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The coarse mesh finite difference (CMFD) technique is considered efficiently in

accelerating the convergence of the iterative solutions in the computational

intensive 3D whole-core pin-resolved neutron transport simulations. However,

its parallel performance in the hybrid MPI/OpenMP parallelism is inadequate,

especially when running with larger number of threads. In the original Whole-

code OpenMP threading hybrid model (WCP) model of the PANDAS-MOC

neutron transport code, the hybrid MPI/OpenMP reduction has been

determined as the principal issue that restraining the parallel speedup of the

multi-level coarse mesh finite difference solver. In this paper, two advanced

reduction algorithms are proposed: Count-Update-Wait reduction and Flag-

Save-Update reduction, and their parallel performances are examined by the

C5G7 3D core. Regarding the parallel speedup, the Flag-Save-Update reduction

has attained better results than the conventional hybrid reduction and Count-

Update-Wait reduction.
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1 Introduction

3D whole-core pin-resolved modeling is the state-of-the-art of computational

simulation of the neutron transport in the nuclear reactors. Nevertheless, the

computational intensiveness makes solving such problems quite challenging, especially

for time-dependent transient analysis, where multiple steady-sate eigenvalue and

transient fixed-source problems need to be resolved. One popular low-order

acceleration scheme for accelerating the convergence of transport solutions is the

coarse mesh finite difference (CMFD) method, which was first proposed for nodal

diffusion calculation in 1983 (Smith, 1983). It formulates the pinwise core matrices based

on the 3D spatial and energy meshes that can be solved simultaneously, and therefore,

considerably increases the converge rate of the transport equation.
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PANDAS-MOC (Purdue Advanced Neutronics Design

and Analysis System with Methods of Characteristics) is a

neutron transport code being developed at Purdue University

(Tao and Xu, 2022b), and the purpose of which is to provide

3D high-fidelity modeling and simulation of the neutronics

analysis in reactor cores. In this code, the 2D/1D method is

utilized to estimate the essential parameters to the safety

assessment, such as criticality, reactivity, and 3D pin-

resolved power distributions, etc. Specifically, the radial

solution is determined by the Method of Characteristics

(MOC), the axial solution is resolved by the Nodal

Expansion Method (NEM), and they are coupled by the

transverse leakage. Furthermore, the transport solver is

accelerated by the multi-level (ML) CMFD, which is

composed by the mutually accelerated multi-group (MG)

and one-group (1G) CMFD schemes. However, in the serial

computing, the ML-CMFD solver has consumed about 30% of

the computation time of the steady state (initial state)

calculation in the C5G7 3D test (Tao and Xu, 2022b).

Therefore, further acceleration tools shall be considered to

improve its efficiency while maintaining the accuracy for the

rapid flux changes.

With the considerable increase in the computational

power, parallel computing has been widely considered in

the high-fidelity neutronics analysis codes, such as

DeCART (Joo et al., 2004), MPACT (Larsen et al., 2019),

nTRACER (Choi et al., 2018), OpenMOC (Boyd et al., 2016),

STREAM (Choi et al., 2021), ARCHER (Zhu et al., 2022) etc.,

in order to improve the performance of solving the neutron

transport equations in the nuclear reactors. Similarly, several

parallel models of the PANDAS-MOC have been developed

based on the nature of distributed and shared memory

architectures, including the Pure MPI parallel model

(PMPI), Segment OpenMP threading hybrid model (SGP),

and Whole-code OpenMP threading hybrid model (WCP).

The detailed design descriptions and parallel performance are

presented in Ref (Tao and Xu, 2022a). It is demonstrated that

the WCP model costs less memory to finish the calculation,

but still needs further improvement in the ML-CMFD solver

and the MOC sweep solver in order to attain comparable, even

exceptional, performance to the PMPI code in order to show

the benefits of the hybrid memory architectures. The

improvement of the MOC sweep solver is discussed in Ref.

(Tao and Xu, 2022c), and this article will concentrate on the

optimization of the ML-CMFD solver.

