is being developed

at Purdue University (Tao and Xu, 2022c). Its essential

method is the 2D/1D method, in which the 2D radial

solution is solved by the MOC and the 1D axial solution is

estimated by the nodal expansion method (NEM). To further

improve its computing efficiency on large reactor problems,

three parallel models were developed based on the nature of

distributed and shared memory architectures, the pure MPI

parallel model (PMPI), the segment OpenMP threading

hybrid model (SGP), and the whole-code OpenMP

threading hybrid model (WCP) (Tao and Xu, 2022b). As

demonstrated in the previous study, in spite of the advantage

of memory usage, the WCP model still needs further

improvement in the multi-level coarse mesh finite different

(ML-CMFD) solver and the MOC sweep in order to attain

comparable, even exceptional, run-time performance to the

pure MPI model. The improvement of the ML-CMFD solver

is discussed by Tao and Xu (2022a), and this article

concentrates on the optimization of the MOC sweep for

hybrid MPI/OpenMP parallelization.

Until writing, the OpenMP parallelism in the MOC ray

tracing is finished with the help of the omp atomic clause. For

instance, in the nTRACER, the OpenMP is implemented in the

levels of rotational ray sweep and energy group; then, the

incoming and outgoing currents and the region scalar flux are

atomically accumulated (Choi et al., 2018). Additionally, the

parallel transport sweep algorithm of OpenMOC has two

versions. One uses the omp atomic clause and the other

does not use the omp atomic clause (Boyd et al., 2016).

Nevertheless, the algorithm without an atomic clause is

finished by introducing extra thread private arrays to store

the intermediate scalar fluxes, and then, the FSR scalar fluxes

are reduced across threads, which, however, costs significant

amount of memory in this procedure.

This study is conducted based on the WCP model of

PANDAS-MOC, and the detailed information could be found

in Tao and Xu (2022b). This article is organized as follows.

Section 2 describes the methodology of PANDAS-MOC. Section

3 introduces the parallelism and performance metrics. Section 4

gives the test problem and the key parameters defined for the

geometry discretization and the numerical convergence. Section

5 presents three schedules designed to parallelize the MOC

transport sweep in PANDAS-MOC using OpenMP and

evaluates their performance. Section 6 is a brief discussion on

the optimizedWCP performance using the advancedML-CMFD

and MOC sweep solvers. Finally, a short summary and brief

discussion of the future work are illustrated in Section 7.

2 Methodology

2.1 PANDAS-MOC methodology

This section will briefly introduce the methodology of

PANDAS-MOC, highlighting the points that are most relevant

for this work. The detailed derivations can be found in Tao and

Xu (2022c). The transient method starts with the 3D time-

dependent neutron transport equation (Eq. 1) and the

precursor equations (Eq. 2):

1
vg r( )

zφg r,Ω, t( )
zt

� −Ω · ∇φg r,Ω, t( ) − Σtg r, t( )φg r,Ω, t( ) + Ssg r,Ω, t( ) + χg r( )
4π

SF r, t( )

+ 1
4π

∑
k

χdgk λkCk r, t( ) − βkSF r, t( )( ), (1)

zCk r, t( )
zt

� βk r( )SF r, t( ) − λk r( )Ck r, t( ), k � 1, 2, . . . , 6, (2)
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where g is the energy group index, φ is the angular flux, Σtg is the

total macroscopic cross section, βk is the delayed neutron

fraction, χg is the average fission spectra, which is a weighted

average of the prompt fission spectra (χpg) and delayed fission

spectra (χdgk) (Eq. 3), Ck is the density of delayed neutron

precursors, Ssg is the scattered neutron source (Eq. 4), and SF
is the prompt fission neutron source (Eq. 5). The rest of the

variables are in accordance with the standard definitions in

nuclear reactor physics.

χg � χpg +∑
k

βk χdgk − χpg( ), (3)

Ssg r,Ω, t( ) � ∑
g′
∫
4π

Σg′g r,Ω′ · Ω, t( )φg′ r,Ω′, t( )dΩ′, (4)

SF r, t( ) � 1
kseff

∑
g′
]Σfg′ r, t( )∫

4π

φg′ r,Ω, t( )dΩ. (5)

To numerically solve the transport equation, several

approximations are considered.

1 Angular flux: Exponential transformation

2 Time derivative term: Implicit scheme of temporal

integration method

3 Fission source: Exponential transformation and linear

change in each time step

4 Densities of delayed neutron precursors: Integrating Eq.2

over time step

Accordingly, Eq. 1 can be transformed to the transient fix

source equation, the Cartesian form of which is

η
z

zx
+ ϵ z

zy
+ μ

z

zz
( )φn

g r,Ω( ) + Σn
tg r( )φn

g r,Ω( )

� Snsg r,Ω( ) + 1
4π

χg r( )SnF r( ) + Snntg r( ) + Sn−1trg r( )[ ], (6)

where

r � x, y, z( ), Ω � μ, α( ), η � sin θ cos α, ϵ � sin θ sin α

Sn−1trg r( ) � Sn−1dcg r( ) + Sn−1dtg r( ), Sn−1dcg r( ) � ∑
k

χdkgλkĈ
n−1
k r( )

Sn−1dtg r( ) � ϕn−1
g r( )

En
g r( )Δtnvg r( ), Snntg r( ) � χ̂gS

n
F r( ) − Σn

dgϕ
n
g

En
g r( ) � e−α

n
g r( )Δtn , αng � logPtot

n − logPtot
n−1( )/Δn−1 , Σn

dg � αn
g

vg
+ 1
Δtnvg

.

