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Controlled-potential in situ thin-layer spectropotentiometry was leveraged to
generate visible/near-infrared (VIS/NIR) absorption spectral data sets for the
development of chemometric models to quantify Np(III/IV/V/VI) oxidation
states in HNO3. This technology would be valuable in laboratory studies and
when monitoring process solutions to guide feed adjustments for radiochemical
separations—the performance of which depends on oxidation state. This
approach successfully isolated and stabilized Np species in pure (~99%)
oxidation states without compromising solution optical properties. Multivariate
curve resolution–alternating least squares models were evaluated to resolve
spectral and component concentrations from a scan that sequentially
produced Np(VI), Np(V), Np(IV), and Np(III) spectra with mixtures of two
valences at a time. Although it provided a useful approximation, the method
was not able to quantitively resolve each component likely because of rotational
ambiguity. Additionally, partial least squares regression models were built from
artificial and electrochemically generated VIS/NIR spectral training sets to study
the effect of interionic interactions on spectral characteristics. Models built with
true Bi-chemical mixtures of coexisting Np oxidation states and spectra generated
from additive combinations of pure end points had similar prediction
performance. This methodology can be used to directly quantify Np
concentration and the ratio of Np oxidation states and other actinides in
remote settings such as hot cells.

KEYWORDS

actinide, optical spectroscopy,machine learning, onlinemonitoring,multivariate analysis

1 Introduction

Spectrophotometry, or ultraviolet–visible–near-infrared (UV-VIS-NIR) absorption
spectroscopy, quantitatively measures the electronic spectra of molecular species and has
been used for decades to characterize aqueous Np species in acidic solutions. (Sjoblom and
Hindman, 1951; Ryan, 1960; Eisensterin and Pryce, 1966; Varga et al., 1970; Friedman and
Toth, 1980; Ban et al., 2014; Edelstein, 2015). Determining the relative proportion of Np
oxidation state(s) and total Np concentration by spectrophotometry is challenging because
of its complex redox chemistry (adopting oxidation states from +3 to +6), coordination
chemistry, interionic associations, and dependence of absorption bands on temperature and
solution conditions. (Chatterjee et al., 2017; Sadergaski and Morgan, 2022). Quantifying
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multiple Np oxidation states is also particularly challenging owing to
numerous overlapping peaks. This issue renders univariate methods
like Beer’s law unusable in real-world online monitoring
applications. (Sadergaski et al., 2022a; Sinkov et al., 2022). On
the other hand, multivariate chemometric regression models can
account for each variable to give accurate predictions. These
methods can account for systems with overlapping and covarying
spectral characteristics. (Lascola et al., 2017; Sadergaski et al., 2020;
Tse et al., 2022).

Chemometric algorithms generally fall into two categories,
referred to as unsupervised and supervised. Several helpful review
articles on the topic can be found in the literature (Kirsanov et al.,
2017; Lackey et al., 2023) One of the most common unsupervised
methods is principal component analysis (PCA), and partial least
squares regression (PLSR) is one of the most established supervised
methods. PCA produces unique solutions by sequentially producing
an orthogonal bilinear matrix decomposition to explain the
maximum variance in the measured signal. The orthogonal
(independent) solutions are helpful in identifying the number of
different sources of variation in the data and helps identify
underlying features causing the data variation. However, these
solutions are abstract because they are orthogonal linear
combinations of the underlying factors.