Additionally, while executing large amounts of processors in

hybrid MPI/OpenMP cases, the parallel performance of CMFD

could be quite inadequate (Tao and Xu, 2020), which is also true

in the WCP model of PANDAS-MOC. In Ref (Tao and Xu,

2022a), it is found that one major challenge of the hybrid parallel

of ML-CMFD is the reduction operation, which is the principal

problem we are trying to resolve in this work. In this paper, we

will firstly discuss the conventional hybrid OpenMP/MPI

reduction pattern, which is also utilized in the WCP code in

the first place. Then two innovative reduction algorithms will be

proposed: Count-Update-Wait reduction and Flag-Save-Update

reduction. Next, the parallel performance for the ML-CMFD

solver implementing those three reduction methods are

measured and contrasted with each other, which is expected

to demonstrate the breakthrough of the newly designed

reduction methods. Last, the performance of the optimized

WCP mode will be briefly discussed to show the overall

improvement from the novel hybrid reduction algorithm and

MOC parallelization schemes.

2 Methodology

2.1 PANDAS-MOC methodology

This section will briefly introduce the methodology of the

PANDAS-MOC, highlighting the concepts that are most relevant

for this work. The detailed derivations can be found in Ref. (Tao

and Xu, 2022b). The transient method starts with the 3D time-

dependent neutron transport equation Eq. 1 and the precursor

equations Eq. 2:

1
vg r( )

zφg r,Ω, t( )
zt

� −Ω · ∇φg r,Ω, t( ) − Σtg r, t( )φg r,Ω, t( )

+ Ssg r,Ω, t( ) + χg r( )
4π

SF r, t( )

+ 1
4π

∑
k

χdgk λkCk r, t( ) − βkSF r, t( )( )
(1)

zCk r, t( )
zt

� βk r( )SF r, t( ) − λk r( )Ck r, t( ), k � 1, 2, . . . , 6 (2)

The terms χg, Ssg and SF are the average fission neutron

spectrum, scattered neutron source, and prompt fission neutron

source, and they are defined as Eq. 3, Eq. 4, and Eq. 5 respectively.

The definitions of the rest variables are summarized in Table 1.

χg � χpg +∑
k

βk χdgk − χpg( ) (3)

Ssg r,Ω, t( ) � ∑
g′
∫

4π
Σg′g r,Ω′ · Ω, t( )φg′ r,Ω′, t( )dΩ′ (4)

SF r, t( ) � 1
kseff

∑
g′
]Σfg′ r, t( )∫

4π
φg′ r,Ω, t( )dΩ (5)

To numerically solve the transport equation, several

approximations are considered:

1. Angular flux: Exponential transformation

2. Time derivative term: Implicit scheme of temporal integration

method

3. Fission source: Exponential transformation and linear change

in each time step
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4. Densities of delayed neutron precursors: integrating Eq.2 over

time step

Accordingly, Eq. 1 can be transformed to the Transient Fix

Source Equation, and the Cartesian form of which is:

η
z

zx
+ ϵ z

zy
+ μ

z

zz
( )φn

g r,Ω( ) + Σn
tg r( )φn

g r,Ω( )

� Snsg r,Ω( ) + 1
4π

χg r( )SnF r( ) + Snntg r( ) + Sn−1trg r( )[ ]
(6)

where

r � x, y, z( ), Ω � μ, α( ), η � sin θ cos α, ϵ � sin θ sin α

Sn−1trg r( ) � Sn−1dcg r( ) + Sn−1dtg r( ), Sn−1dcg r( ) � ∑
k

χdkgλkĈ
n−1
k r( )

Sn−1dtg r( ) � ϕn−1
g r( )

En
g r( )Δtnvg r( ), Snntg r( ) � χ̂gS

n
F r( ) − Σn

dgϕ
n
g

En
g r( ) � e−α

n
g r( )Δtn , αng � logPtot

n − logPtot
n−1( )/Δn−1,

Σn
dg � αng

vg
+ 1
Δtnvg

Instead of directly resolve the computational-intensive

3D problem, it is converted to a radial 2D problem and an

axial 1D problem, which is conventionally referred to as the

2D/1D method. The 2D equation is obtained by integrating

Eq. 6 axially over the axial plane (∫zt

zb
dz) and solved by the

MOC method, and the 1D equation is obtained by radially

integrating over a box (∫ ∫Adxdy) and solved by the NEM

method. Then the 2D radial solution and 1D axial solution

are coupled by the transverse leakage. Besides, the ML-

CMFD approach is implemented to accelerate the

convergence for solutions to the Transient Fix Source

Equation. Since this paper concentrates on the

performance improvement on the ML-CMFD solver, the

details of MOC and NEM are omitted for brevity and the

details could be found in Ref (Xu and Downar, 2012) (Tao

and Xu, 2022b) (Tao and Xu, 2022c).