Instead of directly resolving the computation-intensive 3D

problem, it is converted to a radial 2D problem and an axial 1D

problem, which is conventionally referred to as the 2D/1D

method. The 2D equation is obtained by integrating Eq. 6

axially over the axial plane (∫zt

zb
dz) and solved by the MOC

method, and the 1D equation is obtained by radially integrating

over a box (∫∫Adxdy) and solved by the NEM method. Then, the

2D radial solution and 1D axial solution are coupled by the

transverse leakage. In addition, the multi-level coarse mesh finite

difference (ML-CMFD) approach is implemented to accelerate

the convergence for solutions to the transient fix source equation.

Since this study concentrates on the performance improvement

on the MOC sweep, the details of NEM and CMFD are omitted

for brevity, and the details could be found in Xu and Downar

(2012), Hao et al. (2018), and Tao and Xu (2020).

2.2 2D transient method of characteristics

2.2.1 Modular ray tracing
The method of characteristics (MOC) is developed to solve

the first-order partial differential equations by transforming

them into a system of ordinary differential equations. In

neutron transport analysis, the MOC transforms the transport

equation into the characteristic form by tracing the equation

along the straight neutron flying paths over the spatial domain.

This process is generally referred to as “ray tracing.” The setup of

these tracks is substantial to the calculation accuracy and

computational performance. In PANDAS-MOC, the modular

ray tracing is implemented, which is the most straightforward

approach to prepare the characteristic tracks.

Considering that some structures are repeated throughout the

reactor, such as the pin cells and assemblies, the transport problem is

divided into multiple modules, which represents the fundamental

small geometries in the large core. The ray-tracing information is

then prepared for each module, and it is directly linked on the

module interfaces using the direct neutron path linking technique

(DNPL) (Kosaka and Saji, 2000). Next, the long tracks over the

global domain are constructed by connecting the modular rays in

adjacent geometries, as the red andmagenta long tracks explained in

FIGURE 1
Modular ray-tracing method.
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Figure 1. Compared to arranging tracks over the entire reactor,

modular ray tracing can significantly reduce the memory

requirement for saving the ray data, which makes it very popular

in MOC transport codes. Until now, PANDAS-MOC can handle

rectangular fuel structures in LWR for the modular ray tracing.

In addition, the modular ray-tracing technique requires the

number of tracks on the boundary as an integer. Given that the

pitches Px and Py and the spacing between all parallel tracks (ΔR)

are constant, as illustrated in Figure 1, it further requires that all

modules have the same spatial dimension to guarantee the long-

track connection. For the lth azimuth angle, if the user-defined

ray spacing isΔl0
R and azimuthal angle is αl0, the number of rays in

x and y module boundaries are as follows:

Nx � £
Px sin αl0

Δl0
R

· Ny � £
Py sin αl0

Δl0
R

·. (7)

Then, the ray-spacing distance in x- and y-direction could be

computed as follows:

Δl
Rx �

Px

Nx
Δl
Ry � Py

Ny
. (8)

Accordingly, the azimuthal angle is corrected to the true

angle that satisfies the requirement of modular ray tracing, which

is as follows:

αl � arctan
Δl
Ry

Δl
Rx

� arctan
PyNx

NyPx
, (9)

and the ray spacing is then adjusted to

Δl
R � Δl

Rx sin αl � Δl
Ry cos αl. (10)

2.2.2 Method of characteristics sweep
calculation

The MOC transforms the axially traversed 2D fix source

equation into the characteristic form along various sorts of

straight neutron paths (i.e., global characteristic long rays)

over the spatial domain. Considering one inject line (rin)

passing through a point in direction Ω, any location along

this ray is as follows:

r � rin + sΩ � rin + l

sin α
Ω, (11)

where l is the distance between the parallel tracks, α is the

azimuthal angle of the characteristic ray, and s and l/sin α are

the distance from the start point to the observe point along

the track. Considering that the characteristic rays are

separated to several segments based on the traversed

constructs and materials along the path (Figure 1), the

outgoing flux of one segment is the incident flux of the

adjacent next segment along the neutron flying direction,

and the sweep computation is performed on the level of such

segments. The incident flux (φin
p (Ω)), outgoing flux

(φout
p (Ω)), and the track-average flux (�φp(Ω)) over each

segment of the ray are determined as follows:

φout
p Ω( ) � φin

p Ω( ) + φd
p Ω( )
x

x, (12)
φd
p Ω( )
x

� Q Ω( )
Σt

− φin
p Ω( )[ ] 1 − e−x

x
, x � Σt

lp
sin θ

, (13)

�φp Ω( ) � Q Ω( )
Σt

− φd
p Ω( )
x

. (14)

The reason for using ϕdp(Ω)/x here, instead of ϕdp(Ω), is to
avoid the potential loss of significance for very small x in Eqs 12,

13, 14. Given that there are abundant tracks with different

azimuthal angles within each computational region, the

overall average flux (�φ(Ω)) in a flat-source region (FSR) can

be determined by the average fluxes and the track spaces of all

enclosed characteristic rays as follows:

�φ Ω( ) � ∑p �φp Ω( )lp Ω( )∑plp Ω( ) � ∑
p

�φp Ω( )lp Ω( )CΩΔΩ

A
, (15)

where CΩ = A/(ΔΩ ∑plp(Ω)) and ΔΩ is the ray-spacing distance

for the direction Ω.

