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In the past decade, nuclear chemists and physicists have been conducting

studies to investigate the signatures associated with the production of special

nuclear material (SNM). In particular, these studies aim to determine how

various processing parameters impact the physical, chemical, and

morphological properties of the resulting special nuclear material. By better

understanding how these properties relate to the processing parameters,

scientists can better contribute to nuclear forensics investigations by

quantifying their results and ultimately shortening the forensic timeline. This

paper aims to statistically analyze and quantify the relationships that exist

between the processing conditions used in these experiments and the

various properties of the nuclear end-product by invoking inverse methods.

In particular, these methods make use of Bayesian Adaptive Spline Surface

models in conjunction with Bayesian model calibration techniques to

probabilistically determine processing conditions as an inverse function of

morphological characteristics. Not only does the model presented in this

paper allow for providing point estimates of a sample of special nuclear

material, but it also incorporates uncertainty into these predictions. This

model proves sufficient for predicting processing conditions within a

standard deviation of the observed processing conditions, on average,

provides a solid foundation for future work in predicting processing

conditions of particles of special nuclear material using only their observed

morphological characteristics, and is generalizable to the field of chemometrics

for applicability across different materials.
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1 Introduction to nuclear forensics

In 2011, the Department of Homeland Security (DHS)

National Technical Nuclear Forensic Center (NTNFC) hosted

a panel of Plutonium (Pu) experts to develop a plan for advancing

forensic analysis of Pu materials. During this conversation, the

experts concluded that different production processes produce

final products with different characteristics. They hypothesized

that these different characteristics, or “signatures”, on the final

product could potentially allow a forensic analyst to determine

which processes were used to produce the Special Nuclear

Material (SNM), and, in turn, make inferences on where the

material originated.

As a result of these discussions, scientists at Pacific

Northwest National Laboratory (PNNL) conducted an

experiment designed by statisticians at Los Alamos National

Laboratory (LANL) and Sandia National Laboratories (SNL)

to replicate historical and modern Pu processing

methodologies and conditions. This experiment consisted of

76 runs, where each run considered the same set of nine

processing parameters, whose values intentionally varied

from run to run. For each run, the resulting SNM was

imaged with a scanning electron microscope (SEM) to

generate images of the various particles of Pu. These images

were then segmented using LANL’s Morphological Analysis

for Material Attribution (MAMA) software (Porter et al.,

2016). This post-processing segmentation extracts the

different particles that are present in each SEM image, and

generates measurements based on the physical and

morphological characteristics of the particles. Such

measurements include particle areas, aspect ratios,

convexities, circularities, gradients, and shadings (Zhang

et al., 2021).

This paper serves to statistically relate the processing

conditions of the different runs to the morphological and

physical characteristics of the resulting Pu particles. In

particular, we consider Pu particles that were processed using

a solid oxalate feed, and particles that were processed in a 0.9 M

oxalate solution. We relate the observed MAMA characteristics

(which include, but are not limited to, those listed above) to the

processing conditions used to produce the samples of Pu (which

include, but are not limited to, temperature, nitric acid

concentration, and Pu concentration) using inverse prediction

methods. We consider Bayesian methodologies to quantify our

predictions on the processing conditions, and to naturally

incorporate uncertainty into these predictions.

We discuss these statistical methodologies in Section 2; in

Section 3, we outline the specifics of the problem from a statistical

perspective; in Section 4, we apply the methodologies to a dataset

obtained from studying actual Pu particles generated under

intentionally varied processing conditions within a design of

experiments framework (rather than a simulated dataset); and in

Section 5, we discuss the implications of our results.

2 An inverse prediction framework

To study the relationship between the processing parameters

and the particle characteristics, we consider an inverse prediction

framework. The traditional regression problem involves making

predictions about responses, given a set of explanatory or input

predictors. As a simple example, we may be interested in

determining the weight of an individual, given their height,

sex, and nationality. Conversely, the inverse prediction

framework reverses the problem and so considers making

predictions about the explanatory predictors, given a set of

responses. Following the simple example above, we would

now be interested in determining the height, sex and

nationality of an individual, based on their weight. Inverse

prediction is used across a variety of disciplines, and, in

particular, has been used in forensic science, and nuclear

forensics [see, for example, Lewis et al. (2018), Ries et al.

(2018), and Ries et al. (2022)].