2.2 Multi-level CMFD method

The transport equation is generally very hard to be solved for

large reactor cores. But the finite difference equation for neutron

diffusion equation can be solved very efficiently for nuclear

reactor (Hao et al., 2018) (Tao and Xu, 2020). In the

PANDAS-MOC implementation, the CMFD is implemented

by overlaying a 2D Cartesian mesh over the FSR meshes. The

coarse mesh layout used for solving a 17 × 17 PWR assembly

problem is illustrated in Figure 1B, where each colored cell

denotes a different region. While performing MOC sweeping,

each CMFD region could be further discretized to multiple flat

source regions, as shown in Figure 1C. The bridges connecting

two mesh layouts are the variable homogenization and current

coupling coefficients.

The MG-CMFD formulations are obtained from integrating

the transient transport equation over a 4π and over the node n of

interest. The equation for steady state is listed in Eq. 7 and for

transient analysis is written in Eq.9. In addition, the 1G-CMFD

equations are determined via collapsing the energy dimension

from the MG-CMFD formula, and Eq.8 and Eq.10 are the steady

state and transient equation respectively.

1
Vc

∑
s

Ac
s

~̃D
c

g,s
�ϕ
n
g − ~̃D

s

g,c
�ϕ
n,s
g( ) + Σn

rgϕ
n
g − ∑

g′≠g
Σn
gg′ϕ

n
g′ � λn−1χgS

n−1
F

(7)
1
Vc

∑
s

Ac
s

~̃D
c

A,s
�ϕ
n
A − ~̃D

s

A,c
�ϕ
n,s
A( ) + Σn

rA − λs]Σn
fA( )ϕn

A

� λn−1 − λs( )Sn−1F (8)
1
Vc

∑
s

Ac
s

~̃D
c

g,s
�ϕ
n
g − ~̃D

s

g,c
�ϕ
n,s
g( ) + ~Σn

rgϕ
n
g − ∑

g′≠g
Σn
gg′ϕ

n
g′

� χg + χ̂g( )SnF + Sndcg + Sndtg (9)
1
Vc

∑
s

Ac
s

~̃D
c

A,s
�ϕ
n
A − ~̃D

s

A,c
�ϕ
n,s
A( )

+ ~Σn

rA − 1 +∑
k

λnkΩn
k − β⎡⎣ ⎤⎦λ]Σn

fA

⎧⎨⎩ ⎫⎬⎭ϕn
A

� SndcA + SndtA (10)

TABLE 1 Definitions of terms in the time dependent transport equation.

Term Definition Term Definition

φ Angular flux k Precursor group index

g Energy group index βk Delayed neutron fraction

Σtg Total macroscopic cross-section Ck Density of delayed neutron precursors

Σg′g Scatter cross-section λk Decay constant

ν Prompt fission neutron yield χdgk Delayed fission neutron spectrum

Σfg Fission cross-section χpg Prompt fission neutron spectrum

kseff Eigenvalue of the initial state
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In theML-CMFD technique, themulti-group solution and one-

group solution are employed to mutually speed up the convergence.

Once the multi-group node average flux and the surface current are

ready, the one-group parameters can then be updated accordingly.

And this new 1G-CMFD linear system can render next-generation

of one-group flux distribution which will be used to update the

multi-group flux parameters to benefit the eigenvalue convergence.

The flowchart of its implementation in the PANDAS-MOC is

illustrated in Figure 2. Moreover, the ML-CMFD scheme used

for the steady state case and the transient case are approximately

the same, except that there is no update of the eigenvalue for the

transient evaluation. Therefore, the steady state module terminates

when the change of the eigenvalue and the norm of the difference of

theMOC flux between two consecutive iterations have both satisfied

the convergence criteria, while the transient iteration stops when the

norm of the MOC flux difference is satisfied. More details can be

found in Ref (Tao and Xu, 2022b).

Meanwhile, the CMFD Eqs 7–10 are large sparse asymmetric

linear systems, and can be rearranged to classic matrix notation,

Ax = b, where A is a block-diagonal sparse matrix corresponding

to the coefficients and cross-section parameters whose dimension

is about hundreds of millions with respect to the large reactor

size, and b represents the source term. To further accelerate the

convergence of the solution to this sparse linear system, the

preconditioned generalized minimal residual method (GMRES)

is employed because it can sufficiently take advantage of the

sparsity of the matrix and is easy to implement (Saad, 2003). In

addition, Givens rotation is applied in the GMRES solver, since it

can preserve better orthogonality and is more efficient than other

processes for the QR factorization of the Hessenberg matrix.