3 Parallelism

Parallel computing is more efficient regarding the run-

time and memory than serial computing, since it breaks the

problem into discrete parts in order to execute the code on

multiple processors concurrently, which makes it a good

choice for solving a problem that involves large memory

and intensive computations (LLNL, 2022). Now, there are

two primary parallel standards: the Message Passing Interface

(MPI) and the Open Multi-Processing (OpenMP) (LLNL,

2022) (Quinn, 2003). MPI is used for distributed memory

programming, indicating that the memory space that every

parallel processor is working in is isolated from others, while

OpenMP is applied for shared memory programming; in this

way, every parallel thread can access all the shared data, which

makes the communication between OpenMP threads faster

than that between the MPI processors as it needs no internode

message exchange. In addition, given that current parallel

machines are having mixed distributed and shared memory,

the hybrid MPI/OpenMP parallelization is also worth

considering in order to take advantage of such memory

architecture. Generally, the hybrid model uses MPI to

communicate between the nodes and OpenMP for

parallelism on the node. Therefore, it can eliminate the

domain decomposition and provide automatic memory

coherency at the node level and has lower memory latency

and data movement with the node. The WCP model involved

in this work is a hybrid MPI/OpenMP model, and the
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optimizations of the parallel schedules for MOC sweep are

conducted on the OpenMP level in this work.

3.1 OpenMP application

To compile with the OpenMP, the pragmas must be inserted

into the code so that the code can be transferred to a

multithreaded version and then compiled into an executable

file with the parallelism implemented by the OpenMP threads.

The parallel constructs are established by pragmas provided by

the OpenMP API according to the purpose of the parallelized

regions, such as the parallel pragmas, tasking pragmas, work-

sharing pragmas, and synchronization pragmas etc. For example,

“omp parallel” is utilized to form a group of threads according to

the specific number of threads and then execute those threads in

parallel, and “omp for” defines a work-sharing loop and the

iterations associated with it are performed in parallel by the

threads in one team.

Given that OpenMP is programming for the shared

memory, a thread’s temporary view of memory is not

required to be in consistency with the memory at all times.

Normally, a value written to a variable is kept in the thread’s

temporary view until it is forced to the memory at a later time.

Similarly, a read from a variable may get the value from the

thread’s temporary view unless it is forced to read from

memory. Thus, the consistency between a thread’s

temporary view and memory for the shared variables is

required in a race-free program, and it is guaranteed by the

synchronization between the threads, which forces all threads

to complete their work to a certain point before any thread is

allowed to continue. In this work, two synchronization

constructs are of critical concern (OpenMP, 2021).

The first one is “omp atomic.” If multiple threads need to access

or modify the same variable, this directive allows them to touch this

specific memory location atomically without causing any race

conditions. Hence, atomic directive could help build more

efficient concurrent algorithms with fewer locks. In addition, it

has four clauses for different purposes, update (default), read,

write, and capture. The other one is “omp barrier.” It specifies an

explicit barrier at a point in the code where each thread must wait

until all threads of the team have completed their explicit tasks in the

associated region and arrived to this point.

3.2 Performance metrics

The measurement of parallel performance is the speedup,

which is defined as the ratio of the sequential runtime (Ts) and

the parallel runtime while using p processors (Tp) to solve the

same problem. Also, efficiency (ϵ) is a metric of the use of the

resources of the parallel system, the value of which is typically

between 0 and 1.

Sp � Ts

Tp
� T1

Tp
, ϵp � Sp

p
. (16)

According to Amdahl’s law (Quinn, 2003), the maximum

speedup Sp that can be achieved when using p processors depends

on the sequential fraction of the problem (fs).

Sp � 1

fs + 1−fs

p

→ lim
p→∞

Sp � 1
fs
. (17)

For example, if 10%ofwork in a problem is remained serial, then

themaximum speedup is limited to 10 times as fast even if more and

more computing resources are devoted. Therefore, real applications

generally have sublinear speedup (Sp < p), due to the parallel

overhead, such as task start-up time, load balance, data

communications and synchronizations, and redundant

computations, etc.

4 Test problem

The parallel performance of designed codes in this work are

determined by a steady-state problem, in which all control rods

are kept out of the C5G7 3D core from the OECD/NEA

deterministic time-dependent neutron transport benchmark,

which is proposed to verify the ability and performance of the

transient codes without neutron cross-section spatial

homogenization above the fuel pin level (Boyarinov et al.,

2016) (Hou et al., 2017). It is a miniature light water reactor

with eight uranium oxide (UO2) assemblies, eight mixed oxide

(MOX) assemblies, and the surrounding water moderator/

reflector. In addition, the C5G7 3D model is a quarter core,

and fuel assemblies are arranged in the top-left corner. For the

sake of symmetry, the reflected condition is used for the north

and west boundaries, and the vacuum condition is considered for

the rest six surfaces. Figure 2A shows the planar and axial

configurations of the C5G7 core. The size of the 3D core is

64.26 cm × 64.26 cm × 171.36 cm, and the axial thickness is

equally divided into 32 layers.

Moreover, the UO2 assemblies and MOX assemblies have the

same geometry configurations. The assembly size is 21.42 cm ×

21.42 cm. There are 289 pin cells in each assembly arranged as a

17 × 17 square (Figure 2B), including 264 fuel pins, 24 guide

tubes, and 1 instrument tube for a fission chamber in the center of

the assembly. The UO2 assemblies contain only UO2 fuel, while

the MOX assemblies include MOX fuels with three levels of

enrichment: 4.3%, 7.0%, and 8.7%. Moreover, each pin is

simplified into two zones in this benchmark. Zone 1 is the

homogenized fuel pin from the fuel, gap, and cladding

materials, and zone 2 is the outside moderator (Figure 2C).