Mathematically, consider a q-dimensional response vector,

y � (y1, y2, . . . , yq)′, and a p-dimensional input vector

x � (x1, x2, . . . , xp)′. We express the relationship between x
and y as

y � g x|θ( ) + ε, (1)

where g(·) is the true underlying physical phenomenon that is

responsible for producing the results, which are typically

represented by an emulator or surrogate that mimics the

outputs in terms of the inputs, θ is a vector of model

parameters, and ε is a random vector that captures noise

present in the observed data.

As mentioned above, the goal of the inverse prediction

framework is to predict the value of the input variables x′ that
produced a new observation y′. There are two approaches by

which we can learn about y′: We can either 1) construct a

model that directly predicts x′ as a function of y′, or we can 2)

invert a traditional forward model that predicts y′ as a

function of x′. We will refer to the first approach as the

“direct” model, and the second approach as the “inverse”

model. It should be noted that, while it is more convenient

to construct the “direct” model, this approach may violate

regression assumptions. For example, standard linear

regression models assume that the input variables are

measured with negligible error. By constructing a model

that directly predicts x′ as a function of y′, we are treating

x as the output variable and y as the input variable and so this

assumption no longer holds. Additionally, the “direct” model

may not be well-suited for optimal design of experiments,

since the vast majority of literature in design of experiments

does not consider the inverse problem in its formulation

(Anderson-Cook et al., 2015; Anderson-Cook et al., 2016).

In this paper, we use Bayesian Model Calibration (Kennedy

and O’Hagan, 2001; Higdon et al., 2004, 2008; Walters et al.,

2018; Lee et al., 2019; Nguyen et al., 2021) to approach the inverse

Frontiers in Nuclear Engineering frontiersin.org02

Ausdemore et al. 10.3389/fnuen.2022.1083164

https://www.frontiersin.org/journals/nuclear-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fnuen.2022.1083164


prediction framework. Model calibration is a process to estimate,

or calibrate, model parameters in the context of an input to

output relationship, and falls under the second method (the

“inverse” model) discussed above. More specifically, we are

interested in using a calibration approach to make predictions

about the processing conditions that were used to produce

samples of Pu. Each of these samples consists of several

particles whose morphological characteristics contain

information pertaining to the conditions under which they

were produced. By studying the information contained in

these particles, we can infer the associated processing conditions.

In this paper, we use a fully Bayesian adaptive spline surfaces

(BASS) framework to model or build an emulator to approximate

the underlying relationship between the inputs and outputs

(Francom et al., 2018; Francom et al., 2019; Francom and

Sansó, 2020)1. Suppose y is a vector of morphological

characteristics associated with a sample of Pu, and x is a

vector of processing conditions used to produce a sample of

Pu. Without loss of generality, suppose that each x1, x2, . . ., xp ∈
[0, 1]. The input to output relationship is modeled using.

y � a0 + ∑M
m�1

amBm x( ) + ε, (2)

where a0 is the intercept, Bm(x) is a basis function on the input

variables x, am is the coefficient for themth basis function, and

ε ~ MVN(0, Σ) (Francom and Sansó, 2020). We consider

priors for each of the parameters, a, σ2, and M. Note that,

because we define a prior over M, the number of basis

functions is not fixed, and varies throughout the sampling

process. These parameters are sampled using a Markov Chain

Monte Carlo (MCMC) process. The samples obtained from

this process constitute the posterior distribution of the input

parameters, given the observed output parameters.

Upon defining the appropriate BASS model, we perform

Bayesian Model Calibration, which allows us to estimate the

input parameters that make the model best match the data

provided by the output parameters. In this instance, we do not

include a discrepancy term. Ideally, a discrepancy term would

capture model bias error (i.e., how well a physical model

approximates reality), which, in our case, is challenging to

handle. Future work will include incorporating this

discrepancy term, as well as exploring alternative

emulators that are able to better capture the

relationship between the input and the output parameters.

For more details about Bayesian Model Calibration, see

Kennedy and O’Hagan. (2001), Higdon et al. (2004),

Higdon et al. (2008), Walters et al. (2018), and Nguyen

et al. (2021).