2.3 Hybrid parallelism of ML-CMFD

Generally speaking, there are two ways to convert the

serial program to multithreading form for large problems:

FIGURE 1
CMFD and FSR mesh layout for a 17 × 17 PWR assembly. (A) PWR assembly (B) CMFD mesh layout (C) FSR layout in one CMFD mesh.

FIGURE 2
SS/TS Multi-level CMFD (dashed step is only valid for SS).
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MPI-only and hybrid MPI/OpenMP. In many cases, the

hybrid programs execute faster than the pure MPI program

because they have lower communication overhead (Quinn,

2003). Suppose the program is executed on a cluster of a

multiprocessors and each has b CPUs. The program using

MPI must create ab processors to use every CPU, thus all ab

processors are involved in the communication. On the

contrary, the program using hybrid MPI/OpenMP only

need to create a processors, and each processor then

spawns b threads to divide the workload in the parallel

sections, which also has employed every CPU. Nevertheless,

only that a processors are active during the communication

procedure, which will give the hybrid program lower

communication overhead than the MPI program. In this

paper, all work are performed based on the previous

developed whole-code OpenMP threading hybrid model

(WCP) of the PANDAS-MOC, which partitioned the entire

workload by the MPI and OpenMP simultaneously in order to

get rid of the repetitious creation and suspension of the

OpenMP parallel regions. The detailed information on the

WCP model could be found in Ref (Tao and Xu, 2022a).

As indicated by the CMFD Eqs 7–10, the principal target of

theML-CMFD is to find the solution x to the linear systemAx = b

by the GMRES iterative scheme. Therefore, the major work

included in this part is the matrix and vector operations, such

as the vector-vector dot product, matrix-vector multiplication,

and matrix-matrix multiplication. Take vector-vector dot

product as an example, the general way to compute dot-

product using hybrid MPI/OpenMP scheme is listed in

Algorithm 1, where nx, ny, nz are the spatial dimensions and

ng is the neutron energy group dimension. In order to find the

dot-product result, three steps are involved: 1) each OpenMP

thread compute the partial result on their own, 2) a local result

will be collected for each MPI processor from its launched

OpenMP threads by the omp reduction clause, 3) the global

result is computed and broadcasted by the MPI_Allreduce()

routine. This reduction conception is also implemented in the

WCP in the first place, and its performance will be discussed in

the following Section 4 in details.

Algorithm 1. Hybrid MPI/OpenMP Dot-product Algorithm.

2.4 Performance metrics

The measurement of parallel performance is the speedup,

which is defined as the ratio of the sequential runtime (Ts) which

is approximated using the runtime with 1 processor (T1) in pure

MPI model, and the parallel runtime while utilizing p processors

(Tp) to solve the same problem. Also, efficiency (ϵ) is a metric of

the utilization of the resources of the parallel system, the value of

which is typically between 0 and 1.

Sp � Ts

Tp
≈
T1

Tp
, ϵp � Sp

p
(11)

3 Test problem

The parallel performance of designed codes in this work are

determined by a steady state problem, in which all control rods

are removed from the C5G7 3D core from the OECD/NEA

deterministic time-Dependent neutron transport benchmark,

which is proposed to verify the ability and performance of the

neutronics codes without neutron cross-sections spatial

homogenization above the fuel pin level (Boyarinov et al.,

2016) (Hou et al., 2017). It is a miniature light water reactor

with 8 uranium oxide (UO2) assemblies, 8 mixed oxide (MOX)

assemblies, and surrounding water moderator/reflector. Besides,

the C5G7 3D model is a quarter-core and fuel assemblies are

arranged in the top-left corner. For the sake of symmetry,

reflected condition is used for the north and west boundaries,

and vacuum condition is considered for the rest six surfaces.

Figure 3A is the planar and axial configuration of the C5G7 core.

The size of the 3D core is 64.26 cm × 64.26 cm × 171.36 cm, and

the axial thickness is equally divided into 32 layers.

Moreover, the UO2 assemblies and MOX assemblies have

the same geometry configurations. The assembly size is

21.42 cm × 21.42 cm. There are 289 pin cells in each

assembly arranged as a 17 × 17 square (Figure 3B),

including 264 fuel pins, 24 guide tubes, and 1 instrument

tube for a fission chamber in the center of the assembly. The

UO2 assemblies contains only UO2 fuel, while the MOX

assemblies includes MOX fuels with 3 levels of enrichment:

4.3%, 7.0%, and 8.7%. Besides, each pin is simplified as 2 zones

in this benchmark. Zone 1 is the homogenized fuel pin from

the fuel, gap, cladding materials, and zone 2 is the outside

moderator (Figure 3C). The pin (zone 1) radius is 0.54 cm, and

the pin pitch is 1.26 cm.