The pin (zone 1) radius is 0.54 cm, and the pin pitch is 1.26 cm.

The MOC sweep was performed with the Tabuchi-

Yamamoto quadrature set with 64 azimuthal angles and

3 polar angles, and the ray spacing was 0.03 cm. In
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addition, as for the geometry discretization, eight azimuthal

flat source regions for each pin cell and three radial rings in

the fuel regions were utilized for the spatial discretization.

Differently, the moderator cells were divided into 1 × 1 coarse

mesh or 6 × 6 fine mesh according to their locations in the

core. The convergence criteria to the iterative functions are

set as follows:

• Generalized minimal residual method (GMRES) in the

ML-CMFD solver: 10–10

• Eigenvalue (keff): 10
–6

• MOC flux: 10–5

This study is conducted in the “Current” cluster at Purdue

University, the mode of which is Intel(R) Xeon(R) Gold

6152 CPU @ 2.10GHz, and it has 2 nodes and 22 CPUs for

each node.

5 Method of characteristics sweep
parallelism

In the MOC technique, the calculation on each

characteristic track is almost independent of others, which

make it naturally parallel. Such ray decomposition is often

implemented using the shared memory model, for example,

OpenMP. However, it involves parallelizing the for-loops

over the long tracks of all azimuth angles, and one of the

major challenges is tackling with the load balance issue

because the length of such tracks can be very different

from one another. For example, the red track is

significantly longer than the green track in Figure 1.

Moreover, in order to update the average flux for each FSR

(Eq. 15), the conventional hybrid MPI/OpenMP parallel

approach is to have each thread compute the partial sums.

While sweeping the long tracks associated with each

azimuthal angle, the reduction operation is happening to

accumulate the partial results on each thread, and this

process has to be protected by the omp atomic clause.

Nevertheless, it has been demonstrated in our previous

research (Tao and Xu, 2022b) that the atomic operation

itself has consumed more than 40% of the MOC

sweeping time.

In this work, the parallelism of ray sweeping is optimized on

the OpenMP schedule to take advantage of the shared memory

architecture, and three parallel schedules on the MOC sweep will

be explored. The first one is the long-track (LT) schedule, which

is the typical parallelism of the MOC sweeping and used to

demonstrate the aforementioned difficulties. The second one

is the equal-segment (SEG) schedule, which provides the

almost load-balanced partition. The third one is the no-

atomic schedule, which bypasses the atomic operation

through an innovative arrangement of the ray-sweeping

sequence. All discussions in this section are based on the

WCP model (Tao and Xu, 2022b) to take advantage of the

minimal overhead of creating and destroying parallel regions,

and the Flag-Save-Update reduction method developed by

Tao and Xu (2022a) is used.

FIGURE 2
Geometry and composition of theC5G7-TDbenchmark. (A) Planar and axial views of 1/4. (B) Fuel pin compositions and number scheme. (C) Pin
cell.
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5.1 Long-track schedule

5.1.1 Design
This schedule is intuitive and classical. Since the MOC sweeping

is carried out along all long tracks for all azimuth angles individually,

the computation of the incident angular flux (φin
p(Ω)), the outgoing

angular flux (φout
p (Ω)), and track-average angular flux (�φp(Ω)). Eqs

12, 13, 14 are performed on the segments of certain long tracks

corresponding to one azimuth angle. In the code implementation, the

flux array has four dimensions: azimuth angle, long-track index

related to the azimuth angle, polar angle, and energy

group. Therefore, the MOC sweeping loop could be partitioned

by the “#pragma omp for” with a default schedule (i.e., static

schedule) at the level of total long tracks of all azimuthal angles,

as the Algorithm 1 suggests. For example, when applying six MPI

processors and six OpenMP threads to the C5G7-3D core as

illustrated in Figure 3, the number of long tracks and

segments taken care by each thread is tabulated in

Table 1. It is obvious that each thread manages a similar

number of long tracks, but the number of segments could be

greatly distinctive as long tracks could trespass different

regions and have different segment lengths inside the

reactor core as shown in Figure 1. Additionally, in order

to update the flux for each FSR and the current on the

domain boundaries, “#pragma omp atomic” is implemented

to guarantee the correctness of data synchronization.

Algorithm 1. Long-track schedule.

5.1.2 Performance
In order to compare the hybrid parallel performance, the

tested total number of threads was fixed as 36, and all groups of

number of MPI processor and OpenMP threads are tabulated in

Table 2. Now that the C5G7 3D core has 51 × 51 assemblies in the

x−y plane and 32 layers in the axial direction, the number of MPI

processors in each direction is intentionally defined to evenly

attribute the subdomains to each MPI processor. In addition, all

tests were executed five times to minimize the measurement

error, and the average run time was used for the further

performance analysis.

The measured run time for the MOC sweep is plotted in

Figure 4A, and the speedup and efficiency are shown in

Figure 4B, which are computed based on the run time for the

MOC sweeping from the PMPI model with a single MPI

processor (3938.421773 s) (Tao and Xu, 2022b). It is

noticeable that all tests gave sublinear speedup, as the

obtained speedup results are smaller than 36. Moreover,

comparing the achieved speedup among all tests, (4,9) >
(2,18) > (36,1), and the rest of the groups are slightly less

than (36,1). There are several reasons for such unsatisfied

behavior.