3 Inverse prediction for Pu processing
conditions

Suppose that run r ∈ 1, . . . , R{ } results in nr images and Lr
particles. The number of images varies between particles,

and the number of particles varies between images, so

that the number of particles per run is not consistent. For

our data, R = 76. Each of the runs in our experiment yielded

between 5 and 176 images per run, and between 81 and

4,643 particles per run. By using information contained in

these runs, we can make predictions about the processing

conditions of a new run. In this scenario, our input

parameters include processing conditions such as

temperature, nitric acid, and Pu concentrations, and

responses include morphological characteristics such as

particle shape and size.

Figure 1 demonstrates two different particles from two

different runs, each with different processing conditions. Note

that, while size and shape are useful for determining

processing conditions of a sample, far more information is

required to accurately predict the processing conditions of

these two particles. For example, we can see that, while these

particles are produced under entirely different processing

conditions, they do maintain physical similarities, alluding

to the difficulty of this problem. While both particles are made

up of flat sheets, we can see that the arrangement of and the

angles between these sheets do differ from one another.

This information is captured by segmenting the particles

using LANL’s MAMA software, which allows for capturing

information about the morphological characteristics, such

as area, diameter, and aspect ratio. By including the

information from the MAMA software in our model,

we can better distinguish between particles from

different runs.

From Section 2, we have that y is a p-vector of

morphological characteristics associated with a sample of

Pu, and x is the q-vector of processing conditions used to

produce that sample of Pu. Given our sample of Lr particles for

each of our 76 runs, Yr is the Lr × p matrix of morphological

characteristics, where each row of Yr corresponds to the

morphological characteristics of the Lr particles associated

with run r ∈ {1, . . ., 76}. Our full matrix of morphological

characteristics is then given by the ∑76
r�1Lr × p matrix Y, such

that

1 The BASS framework is similar to the Bayesian multivariate adaptive
regression splines (BMARS) framework developed by Denison et al.
(1998) [see also Friedman (1991)], but with added features that promote
efficiency in the sampling processes to allow for amore efficient model
estimation (e.g., Reversible Jump Markov Chain Monte Carlo
(RJMCMC) via Nott et al. (2005), parallel tempering). Like the BMARS
framework, the BASS framework uses the input data to learn a set of
basis functions that provide an approximate to g(x|θ) that, when
considered together, give the best predictions of the output data.
Like its BMARS counterpart, BASS is particularly well-suited for
capturing non-linear relationships between the input and output
variables (Francom and Sansó, 2020).
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.

As an example, consider row yr2 in the matrix Yr. This vector

corresponds to the p observed morphological characteristics

associated with the second particle in run r, so that yr21
corresponds to the observed value for the first morphological

characteristics for particle 2 in run r, yr22 corresponds to the

observed value for the second morphological characteristic for

particle 2 in run r, and so on.

The matrix X is analogously defined for the processing

conditions, where Xr is the Lr × q matrix of processing

conditions, where each row of Xr is the q-vector of processing

conditions associated with the corresponding run r. For dimensional

consistency, we consider Xr as the Lr × qmatrix, where xr is merely

repeated for each of the Lr rows in Xr, since all particles in run r are

produced under the same set of processing conditions.

Before proceeding with calibration, we must first define our

emulator. We choose to fit a BASS model using the associated

BASS package in R (Francom and Sansó, 2020).We then perform

model calibration to obtain the best set of processing conditions

that are associated with a new set of observed morphological

characteristics, captured by the matrix YR+1, that results from

observing a set of particles from a new run.

Since run R+1 results in LR+1 particles, we calibrate on each of the

lR+1 vectors ofmorphological characteristics. Each of these calibrations

results in NMCMC samples for each of the p processing conditions.

That is, for a set of LR+1 particles, we obtain LR+1NMCMC × pmatrices

of predicted processing conditions, XR+11, . . . ,XR+1LR+1. We can use

the results from this set of LR+1matrices to determine a point estimate,

and highest posterior density intervals for the p processing conditions.

This process is outlined in Algorithm 1.

Data: The matrix X of processing conditions for the

set of observed particles; The matrix Y of

morphological characteristics associated with each

particle in the set of observed particles; A set of LR+1

newly observed particles; The matrix YR+1 of

morphological characteristics associated with each

of the newly observed particles.