While running the 3D benchmark problem, the essential

parameters are defined as following. For the MOC sweeping, all

cases were performed with Tabuchi-Yamamoto quadrature set

with 64 azimuthal angles, 3 polar angles, the ray-spacing was

0.03 cm. The fuel pin-cells are discretized into 8 azimuthal flat

source regions and 3 radial rings (Figure 1C), and the moderator

cells were divided into 1 by 1 or 6 by 6 coarse meshes, which

depends on their locations in the core. Meanwhile, for the

numerical iterative functions, the convergence criteria of the

GMRESmethod in theML-CMFD solver was set as 10−10, and the

convergence criteria for the eigenvalue was 10−6 and for the flux
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was 10−5. No preconditioners were employed to show the

improvement from the algorithm update.

This study is conducted in the “Current” cluster at Purdue

University, the mode of which is Intel(R) Xeon(R) Gold

6152 CPU @ 2.10GHz, and it has 2 NUMA nodes, 22 cores

for each node, and 1 thread per core. The parallel performance is

measured using Intel(R) MPI Library 2018 Update 3, and the

compiler is mpigcc (gcc version 4.8.5).

4 Parallelism of reduction

According to the numerical experiments in Ref. (Tao and Xu,

2022a), the predominant factors that hurt the hybrid parallel

performance of the ML-CMFD solver are the repetitious

construct and destruct of the OpenMP parallel region and the

reduction procedure. The former has been tackled in the WCP

design, which has moderately improved the speedup of the ML-

CMFD solver. This section will first discuss the difficulties of the

conventional method of the hybridMPI/OpenMP reduction, and

then propose two novel reduction designs to further advance the

efficiency of the parallelism in the ML-CMFD solver.

4.1 Hybrid default reduction

The majority work in the multi-level CMFD solver are the

matrix-vector, matrix-matrix, and vector-vector product,

which means that summing the partial results given by

each thread is playing a vital role to the computation

accuracy and efficiency. In general, such reduction process

in the hybrid MPI/OpenMP program is finished by the omp

reduction clause from OpenMP library in the first place and

then by the MPI_Allreduce() routine from MPI library

(Figure 4A), which is referred as ”hybrid default reduction”

in the context hereafter. The shortcoming of this reduction

manner is that the omp reduction only conducts the data

synchronization when all spawned threads have finished their

tasks due to the implicit barrier, which may slow down the

calculation. Figure 4B is an example of the hybrid default

reduction. If thread 0 need tp,0 time to finish its task, yet thread

2 only need tp,2 time, then thread 2 will be staying idle and wait

for tw,2 time before the OpenMP reduction can be executed. Of

course, this will happen again on the MPI processors before

the MPI_Allreduction() operation can be performed. In

addition, if “nowait” is specified to override such implicit

barriers simultaneously with the omp reduction clause, it will

cause race condition and unpredicted behaviors. To overcome

the impacts caused by the implicit barrier after the OpenMP

reduction and reduce the thread idle time, here we designed

two different reduction algorithms.

4.2 Count-update-wait reduction

Instead of waiting for all OpenMP threads having their

partial results ready, this method immediately gathers the

partial result once a thread has finished its calculation and

FIGURE 3
Geometry and composition of C5G7-TD benchmark. (A) Planar and axial view of 1/4 core map (B) Fuel pin compositions and number scheme
(C) Pin cell.
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uses a global counter to count the number of collected data. Till

all threads have provided their partial results, in the zeroth

OpenMP thread, the MPI_Allreduction() routine is utilized to

compute the global result and reset the counter and variables. For

example, to compute the hybrid reduction sum, the defined

function is listed in Algorithm 2 and illustrated in Figure 5, in

which the counting and summation processes are performed

atomically to take advantage of the hardware provided atomic

increment operation. Furthermore, the Count-Update-Wait

reduction functions for finding the global maximum value,

global minimum value, or any combinations of those

operations were written in the similar fashion, except that the

counting and local result updating operations are protected by

the omp critical directive if necessary.

In the implementation, the omp reduction clause is removed

from the OpenMP #pragma statement and the nowait clause is

applied to override the implicit OpenMP barrier. In that regard,

the Count-Update-Wait algorithm has one barrier less than the

default reduction method. However, the trade-offs are the

incurred synchronization overhead every time a thread enters

and exits the atomic or critical section and the inherent cost of

serialization.