First is the unbalanced workload among spawn OpenMP

threads. For tests with (1,36), (2,18), and (4,9), there are no

MPI partition in the x−y plane and workload is

approximately balanced for MPI processors in the axial

direction; hence, all calculations related to the 2D MOC

sweeping in each axial layer were accomplished by the

OpenMP threads standalone. As mentioned before, the

OpenMP separates the sweeping tasks on the total long

track level, which makes the work per thread become more

unbalanced when more threads were executed. For the MPI

rank 0 at the center layer, the relative difference of the actual

computed number of segment and the average number of

segment, which is the number of perfect balanced

distribution, on each launched OpenMP thread are

computed as in Eq. 18 and depicted in Figure 5.

FIGURE 3
MPI partition in the C5G7 3D core when MPI-(x, y, z)= (3, 1, 2).
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REp � Segmentp∑P−1
p�0Segmentp

P

− 1
⎛⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎠*100%. (18)

Apparently, the sweeping job is distributed in a more

balanced way among the threads for (4,9) than for (2,18) and

(1,36), although its relative error is in the range of [−11%, 8%],

which is consistent with the speedup results (4.9) > (2,18)

> (1,36).

Second is the overhead caused by the communication

among spatial subdomains, especially in the x−y directions.

Figure 4B shows that the speedup measured from test (2,18) is

much larger than test (18,2). There are two significant

differences in these two tests: 1) the load unbalanced issue

is more severe when executing 18 OpenMP threads than that

while using two OpenMP threads, and 2) there is additional

domain decomposition in the x−y directions when running

with 18 MPI processors, as stated in Table 2. As is well known,

to perform the MOC sweeping along each long characteristic

track, the outgoing angular flux at the previous subdomain is

considered as the incident value for the next subdomain.

Although all subdomains are allowed to solve their local

problems concurrently, when having decomposition in the

x−y plane, the interior subdomains will not have the

boundary/interface conditions ready until they have been

exchanged through all other subdomains across the

interior interfaces and the problem boundaries, which

means that the overhead brought by the data exchange

across the subdomain interfaces is unavoidable.

Particularly, the more synchronization points there are, the

greater the synchronization execution latency overhead is.

Therefore, the communication overhead is the major cause of

the dissatisfied performance when having spatial partition in

the 2D plane, such as in tests (18,2), (12,3), and (6,6), and it

has overwhelmed the load balance problem in test (2,18).

Third is the overhead caused by the synchronization

points. Figure 4B exhibits that test using (36,1) gave

slightly larger speedup than (1,36). The data

synchronization performed by the “#pragma omp atomic”

statement in this solver is worth further investigation. To

understand its significance, numerical experiments with

“#pragma omp atomic” used or removed from the MOC

sweeping part were conducted using the number of MPI

processors and OpenMP threads equal to (1,1) and (36,1).

Figure 8 shows the collected run time for the entire steady-

state calculation and MOC sweeping solver along the run

time of the PMPI model with an identical number of MPI

processors. Even though there is only one OpenMP thread

launched, when running without the “atomic” procedure,

the measured run-time cost by the MOC sweep is only

around 55% of the run time when the “atomic” is enacted.

In other words, the access of a specific memory location

atomically has consumed about 45% of run time all by itself

even when there is only one thread enqueue. Furthermore,

the run-time cost by the experiments without the atomic

process is about 87% of the PMPI test. Therefore, the major

factor that makes the speedup and efficiency unpromising

could be the omp atomic structures defined in the MOC

solver to avoid the race condition and ensure the correct data

synchronization.

TABLE 2 Combinations of the tested number of MPI and OpenMP
threads.

Total thread MPI OpenMP MPI-(x,y,z)

36 1 36 (1,1,1)

36 2 18 (1,1,2)

36 4 9 (1,1,4)

36 6 6 (3,1,2)

36 12 3 (3,1,4)

36 18 2 (3,3,2)

36 36 1 (3,3,4)

TABLE 1 umber of long tracks and segments of the OpenMP thread for the LT schedule.

OpenMP thread MPI rank= 0,1,3,4 MPI rank= 2,5

Long tracks Segment Long tracks Segment

0 9,906 1,515,686 9,906 708,096

1 9,906 1,795,207 9,906 929,113

2 9,905 2,556,828 9,905 1,236,180

3 9,905 2,556,366 9,905 1,235,878

4 9,905 1,713,740 9,905 911,039

5 9,905 1,597,613 9,905 726,470

total 59,432 11,735,440 59,432 5,746,776
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5.2 Equal-segment schedule

5.2.1 Design
As discussed in Section 5.1, it has great influence on the

parallel performance that whether or not the workload

distribution among the OpenMP threads is balanced. This

section concentrates on a new schedule on the OpenMP

partition, equal segment (SEG), that spreads the ray sweeping

to all threads as unbiased as possible.

The fundamental unit of the calculations involved in the

MOC sweep is the segment, which is the small chunk of the

characteristic tracks intersected by the core geometries or

materials. Due to the complex compositions within a reactor

core, the number of segments for each long track could be

significantly dissimilar as illustrated in Figure 1. Instead of

directly separating the long tracks to each thread as in the

long-track schedule, each OpenMP thread is expected to take

care of a similar number of segments while sweeping on the

characteristic long tracks, in this schedule.