Result: An LR+1 × p matrix of predicted processing

conditions

1. Fit a BASS model that predicts X as a function of Y

2. for each particle lR+1 ∈ 1 : LR+1 do

a. Perform model calibration to predict the

processing conditions xlR+1 based On the

morphological characteristics ylR+1 observed

for particle lR+1

b. Return the NMCMC × p matrix of posterior

samples associated with the p Processing

conditions

c. Determine the mode of the distribution of

posterior samples for each of the p

Processing conditions

end

* To obtain a point estimate for each of the p

processing conditions, consider the mean,

median, or mode of the resulting empirical

distributions of posterior modes.

Algorithm 1. Methodology for predicting processing

conditions of newly observed particles.

FIGURE 1
Examples of particle textures resulting from two different runs, with two different sets of processing conditions.
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4 Application

In this section, we apply the above methodology to our

dataset. The data considered in this experiment consists of

runs that were processed using two types of oxalate feed. Out

of the 76 total runs, 24 of these runs were processed using a solid

oxalate feed, and 52 were processed in 0.9 M oxalate solution. We

analyze these two sets separately (Sections 4.1, 4.2), and jointly

(Section 4.3). Considering the different types of runs separately

and jointly allows us to study the effects of training models on

data that are either a) more representative of an interdicted

sample (i.e., when we consider the different types of oxalate feeds

separately and train separate models for the different types of

oxalate feeds), or b) trained on more data, and thus able to learn

more (i.e., when we consider the different types of oxalate feeds

together and train the model on the joint data). For example,

classification techniques may allow us to distinguish between

solid and solution runs. In this case, given a test run that we

determine to be either a solid or solution run, we can train our

model on runs that are more representative of the run we are

studying.

4.1 Solid runs

In this section, we consider the 24 solid runs separately from

the 76 total runs. We apply Algorithm 1 via a leave-one-out

cross-validation (LOO-CV) process (Lachenbruch and Mickey,

1968; Luntz and Brailovsky, 1969; Gareth et al., 2013), in which

we withhold all particles associated with a given run. That is, we

treat the particles associated with a given run as our newly

observed particles on which we wish to perform calibration.

To quantify the ability of the algorithm to successfully predict

the processing conditions of a given run, we consider the Root

Mean Square Error (RMSE) of the predicted value of the

processing conditions compared to the observed value of the

processing conditions. The RMSE is a useful quantity to consider,

since it is robust to distribution specification, given that it is based

on a point estimate, and has a nice interpretation, especially when

the data being considered is normalized. As such, before training

themodels, we center and scale the values so that we can interpret

the RMSEs in the context of standard deviations of the processing

conditions. For example, RMSEs of less than one indicate that the

predicted values are within one standard deviation of the true

values, RMSEs of less than two indicate that the predicted values

are within two standard deviations of the true values, and so on.

Figures 2, 3 demonstrate the ability of this method to make

predictions when we train our algorithm on solid runs, to predict

processing conditions of particles produced by solid runs.

Figure 2 shows the violin plots of RMSEs when the medians

of the resulting empirical distributions of posterior modes is used

as a point estimate. From a comprehensive study of the solid

runs, we were able to determine that the median of the empirical

distributions of the posterior modes served as the best point

estimate of the true processing condition. This is also true for the

studies completed in Sections 4.2, 4.3.

The results in Figure 2 indicate that the algorithm is better at

predicting some processing conditions (which include conditions

such as temperature, nitric acid concentration and Pu

concentration) than others. For example, we see that, aside

from processing conditions 3 and 5, this method is, on

average, capable of predicting the processing conditions of a

sample of Pu within a single standard deviation. In fact, the

method is particularly effective at predicting processing

FIGURE 2
Violin plots of RMSEs for processing conditions 1 through 8 for solid runs. Square points represent the means of these distributions; triangular
points represent the median of these distributions, and circular points represent the modes of these distributions.
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conditions 1, 2 and 8, as is indicated by the modes of these

distributions, which demonstrates that more often than not, our

prediction for these processing conditions is within 0.5 standard

deviations of the true value. We note that it is not particularly

surprising that, in some instances, the RMSE can extend beyond

a single standard deviation. Given that the production of a family

of material types (in this case, Pu) requires a chemical expert to

precisely execute a series of involved tasks, it is not particularly

surprising using only themorphological characteristics of the end

product can result in uncertainties on the predicted values of the

processing conditions that extend past 3 RMSE. Whether an

RMSE below 0.5 is acceptable is not a straightforward

determination. Much like the level of significance, alpha, used

in hypothesis testing, the threshold at which uncertainty is

acceptable to the user is dependent on the objective at hand.