Multivariate curve resolution–alternating least squares (MCR-
ALS), similar to PCA, assumes the fulfillment of a bilinear model
and can be used to describe multicomponent mixture systems to
resolve pure component concentration and spectral contributions.
(Alcaráz et al., 2017; Pellegrino and Olivieri, 2020; Olivieri, 2021).
The goal of MCR-ALS is to identify the true underlying sources of
data variation directly using spectral components that can be easily
interpreted by non-chemometricians. Even though MCR-ALS does
not require previous information about the system, unique solutions
are not usually obtained unless external information such as
constraints are provided during matrix decomposition. MCR-ALS
solutions are not unique, such as most bilinear decomposition
methods, and the resolved components contain several
ambiguities, including rotational, permutation, and intensity.
(Pellegrino and Olivieri, 2020; Olivieri, 2021). Users often narrow
the range of potential MCR solutions by including constraints that
are often based on chemical or mathematical features of the data set.
When implemented properly, constraints can provide a helpful
driving force in the iterative process to arrive at the correct
solution. In complex systems, MCR-ALS may not provide a
quantitative solution to the mixture problem. For quantitative
predictions, PLSR models can be trained to cover the range of
anticipated conditions to successfully model complex spectral
features in spectral systems. PLSR solves for orthogonal vectors
in the latent space (latent variables [LVs]) that best explain the
covariance between the measured signal (spectra) and response
matrix (concentrations). PLSR depends on a training set, which
is composed of calibration and validation samples. (Sadergaski et al.,
2021a; Sadergaski and Andrews, 2022; Andrews et al., 2023).

Spectral training sets containing Np in +3, +4, +5, and
+6 oxidation states can be obtained electrochemically while
recording optical spectra in situ. However, in most process
conditions that use various HNO3 concentrations, Np will
generally be in the +4, +5, and/or +6 oxidation states. A
controlled spectropotentiometric approach has been leveraged

previously to study the mechanisms for Np and Pu redox
reactions in HNO3 solutions but has not been applied to the
development of regression models to measure their relative
concentrations or applied to systems with Np
concentrations >10 mM. (Edelstein, 2015; Lines et al., 2017;
Chatterjee et al., 2020). In this work, thin-layer, in situ
spectropotentiometry was used to isolate Np species in pure
oxidation states without compromising solution optical properties
from the additional redox reagents to generate spectral data for the
development of supervised and unsupervised methods for
quantifying Np in various oxidation states. (Elgrishi et al., 2018;
Andrews and Sadergaski, 2023a).

In a simple system that follows Beer’s law, absorption is directly
proportional to concentration. (Harris, 2007). To date, most spectral
databases of Np in HNO3 solutions have not been established at
concentrations greater than 10 mM. (Chatterjee et al., 2017). This
linear relationship may break down at elevated solute
concentrations >0.01 M, where interionic associations between
solute ions (e.g., NpO2

+ and NpO2
2+) become more significant.

(Guillaume et al., 1982). Previous work presumes that these
interactions and corresponding spectral features must be
accounted for to develop accurate models. (Chatterjee et al.,
2017). If this assumption is true, then electrochemically
generated spectral data sets must not only be composed of pure
oxidation states but must also be proportionate mixtures of Np(IV),
Np(V), and Np(VI). If these effects are insignificant, then spectral
data sets could be generated synthetically using pure end point
spectra to generate mixtures of all relevant combinations of Np
oxidation states. This approach would aid the generation of data sets
with radiological samples and minimize the time, waste, and money
associated with model development. These samples can be selected
using design of experiments, which generate mixture designs within
a statistical framework. (Zahran et al., 2003; Sadergaski et al., 2022b).

This work evaluates the use of MCR-ALS and PLSR models to
quantify Np oxidation states generated during multiple
electrochemical scans in which various proportions of Np(III/IV/
V/VI) coexisted in solution. Three points of scientific advancement
in this work include 1) combined PCA and Kennard–Stone (KS)
sample selection to retrieve representative spectra from
electrochemically generated data; 2) systematic comparisons of
PLSR prediction performance between models built using
additive combinations of pure end point spectra and
electrochemically generated spectra with coexisting ions, revealing
an inconsequential contribution from interionic associations at
approximately 0.08 M Np in 2 M HNO3; and 3) proposed a
unique combination of techniques and an effective application
strategy to develop robust regression models for the quantitative
analysis of Np(III/IV/V/VI) in HNO3. This capability will help the
238Pu Supply Program at Oak Ridge National Laboratory to monitor
essential radiochemical processes needed to produce 238Pu, a power
source for radioisotope thermoelectric generators (RTGs) needed
for NASA space missions. (Sadergaski et al., 2021b; Andrews and
Sadergaski, 2023b). Implementing optical spectroscopy, multivariate
chemometrics, and online monitoring capabilities in radiochemical
hot cells can support radiochemical processing and scale-up efforts.
Additionally, a thorough understanding of Np is needed for
reprocessing, waste storage, environmental applications, and
additional systems within the nuclear fuel cycle.
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2 Methods

All chemicals were commercially obtained (American Chemical
Society–grade) and used as received unless otherwise stated.
Concentrated HNO3 (70%) was purchased from Sigma-Aldrich.
Samples were prepared using deionized water with Millipore Sigma
Milli-Q purity (18.2 MΩ·cm at 25°C).