In order to separate the segments as evened as possible, the

total number of segments of all long tracks concerning all

azimuthal angles is first tallied, and then, the average number

of segments for each OpenMP thread is evaluated based on the

executed number of OpenMP threads.With this average number,

the thread-private start and end index of the long tracks

associated to an individual thread could be determined. All of

suchmanipulations could be finished right after the characteristic

track construction of modular ray tracing in the geometry

treatment, for that reason the for-loop partition finished by

the “#pragma omp for” statement is eliminated from the

MOC solver whenever it is called. With the thread private

start and end track index known, the calculation fashion for

the ray sweeping is maintained in an identical manner to that in

the LT schedule. Nevertheless, the reduction operation is still

secured by the omp atomic clauses for now. The detailed

algorithm is listed in Algorithm 2.

Applying six MPI processors and six OpenMP threads to the

C5G7 3D reactor core as illustrated in Figure 3 and using this

SEG schedule, the number of long tracks and segments per thread

are tabulated in Table 3. The contrast between Tables 3,1

demonstrates the difference between the LT schedule and the

SEG schedule. The SEG schedule provides an unequal number of

long tracks but closer number of segments within each OpenMP

thread, which yields more balanced workload among threads

and, therefore, shorter waiting time for synchronization.

5.2.2 Performance
We repeat the numerical experiments using the same MPI

processor and OpenMP thread groups as in Section 5.1. The

measured run time of theMOC sweep is manifested in Figure 6A,

and the speedup and efficiency are shown in Figure 6B, which are

again computed based on the MOC time from the PMPI model

with a single MPI processor (3938.421,773 s) (Tao and Xu,

FIGURE 4
Performance of the MOC long-track schedule. (A) Run time. (B) Speedup and efficiency.
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2022b). It is revealed that all tests achieved larger speedup than

(36,1), except that (18,2) is 4.8% smaller than (36,1). Similar to

the LT schedule, (4,9) presented the best parallel performance

among all groups.

Moreover, a comparison of the speedup of the LT and

SEG schedules demonstrates that they have similar speedup

when running with (36,1) and (18,2) because their load

balance situations are nearly equivalent in these

circumstances. However, SEG has accomplished greater

speedup for cases with number of OpenMP threads

≥3 because of the better workload distribution. According

to Eq 18, the relative errors of the actual number of segments

and the ideal number of segments in each thread are

evaluated and drawn in Figure 7, and they are within the

range of ±0.08%. It illustrates that the SEG schedule ensures

that the task distribution among all threads is approximately

balanced, and there is limited overhead introduced to the

calculation by this factor.

However, the achieved optimal efficiency for the SEG

schedule is 0.46, which indicates the overhead brought by the

omp atomic clause is playing a vital role in restricting the

speedup. The measured run time for the overall steady-state

calculation and MOC sweeping solver by repeating the

simulations with and without “#pragma omp atomic” are

plotted in Figure 8. Similar to the LT schedule, in spite of

the number of MPI processors, the time consumed by the

“#pragma omp atomic” here is about 45% of the MOC

sweeping when there is only a single OpenMP thread

undertaking the sweeping tasks.

In short, the SEG schedule has alleviated the overhead

brought by load unbalanced issue by pre-computing the start

and end track index to equalize the number of segments in each

executed thread, but the cost of the omp atomic operation in the

calculations is still a significant issue that jeopardizes the parallel

improvements.

5.3 No-atomic schedule

5.3.1 Design
In the OpenMP parallel, the atomic clause allows access of a

specific memory location atomically and ensures that race

conditions are avoided through direct control of concurrent

threads that might read or write to or from the particular

memory location (Quinn, 2003). In general, with the

“#pragma omp atomic,” update will be a more efficient

concurrent algorithm with fewer locks. However, in our tests

discussed in the previous sections, the atomic operations within

theMOC sweep can cost as much as 45% of the execution time all

by itself, which is extremely inefficient and unaffordable for

solving a whole-core pin-wise problem. Given that all the

omp atomic clauses are utilized to protect the global

quantities, such as flux of each FSR and current at subdomain

boundaries, the essential task to eliminate such statements is to

avoid sweeping the segments associated with the same FSR

simultaneously in order to guarantee the race-free condition.

In this part, this concept is accomplished by reshuffling the

sweeping sequence of the long tracks for each OpenMP thread

without using any additional memories or any revisions on the

sweeping functions. This design is called no-atomic schedule,

which will be explained with an example.

Figure 9A describes a partition of the long tracks using four

threads utilizing the SEG schedule, in which OpenMP parallelizes

all long tracks corresponding to all azimuthal angles together,

and each thread takes care of a similar number of segments. The

red lines stand for the splitting of the long tracks among threads.

FIGURE 5
Segment relative deviation from the average number at the 0th MPI processor.
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TABLE 3 umber of long tracks and segments of the OpenMP thread for the SEG schedule.

OpenMP thread MPI rank= 0,1,3,4 MPI rank= 2,5

Long tracks Segment Long tracks Segment

0 12,438 1,955,966 12,710 957,836

1 10,377 1,955,851 9,957 957,786

2 6,903 1,955,905 7,050 957,767

3 7,097 1,955,988 7,149 957,891

4 10,518 1,955,975 10,026 957,797

5 12,099 1,955,755 12,540 957,699

Total 59,432 11,735,440 59,432 5,746,776

FIGURE 6
Performance of the MOC equal-segment schedule. (A) Run time. (B) Speedup and efficiency.