If the uncertainty is deemed to be inadequate, then a reflection on

how uncertainty can be decreased would likely be useful. This

exercise provides insight not only for forensic purposes, but also

for insights for biases and deviations from standard processes.

Figure 3 shows the proportional breakdown of RMSE by

processing condition for each run. For each run, we see the

proportion of the overall RMSE that can be attributed to each

processing condition. The greater the difference in the widths of

the colored bars, the more disparate their individual RMSEs are

from one another, and from the overall RMSE. This helps us to

determine which processing conditions are well predicted for a

given run, and which processing conditions are poorly predicted

for a given run. From this figure, we can see that the predictions

within processing conditions are relatively consistent

between runs.

As an example, consider run 22.We see that the RMSE across

all processing conditions for Run 22 is approximately 1.7 (the

overall height of the stacked bar). Within this bar, we can see how

each individual processing condition contributes to the root

average of 1.7 (the individual covered bars). For run 22, we

see that the individual colored bars are made up of several

different heights, indicating that the overall RMSE for run

22 is not representative of each processing condition’s

individual RMSE. Since processing condition 1 and 8 are

represented by very thin bars, their individual RMSE’s are

much smaller than 1.7 (and, in fact, are actually close to

zero). On the other hand, we see that processing condition

6 is represented by a much taller bar, indicating that its

individual RMSE is much larger than 1.7. This large difference

is offset by the much smaller values of RMSE for processing

conditions 1 and 8 when we take the root mean of all squared

errors for to obtain the overall RMSE.

4.2 Solution runs

In this section, we consider the 52 solution runs separately

from the 76 total runs. As before, we apply Algorithm 1 via an

LOO-CV process, and consider RMSEs to quantify the

performance of our models. Figures 4, 5 demonstrate the

ability of this method to make predictions when we train our

algorithm on solution runs, to predict processing conditions of

particles produced by solution runs.

Figure 4 shows the violin plots of RMSE’s when the medians

of the resulting empirical distributions of posterior modes is used

as a point estimate. These results indicate that the algorithm is

better at predicting some processing conditions than others. For

example, we see that, aside from processing conditions 3 and 8,

this method is, on average, capable of predicting the processing

FIGURE 3
Breakdown of RMSE by processing condition across solid runs. The height of a given column relays the overall RMSE for the associated run. Each
color corresponds to the proportion of this RMSE that can be attributed to each processing condition.
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conditions of a sample of Pu within a single standard deviation.

In fact, the method is particularly effective at predicting

processing conditions 1 and 3, as is indicated by the modes of

these distributions, which demonstrates that more often than

not, our prediction for these processing conditions is within

0.5 standard deviations of the true value.

Figure 5 shows the proportional breakdown of RMSE by

processing condition for each run. This figure demonstrates that

the predictions within processing conditions are relatively

consistent between runs.

4.3 All runs

In this section, we consider all 76 runs together. That is, the

algorithm is trained on runs that were processed using a solid

oxalate feed, as well as those that were processed in solution,

regardless of whether the test run is a solid run or a solution run.

As before, we apply Algorithm 1 via an LOO-CV process, and

consider RMSEs to quantify the performance of our models.

Figures 6, 7 demonstrate the ability of this method to make

predictions when we train our algorithm on all runs, to predict

FIGURE 4
Violin plots of RMSEs for processing conditions 1 through 8 for solution runs. Square points represent the means of these distributions;
triangular points represent the median of these distributions, and circular points represent the modes of these distributions.

FIGURE 5
Breakdown of RMSE by processing condition across solution runs. The height of a given column relays the overall RMSE for the associated run.
Each color corresponds to the proportion of this RMSE that can be attributed to each processing condition.
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processing conditions of particles produced by either a solid or

solution run.

Figure 6 shows the violin plots of RMSE’s when the medians

of the resulting empirical distributions of posterior modes is used

as a point estimate. Note that the shapes of these distributions are

similar to those depicted in Figures 2, 4, indicating consistent

prediction ability when we train on solid and solution runs

together, versus training on just solid or just solution runs.