Algorithm 2. Count-Update-Wait Reduction Algorithm.

4.3 Flag-save-update reduction algorithm

In the previous Count-Update-Wait Reduction algorithm,

the atomic and critical clauses, which are utilized to guarantee

the race-free conditions, introduce synchronization overhead

and serialization cost and hence decrease the computation

efficiency. Since the purposes of the atomic and critical clauses

are restricting a specific memory location or a structured block

to be accessed by a single thread at a time, which otherwise is

considered as a race condition, they can be eliminated from

the code if the partial results are saved in different memory

locations before the final reduction.

In the Flag-Save-Update Reduction, the MPI reduction is still

performed by the MPI_Allreduction() routine, and the

improvement is carried out on the OpenMP reduction

procedure.

Firstly, the OpenMP threads are deliberately configured

as a tree structure. In such sense, this procedure allows us to

collect the data in log2(Nthreads) stages, rather than Nthreads−1

stages, which can be a huge saving in reduction. The

FIGURE 4
Example of hybrid default reduction. (A) Hybrid MPI + OpenMP reduction (B) Reduction time.

FIGURE 5
Illustration of count-update-wait reduction.
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maximum number of children to each thread is

determined as:

Nchildren � ¢log2Nthreads‡ (12)

Next, two global arrays are allocated to store the partial

results and the status flag of each OpenMP thread, darray and

notready, and their sizes are defined as Nthreads*D, where D is

the spacing distance that isolates the element from each

OpenMP thread and prevents the potential false sharing

and race condition problems. Once the thread partial

result is evaluated, it will be stored to the corresponding

location in the darray and the flag in the notready will be

updated, as showing in Figure 6. Since all locations are

separated from each other, reading and modifying their

values will not incur any race condition issues for the

appropriate D value. We are going to use D = 128 in this

work to measure the performance hereafter, which is chosen

from sample experimentation.

Furthermore, in this method, a global status flag and a

thread-private status flag are designed to control the

calculation flow in order to make sure that the collected data

are fresh and to avoid issues like missing data or recurrently

reading the same data.

The Flag-Save-Update reduction algorithm is designed

according to the executed number of OpenMP

threads and MPI processors and listed in Algorithm 3.

Figure 7 is an illustration of the thread scheme when

the total OpenMP thread is 12, in which arrows with different

colors indicate different computation stages. To perform

the OpenMP reduction, threads having a different number of

children threads are defined behaving differently:

1. If a thread has no children, then flip its thread-private flag,

save its result to darray, and update status in the notready

array

2. If a thread has children, for example, when d1, d3, d5, and d9
are ready, their results are collected and then store to d1
location in darray, and update status at the corresponding

locations in the notready as well.

3. All partial results should be collected to d0 after log2(Nthreads)

stages of reduction.

Furthermore, MPI_Allreduce() is called at thread 0 to perform

the mpi reduction if it is necessary, and the global flag is flipped to

allow all threads to access and read the final result.

With respect to its implementation in the PANDAS-MOC

code, the reduction clause is removed from the OpenMP

pragmas, and the ”nowait” clause is specified to override the

implicit barrier after the OpenMP regions. Therefore, it contains

neither implicit nor explicit barriers in the work flow, comparing

to the hybrid default reduction and the Count-Update-Wait

reduction.

Algorithm 3. Flag-Save-Update MPI/OpenMP Reduction

Algorithm.

FIGURE 6
Arrays structure.

FIGURE 7
Parent-child layout of OpenMP threads (total threads = 12).
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4.4 Performance

In order to compare the hybrid parallel performance, the total

executed number of threads were fixed as 36. Given that the C5G7

3D core has 32 layers in the axial direction, the number of MPI

processors applied in the axial direction are the common factors of

32 and 36 to achieve better load balance. All combinations of

number of MPI processors and OpenMP threads and the x−y−z

distribution of MPI processors are tabulated in Table 2. Besides, all

tests were executed 5 times to minimize the measurement error and

their average run-time were used for the further data analysis.

Themeasured speedup and efficiency for theML-CMFD solver

using the hybrid default reduction, Count-Update-Wait reduction,

and Flag-Save-Update reduction are computed based on the run-

time for the ML-CMFD solver from the pure MPI model (PMPI)

with single MPI processor (2196.113 s) (Tao and Xu, 2022a), and

they are presented in Figure 8, which presents big improvement

from the default reduction to the Flag-Save-Update reduction,

especially when testing with large number of OpenMP threads.