2.1 Sample preparation and
electrochemistry

A237Np nitrate hydrate sample was prepared in house at Oak
Ridge National Laboratory. The sample was weighed out into a 1 mL
volumetric flask with a combination of deionized water and 70%
HNO3 to achieve 2 M HNO3. Purity was confirmed by alpha-
particle spectroscopy. The sample was prepared and analyzed in
a negative pressure glove box.

The sample (700 µL) was placed in a 1.7 mm path length cuvette
(PINE Research) for the spectroelectrochemical measurements.
Electrochemical tests were controlled with an SP-300 potentiostat
(Biologic). (Andrews and Sadergaski, 2023a). A screen-printed Pt
honeycomb working/counter electrode (Pine Research) was used with
a pseudo reference electrode. A cell potential above the standard redox
couple of NpO2

2+/NpO2
+ was applied to adjust the oxidation state to

nearly 100% Np(VI). Then, the cell potential was carefully reduced at
0.1 V increments until all of the Np was converted to Np(III). Finally,
the cell potential was abruptly switched above the NpO2

2+/NpO2
+

redox couple to rapidly oxidize the sample back to Np(VI). The
applied cell potential as a function of time is provided in the
Supporting Information (Supplementary Figure S1). This approach
does not compromise solution optical properties by avoiding the
addition of redox reagents for isolating and stabilizing Np species in
pure oxidation states. (Chatterjee et al., 2017).

2.2 Optical spectroscopy

Absorption spectra were collected using an Ocean Insight QEPro
(316–1,104 nmat 0.71 nm increments) andNIRQuest (898–1,705 nmat
1.53 nm increments) spectrophotometer. The QEPro measurements
were recorded as an average of 15 replicates at 40 ms intervals, and
the NIRQuest measurements were an average of three replicates at
300ms intervals. Absorption spectra were processed using OceanView
software (Ocean Insight, Orlando, Florida, USA). A stabilized broadband
(360–2,600 nm) light source (SLS201L, ThorLabs) was used for
absorption measurements. The sample cuvette was placed in a
StellarNet cuvette holder with SMA fiber adapters. A QBIF400-
MIXED Ocean Insight fiber bundle enabled simultaneous QEPro and
NIRQuest measurements. Spectra were collected at a room temperature
of 20°C. Spectral regions from325 to 400 nmand 1,380 to 1,700 nmwere
omitted from the analysis because of low signal intensity.

2.3 Design of experiments

Experimental designs were built usingDesign-Expert (v.11.0.5.0) by
Stat-Ease Inc. (Minneapolis, MN, USA). D (determinant)-optimal

designs utilize an algorithm to select sample concentrations by
iteratively minimizing the determinant of the variance-covariance
matrix XTX. Relative analyte concentrations of Np(III/IV/V/VI) were
generated from a mixture design, each as a fraction between zero and
one. The fraction of design space was calculated by mean error type: δ =
2, σ = 1, and α= 0.05. (Zahran et al., 2003; Sadergaski et al., 2022b). Delta
(d) describes the maximum acceptable half-width (i.e., margin of error),
sigma (s) is an estimate of the standard deviation, and alpha (α) is the
significance level used in the statistical analysis. This design required
10 model points using a quadratic model and 5 lack-of-fit (LOF) points
(Supplementary Table S1). LOF points minimize the distance to other
model points (i.e., runs) while conserving the optimality criterion. LOF
points were included in the model to improve the fraction of design
space (1.0) by including additional vertex, edge, plane, and interior
points. Synthetic mixture spectra were not generated experimentally, but
as an additive combination of weighted endpoint spectra.