FIGURE 7
Segment relative deviation from the average number at the 0th MPI processor.
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Given that the number of segment in each long track is

significantly different, it is possible that thread 0 is working

on the brown track while thread 1 is still on the blue track. Then,

the same memory associated with one FSR might be touched by

multiple threads at the same time. In this scenario, the “#pragma

omp atomic” statement is necessary to protect the calculation

from the potential race conditions. However, if thread 0 is

handling the green track while thread 1 is on the blue track,

all involved segments are related to different FSRs, which makes

the race conditions non-existent. Consequently, the omp atomic

clause now is unnecessary for the calculation correctness.

Inspired by this observation, it is feasible to get rid of the

omp atomic clause by deliberately scheduling the adjacent

threads dealing with the segments or long tracks

corresponding to different FSRs during the entire calculation.

In the previous LT and SEG schedules, the MOC sweeping

is operated on a single layer of for-loop pertaining to the total

number of long tracks accumulated from all azimuthal angles

in half space. However, here, we break this effort to two

layers: azimuthal angle and its corresponding long tracks, and

the OpenMP parallelism is applied on the long-track layer

related to the same azimuthal angle. For each azimuthal angle

in half space, the long-track partition is prepared in the

following steps:

1 We compute total number of segments (Stot), average

number of segments per thread (Sthd = Stot/Nomp), and half

average number of segments per thread (Shalf = Stot/(2*Nomp)),

where Nomp is the number of launched OpenMP threads

2We partition the long tracks based on the average number of

segment per thread Sthd, which is similar to the concept of SEG

3 For each thread, its long tracks are further divided into two

groups based on the half average number of segment per

thread (Shalf), which is the baseline for rearranging the track-

sweeping sequence and assuring that the neighboring threads

will not touch the same FSR simultaneously

For instance, in Figure 9B, starting from the SEG partition

(red lines), after the aforementioned three steps, the long

tracks are split into two equal-segment parts for each

OpenMP thread, which are depicted as the blue and white

parts. In this situation, if all threads are working on the blue

part, then they will never read and update the same memory

concurrently. Therefore, the atomic clause could be removed

from the code. Nevertheless, the trade-off of this schedule is

that an explicit barrier is required to make sure that all blue

parts are finished sweeping before any threads start working

on the white part. Eq. 19 is the coarse criterion of feasibility of

the no-atomic schedule, where Nx and Ny are the number of

rays in x and y pin cell boundaries, respectively, determined

by Eq. 7. For each azimuthal angle, if Shalf meets this

requirement, when all threads are sweeping the same

group of long tracks (e.g., the blue part in Figure 9B), the

first long track of one thread and the last long track of the

previous thread are guaranteed at least one pin cell away from

each other, and in this manner, the memory associated with

one FSR will be only accessed by a single thread at one time.

On the contrary, if Shalf fails to satisfy this formula, it cannot

be claimed with full confidence that the race conditions have

been exclusively eliminated from the MOC sweep solver.

Accordingly, a smaller number of OpenMP threads will be

advised, and the code will print a warning and be terminated

immediately.

Shalf α( )≥Nx α( ) +Ny α( ). (19)

In addition, the detailed algorithm of the no-atomic

schedule is explained in Algorithm 3. In the actual design,

the explicit barrier is included after each pair of forward and

backward ray tracing to guarantee that all blue parts are

finished before any threads shift to white parts in Figure 9B,

which is the only synchronization point to avoid any

potential race conditions.

FIGURE 8
Performance with and without “#pragma omp atomic.” (A) #(MPI, OpenMP)= (1,1). (B) #(MPI, OpenMP)= (36,1).
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Algorithm 3. No-atomic schedule

5.3.2 Performance
Repeating all the tests investigated in the previous sections

using this newly developed no-atomic schedule, the measured

run-time is plotted in Figure 10A, and the speedup and efficiency

are shown in Figure 10B, which are evaluated using the MOC

sweeping run-time from the PMPI model with a single MPI

processor (3938.421,773 s) (Tao and Xu, 2022b). The speedup

results of the LT schedule and SEG schedule are displayed in the

figure altogether for comparison. Figure 10A illustrates that when

using comparable computing resources, all tests are faster than

(36,1), except (18,2), which is 9.45% slower. In addition,

Figure 10B shows that the speedup obtained from the no-

atomic schedule is about 1.5–1.8 times that from the SEG

schedule, and now, the maximum parallel efficiency is

0.686 and the minimum efficiency is 0.529. On the contrary,

FIGURE 9
Example of the no-atomic schedule. (A) SEG schedule. (B) No-atomic schedule.

FIGURE 10
Performance of the no-atomic schedule. (A) Run time. (B) Speedup and efficiency.
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the obtained efficiency for the MOC sweep in the PMPI code

when using 36 MPI processors is 0.512. It indicates that the

performance of the no-atomic schedule has exceeded the

previous two schedules and the pure MPI parallel at all tests

when executing the same total number of threads.

The overhead in this schedule could be caused by the explicit

omp barrier at line 24 in Algorithm 3 and spatial decomposition

as discussed in Section 5.1.2. Since we already demonstrated in

Section 5.2 that the sweeping workload has been distributed to

threads as balanced as possible, the load balance problem is not a

worry for the overhead anymore. As for the explicit barrier

inserted in this schedule, it is an unavoidable trade-off

between removing omp atomic clauses from the code and

enforcing the data operated correctly. Thus, the principal issue

left now is the communication between the MPI subdomain

boundaries. To validate this assumption, additional tests were

conducted using 32 threads, which is the number of axial layers of

the C5G7 3D core. Also, all MPI processors are applied to the

axial partition, so there is no MPI communicating overhead for

MOC variables. The obtained speedup and efficiency are

illustrated in Figure 11. In this situation, the maximum

efficiency is 0.871 at (32.1), and the rest of the tests are having

parallel efficiency around 0.70. Therefore, it hints that the

communication among the x–y directional subdomains has

created overhead for the parallelization in the aforementioned

experiments using 36 threads.