All hybrid reductions have their largest speedup at (36, 1).

Although theoretically results are expected similar to each other

when running with a single thread, the actual measured speedup

shows that Flag-Save-Update reduction > hybrid default reduction

> Count-Update-Wait reduction, and they all present sublinear

speedup. In this test, the inherent overhead of OpenMP is

unavoidable, such as the process of generating multi-threading

and walking through the included OpenMP directives even

though there was only a single thread spawned by each MPI

processor. Among three hybrid methods, the Flag-Save-Update

reduction rendered the largest speedup because the

synchronization points have been deliberately eliminated as many

as possible from the algorithm. Besides, even though the Count-

Update-Wait reduction had one implicit barrier less than the hybrid

default reduction, it still had slightly larger natural overhead due to

the existence of the atomic or critical structure. In the hybrid default

reduction, the implicit barrier introduced by the “reduction” clause

forces all threads to wait until all threads in the same team have

arrived to this place and then gathers their partial results. In the

Count-Update-Wait reduction, its counterpart is the atomic/critical

structure, which collects the partial results from the threads

immediately when they are arrived (Algorithm 2). When running

with single thread, the implicit barrier in the hybrid default

reduction could hardly slow down the calculation, whereas the

serialization cost incurred by the atomic/critical structure not

negligible. The measured difference between them indicates that

the serialization cost incurred by the atomic or critical is more

expensive than the implicit barrier in this circumstance.

The observed trend of speedup from Count-Update-Wait

reduction and from hybrid default reduction came cross at

(4,9). When the number of executed OpenMP threads is

smaller than 9, the speedup accomplished by the Count-

Update-Wait reduction is about 96%–97% of the hybrid default

reduction. This is because the workload assigned to each OpenMP

thread is not significantly biased, the waiting to completion time

are trivial in both algorithms. Yet, the overhead brought by the

atomic and critical serializations for collecting the OpenMP partial

results and updating the counters will introduce extra cost and

slow down the calculation. However, as more OpenMP threads

contributed, the benefit of owning fewer synchronization barriers

has been demonstrated as the Count-Update-Wait reduction

reached larger speedup. After compensating the inherent cost of

serialization because of omp atomic and critical blocks, its speedup

at (1, 36) is about 30.9% higher than the hybrid default reduction.

On the other hand, the Flag-Save-Update reduction has

achieved larger speedup than the other two algorithms for all

tests due to lacking of synchronization points, even when there is

only a single OpenMP contributing to the calculation [i.e., (36,1)].

Moreover, this advantage was more obvious when larger number of

OpenMP threads were executed. In Figure 8, the speedup ratio of the

Flag-Save-Update reduction to the hybrid default reduction has

augmented from 1.05 to 1.80 from right to left as more OpenMP

contributed and fewer MPI devoted. Concerning the Flag-Save-

Update reduction, the obtained speedup ofmost tests falls within the

range of (17, 19). However, The speedup could also be weakened by

the communications and data synchronizations among MPI

processors if there were domain decomposition in the x-y plane,

for instance the drop in (12,3). Despite that, the Flag-Save-Update

reduction can compensate part of this overhead, since its ratio of

speedup at (12,3) and at (4,9) was larger than the other two

reduction methods. Furthermore, overall tests, (1, 36) has

attained the smallest speedup. Other than the OpenMP thread

load balance among and inherent overhead from the algorithm

per se, the parallel performance of this group could possibly be

restricted by the hardware properties, such as memory bandwidth,

cache size and cache hit rate. For example, the size of darray, the type

of elements contained in which is double, is about Nthreads × D × 8/

1024 kb = 36 × 128 × 8/1024 kb = 36 kb, however the size of the

Ld1 and Ldi cache of the ”Current” cluster are 32 kb.

5 WCP optimizations

As explained in the Ref (Tao and Xu, 2022a), the parallel

performance achieved from the original WCP model is better

than the SGP model which is the conventional fashion of hybrid

MPI/OpenMP parallelization, yet not comparable to the PMPI

model. The advancement of the hybrid reduction in ML-CMFD

solver and parallelism of MOC sweeping are desired to optimize the

WCP code andmake it at least comparable to the PMPI code. In this

article, we have proposed several innovative algorithms to conduct

the hybrid reduction, and the most promising one is the Flag-Save-

Update reduction. Its collected performance is better than the hybrid

default reduction, regardless that it is still slower than the MPI_

Allreduction() standalone in the PMPI mode while using the

identical total number of threads (Figures 8, 9A). On the other

hand, the improvement on the parallelism of MOC sweeping is
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thoroughly discussed in Ref (Tao and Xu, 2022c) and here is a brief

description.