2.4 Multivariate analysis and preprocessing

The Unscrambler X software (version 10.4) from the Camo
Analytics AS software package (Camo Analytics AS, Oslo, Norway)
was used for data preprocessing and chemometric analyses. Spectra
were mean-centered prior to PCA and PLSR. A NIPALS (nonlinear
iterative partial least squares) algorithm was used for PCA and partial
least squares (PLS). A comprehensive overview of PCA can be found in
the literature. MCR-ALS uses an iterative cycle to simultaneously
optimize both concentration profile(s) and instrument response
matrices. MCR decomposes the spectral data X (I × J) into a
concentration matrix C and sources ST based a bilinear model
defined in Eq. 1:

X � CST + E, (1)
whereC (I ×N) and the sources ST (N × J) consist of the concentration
and spectral profiles of the N deconvoluted sources, and E (I × J)
represents the residuals matrix. Where I represents the number of
samples and J the number of spectral variables. It is possible to enter
estimates, a C-type (i.e., concentration), or an ST-type matrix
(i.e., spectra) as an initial guess (i.e., nonrandom estimate) in The
Unscrambler. Additional details for MCR-ALS constraints can be
found in the Supporting Information.

PLSR correlates spectral features to analyte concentrations by
modeling concentration and spectral information in the regression
coefficient matrix. (Lackey et al., 2023). PLSR iteratively relates two
data matrices: the independent X (i.e., spectra) and dependent Y
(i.e., concentrations), using combinations of LVs. In PLSR, the
measured value is often called the X-block or predictor block
(i.e., spectra), and the response variable is called the Y-block or
predicted block (i.e., concentration matrix). These scores and
loadings (i.e., LVs) are used to derive regression coefficients in
the modeling process. The best number of LVs is often chosen by the
last LV to show a significant decrease in the explained variance or
root mean square error (RMSE) of the cross validation (CV) data.
CV statistics were calculated by leaving one sample out. PLSR
models can be built with one Y variable (PLS-1) or multiple Y
variables (PLS-2). In this work, PLS-2 models were built to help
account for covariance or multicollinearity between species
represented in the spectral data set.
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The concentration profile estimates from MCR-ALS were
compared with a PLSR prediction approach adapted from a
previous work. (Sadergaski et al., 2022a). This method selects
samples from data sets using PCA and KS, estimates the relative
concentrations between zero and one for each species in this reduced
training set by deconvolution, then builds a predictive PLSR model
from those estimates. In a fourth step, the concentration matrix used
for PLSR was scaled so the estimates match the real concentration
values.

2.5 Statistics and limits of detection

Model performance was evaluated using calibration, CV,
and validation (i.e., prediction) metrics. The primary statistics
used to evaluate model performance was the RMSEs of the
calibration (RMSEC), CV (RMSECV), and prediction
(RMSEP). RMSE values have the same units as the measured
values. The CV statistics using designed calibration sets may
not accurately estimate model stability and prediction
performance. (Sadergaski et al., 2021a). PLSR model
prediction performance testing on samples not included in
the training set is important because the RMSE of CV is
only an estimate, especially when using a designed sample
matrix. RMSEs for the calibration, CV, and validation were
calculated using Eq. (2):

RMSE �
������������∑n

i�1 ŷi − yi( )2
n

√
, (2)

where ŷi is the predicted concentration, yi is the measured
concentration, and n is the number of samples. PLSR models were
optimized by minimizing the RMSEP. Percent RMSEP was calculated
by dividing the RMSEP by the median model values using Eq. (3):

RMSEP% �RMSEP

ymed
× 100%, (3)

where ymed represents the median of each analyte concentration
range. Each RMSE value is in units of analyte concentration. Lower
RMSEP values indicate better model performance. Strong prediction
performance is achieved when RMSEP is less than or equal to 5%,
satisfactory performance when RMSEP is between 5% and 10%, and
indicative performance when RMSEP is between 10% and 15%.
(Sadergaski and Morgan, 2022) The deviation (i.e., uncertainty) in
predicted Y-values (i.e., concentrations) for each individual sample
was estimated as a function of the global model error, sample
leverage, and residual X-variance. (Vries and Ter Braak, 1995)
Standard error of prediction (SEP) and bias were also used to
evaluate prediction performance. SEP is the RMSEP corrected
for bias.