6 Whole-code OpenMP
optimizations

As explained by Tao and Xu (2022b), the parallel

performance achieved from the WCP model is better than

FIGURE 11
Performance of the no-atomic schedule (total thread= 32).

FIGURE 12
Performance comparison with total threads as 36 (o: optimized algorithm and d: default method). (A) Speedup: ML-CMFD. (B) Speedup: MOC
sweep. (C) Speedup: steady state. (D) Efficiency: steady state.
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that from the SGP model, which is the conventional fashion

of hybrid MPI/OpenMP parallelization, yet not comparable

to the PMPI model. The improvement on the hybrid

reduction in the ML-CMFD solver and parallelism of

MOC sweeping are desired to optimize the WCP code and

make it at least a match for the PMPI code. In this article, we

have revolved the obstacle for the MOC sweep, and the

measured speedup for the MOC sweep has outperformed

the MOC sweep in the PMPI model using identical total

number of threads (Figures 10, 12B). The improvement on

the hybrid reduction in the ML-CMFD solver is thoroughly

discussed by Tao and Xu (2022a), and here is a brief

description.

The reduction in the hybrid MPI/OpenMP codes is

generally completed by the omp reduction clause and MPI

reduction routines, which contains implicit barriers to slow

down the calculations. In order to get rid of such

synchronization points, the Flag-Save-Update reduction

algorithm was developed by Tao and Xu (2022a). In this

algorithm, two global arrays are defined to store the partial

results and the status flag of each OpenMP thread, and the

threads are configured as a tree structure to favor the

reduction procedure. Instead of waiting for all OpenMP

threads to have their partial results ready, here, once the

status flag shows the work in one thread is performed, its

parent thread will collect this result immediately and flip the

flag. When all partial results are collected, the

MPI_Allreduce() routine is called to generate the global

solution. Therefore, it contains no barriers, and the

calculation flow it is controlled by the status flags. The

detailed information could be found in Tao and Xu

(2022a), in which we have demonstrated that the Flag-

Save-Update reduction could provide better speedup than

the conventional hybrid reduction algorithm, which

nevertheless is still smaller than the MPI_Allreduce()

standalone in the PMPI model.

The comparison of the performance obtained from the

PMPI model (dashed blue line), the original WCP using

default methods [green line, labeled as (d)], and the

optimized WCP [pink line, labeled as (o)] is illustrated in

Figure 12. When focusing on the improvement of ML-CMFD

and MOC, Figure 12A illustrates that the optimized reduction

algorithm can effectively improve the speedup when a large

number of OpenMP threads is launched, but the performance

of the CMFD solver is still affected by the overhead from load

balance, communication, and also restricted by the hardware

properties, such as cache size. Meanwhile, the no-atomic

schedule can successfully enhance the parallel performance

as demonstrated in this article. While The ML-CMFD solver

using the Flag-Save-Update reduction is still not as efficient

as PMPI using MPI_Allreduce() standalone, the

advancement achieved from the optimized MOC sweep

schedule is large enough to offset such weakness. Therefore,

the steady state of the optimized WCP code has accomplished

much better speedup and parallel efficiency than the original

WCP code and comparable to or even greater than the PMPI

code as explained in Figures 12C,D.

7 Summary and conclusion

In order to improve the parallel efficiency of the MOC sweep,

this study presented the development and implementation of

three different schedules for the MOC sweep module in theWCP

model of PANDAS-MOC: the long-track (LT) schedule, equal-

segment (SEG) schedule, and no-atomic schedule. All algorithms

are accomplished by updating the partition approach and

rearranging the sweeping order of the characteristic rays. In

the LT and SEG schedules, the azimuthal angles and their

associated characteristic tracks were condensed to a total

number of long tracks, and then, the OpenMP partition was

performed on this level. The LT schedule was straightforwardly

adding the omp for directive on the long-track iteration, which

led to a remarkable load-unbalanced issue for runs with a large

number of OpenMP threads, and its parallel efficiency was

found to be significantly affected by the omp atomic process as

well, which was introduced for preventing the race conditions.

Next, the SEG schedule deliberately separated the sweeping

task according to the total number of segments and number of

executed threads so that the workload was distributed among

OpenMP threads as equalized as possible. In contrast to the LT

schedule, its speedup has moderately improved yet still limited

by the omp atomic directives. Finally, based on the SEG

concept, the no-atomic schedule further removed all omp

atomic clauses by the rearrangement of the sweeping

sequence of long-track batches. Using the same numerical

experiments, the no-atomic schedule has demonstrated

much greater parallel performance than the previous two

schedules. Its maximum parallel efficiency for the MOC

sweeping was 0.686 when the total number of threads was

36 and 0.872 when using 32 threads and without MPI

communication among subdomains in x–y directions.

Particularly, when using 36 threads, all tested points have

accomplished a better parallel efficiency than the PMPI

code, and this improvement is large enough to compensate

the deficiency in the hybrid MPI/OpenMP reduction in the

ML-CMFD solver and makes the optimized WCP model more

efficient than the PMPI model. In brief, the no-atomic schedule

designed in this work can present performance beyond the pure

MPI and traditional hybrid parallel styles without consuming

extra memories. Future work could further decrease the

overhead caused by the intro-node communications between

the spatial subdomains for distributed memory parallelism for

better efficiency.
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