While using the OpenMP directives to partition the

characteristic rays sweeping, it is found that the speedup of the

MOC sweep are limited by the unbalanced workload among threads

and the serialization overhead caused by the omp atomic clause for

assuring the correctness of MOC angular flux and current update

(Tao and Xu, 2022a). Two schedules are designed to resolve these

two obstacles: Equal Segment (SEG) schedule and No-Atomic

schedule. The SEG resolves the unbalanced issue, in which the

average number of segments are determined in the first step

according to the total number of segments and number of

executed threads, and then long-tracks are partitioned based on

this average number so that the number of segments (i.e., actual

computational workload) are distributed among OpenMP threads

as equalized as possible. Based on SEG, the No-Atomic schedule

further removes all omp atomic structures to improve the

computational efficiency by pre-defining the sweeping sequence

of long-track batches across all threads to create a race-free job. The

implementation details could be found in Ref. (Tao and Xu, 2022c).

After repeating the same tests on each schedule, it is confirmed that

the No-Atomic schedule is capable to achieve much better

performance than the other schedules, and even outperforms the

PMPI sweeping with the identical total number of threads.

The comparison of the parallel performance obtained from

the PMPI (dashed blue line), the original WCP using default

methods [green line, labeled as (d)], and the optimizedWCPwith

Flag-Save-Update reduction and No-Atomic schedule [pink line,

labeled as (o)] are illustrated in Figure 9. Although the speedup of

the ML-CMFD solver using the Flag-Save-Update reduction is

still slower than the PMPI using MPI_Allreduction()

(Figure 9A), the enhancement accomplished from the

optimized No-Atomic MOC sweep is large enough to

compensate such weakness (Figure 9B). Therefore, pertaining

to the overall steady state calculation, the optimized WCP code

has managed to obtain much better speedup than the original

WCP code, and comparable to or even greater than the PMPI

code as explained in Figures 9C,D.

6 Summary remarks

The CMFD technique is commonly used in the neutron

transport simulations to accelerate the convergence of the

iterative solutions. However, the performance of its

implementation in the hybrid MPI/OpenMP parallelism is

inadequate, especially when running with larger number of

threads. In the original WCP model of the PANDAS-MOC

code, the hybrid MPI/OpenMP reduction has been determined

as the principal issue that restraining the parallel speedup of the

ML-CMFD solver. Conventionally, the hybrid reduction operation

is finished by exploiting the omp reduction clause and MPI_

Allreduction() routine, which was referred to as “hybrid default

reduction” in the previous context. Other than that, two original

TABLE 2 Combinations of tested number of MPI and OpenMP threads.

Total threads MPI OpenMP MPI-(x, y, z) Total threads MPI OpenMP MPI-(x, y, z)

36 1 36 (1,1,1) 36 6 6 (3,1,2)

36 2 18 (1,1,2) 36 12 3 (3,1,4)

36 4 9 (1,1,4) 36 18 2 (3,3,2)

36 36 1 (3,3,4)

FIGURE 8
Comparison of ML-CMFD solver performance using different reduction algorithms. (A) Speedup (B) Efficiency.
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hybrid reduction algorithms were presented in this paper: Count-

Update-Wait reduction and Flag-Save-Update reduction. The first

algorithm had fewer barriers than the hybrid default reduction yet

introduced extra synchronization points, such as atomic or critical

sections, to count and assure that all partial results were collected

from the launchedOpenMP threads. Besides, the second algorithm

was accomplished by using the global arrays and status flags, and

establishing the tree configuration of all threads, where includes no

implicit and explicit barriers. The hybrid parallel performance for

three algorithms were examined using the C5G7 3D core and the

total number of threads were set as 36. The Flag-Save-Update

reduction yielded the best speedup at all tested cases, and its

superiority was more obvious as more OpenMP threads were

contributed. For instance, when using (1, 36), the obtained

speedup of Flag-Save-Update reduction algorithm is about

1.8 times of the speedup achieved by the hybrid default

reduction. In spite of the fact that it is less efficient than the

MPI_Allreduction() routine in PMPImodel, this disadvantage can

be offset by the great advance from the optimized MOC sweep

scheme, and together they are able to reach larger speedup than the

PMPI model when using identical total number of threads.
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