We do note, however, that there are longer tails associated

with these distributions, and that the overall RMSEs are larger

when we train the algorithm on both solid and solution runs.

The results in Figure 6 indicate that the algorithm is better at

predicting some processing conditions than others. For example,

we see that, aside from processing conditions 3, 7 and 8, this

method is, on average, capable of predicting the processing

conditions of a sample of Pu within a single standard

deviation. However, when we consider the mode as our point

estimate, we see that the method is particularly effective at

predicting processing conditions 1, 2, 4 and 8, as is indicated

by the modes of these distributions, which demonstrates that

more often than not, our prediction for these processing

conditions is within 0.5 standard deviations of the true value.

FIGURE 6
Distributions of predictions for processing conditions 1 through 8 for all runs. Square points represent the means of these distributions;
triangular points represent the median of these distributions, and circular points represent the modes of these distributions.

FIGURE 7
Breakdown of RMSE by processing condition across all runs. The height of a given column relays the overall RMSE for the associated run. Each
color corresponds to the proportion of this RMSE that can be attributed to each processing condition.
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Figure 7 shows the proportional breakdown of RMSE by

processing condition for each run. This figure demonstrates that

the predictions within processing conditions are relatively

consistent between runs. Again, we see that the model is

particularly apt at making predictions for processing

conditions 1, 2, 4 and 8.

We also consider a direct comparison of the broken down

RMSE by run when we train on the solution and solid runs

separately and jointly. Figures 8, 9 show these relationships. By

comparing these figures with Figures 3, 5, we can see how

training on the solid and solution data jointly results in

different predictions from those that result from training

separate solid and solution models. In some instances, we

see that the RMSE decreases, while in others, we see that it is

increased, indicating that training a joint model is not

necessarily worse than training two separate models.

FIGURE 8
Breakdown of RMSE by processing condition across solid runs, when the model is trained on solid and solution data, jointly. The height of a
given column relays the overall RMSE for the associated run. Each color corresponds to the proportion of this RMSE that can be attributed to each
processing condition.

FIGURE 9
Breakdown of RMSE by processing condition across solution runs, when the model is trained on solid and solution data, jointly. The height of a
given column relays the overall RMSE for the associated run. Each color corresponds to the proportion of this RMSE that can be attributed to each
processing condition.
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Furthermore, we see that the individual contribution of each

processing condition to the overall RMSE for each run

remains relatively consistent, although we do see slightly

larger RMSEs for processing conditions 1 and 8 when we

train jointly. In addition, we see that runs that are better

predicted by the individually trained models are also better

predicted by the jointly trained models for both solid and

solution runs.

5 Conclusion

In this paper, we looked at the ability of a BASS model to

predict the processing conditions of particles of Pu, given a set

of morphological characteristics by Bayesian Calibration via a

Bayesian Adaptive Spline Surface model. Not only does this

model allow for providing point estimates of a sample of SNM,

but it also incorporates uncertainty into these predictions.

This model proved to be sufficient at predicting processing

conditions within a standard deviation of the observed

processing conditions on average, when applied to a dataset

of particles of Pu. In particular, we found that this model is

best able to predict processing conditions 1, 2, and 4, and

struggles most with predicting processing conditions 3, 7, and

8. By comparing Figures 3, 5, 7, we see that using both

solid and solution runs to train the model (versus

analyzing solid and solution runs separately) does not

affect the ability of the model to predict the processing

conditions of a new run, indicating that the BASS model is

flexible enough to incorporate this information into its

predictions.

By predicting the processing conditions of samples of

SNM, we can begin to understand where material may have

been produced, or by whom. While it remains that this the

results of this method should not be used as the sole evidence

for reaching a forensic conclusion, this analysis

demonstrates that statistical models can aid the nuclear

forensic community. In particular, these models help

provide insight into the various sources of uncertainty and

bias in the chemical processes. In addition, they allow

forensic decision makes to numerically bound their

observations, and quantitatively support their inferences

and predictions. Future studies will aim to improve these

results by considering the effects of particle sizes on the

predictions, and will incorporate functional shape and

texture data. Additionally, we would like to determine

whether incorporating the discrepancy term in our

calibration step would allow us to further decrease the

RMSE of our predictions. Nevertheless, this methodology

provides a solid foundation for future work in predicting

processing conditions of particles of SNM using only their

morphological characteristics.
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