3 Results and discussion

3.1 Np VIS/NIR absorption spectra

Several discrepancies exist in the literature regarding Np
absorption spectra in HNO3; conversely, numerous spectra have

been reported and are generally consistent. Most studies aim to
understand the behavior of Np at concentrations near 1 mM, and
very few studies have examined Np VIS/NIR spectra at
concentrations >0.01 M Np. (Chatterjee et al., 2017).
Spectroelectrochemical experiments were conducted on solutions
of approximately 0.08 M Np in 2 M HNO3. A potentiometric setup
in parallel with a three-electrode card coupled to UV-Vis and NIR
spectrophotometers allowed for spectral data collection during
controlled, stepwise changes in potential (Supplementary Figure
S1). This method allows for changes in Np oxidation state as a
function of potential and recording spectra as light passed through
the diffusion layer along the holes in the working electrode.

Many studies have reported characteristic electronic spectra of
Np oxidation states ranging from Np(III) to Np(VI). (Sjoblom and
Hindman, 1951; Ryan, 1960; Friedman and Toth, 1980; Ban et al.,
2014; Chatterjee et al., 2017; Sadergaski and Morgan, 2022).
However, similar redox potentials, differing chemical and redox
behavior, the ability to react with certain complexing ligands, and
differing stabilities in acid of various concentrations all contribute to
the complex redox chemistry of Np and the difficulty in acquiring
electronic spectra of single oxidation states. (Chatterjee et al., 2017).
A total of 1,300 spectra were generated during the sequential step-
wise reduction from Np(VI) to Np(III), generating approximately
99% pure spectra for each oxidization state, as shown in Figure 1.
Significant overlap of spectral peaks in both the UV-Vis and NIR
regions is observed. For Np(III), high absorption is observed near
the UV region (<460 nm), with several notable peaks given in
Table 1 that span the entire Vis region. The only peak without
significant overlap was the broad band near the 1,355 nm signal in
the NIR region. The region above approximately 1,370 nm was
omitted from the analysis owing to overlap with the strong NIR H2O
band region centered near 1,450 nm and detector saturation.
(Sadergaski et al., 2021a; Sadergaski et al., 2023). Several peaks
are observed in the UV-Vis region of the electronic spectrum of
Np(IV). The most notable peak is a broad signal in the UV-Vis
region, which observed from approximately 700 nm–730 nm.
Previous studies indicate that this spectral region is highly
sensitive to acid concentration. Another packet of broad signals
occurs in the NIR region at approximately 930, 960, and 975 nm, as
well as another weak peak near 1,140 nm.

For Np(V), the UV-Vis region contains several minor peaks
listed in Table 1, but the primary absorption bands occur near
615 and 980 nm. Computational studies of the Np(V) neptunyl
cation have attributed absorption bands in the region of
approximately 433 nm and below to charge transfer transitions.
At wavelengths above 433 nm, peaks are attributed primarily to the
intense f → f transitions. (Edelstein, 2015). The intense peak in the
NIR region at 980 nm dominates the spectrum and has a molar
extinction coefficient that is nearly an order of magnitude larger
than any peak in this scan. The 980 nm peak in Figure 1 is not
distorted, but it is saturating the detector. The nonlinear instrument
response for this peak has been described and accounted for in
previous studies and is due to a higher molar absorptivity relative to
other peaks in the spectrum. (Sadergaski and Morgan, 2022;
Andrews and Sadergaski, 2023b). For Np(VI), high absorption in
the low-wavelength range <420 nmwas observed. A broad system of
overlapping peaks occurred near 555 nm, and the most
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characteristic feature of the Np(VI) spectrum is an asymmetric peak
that occurs in the NIR region near 1,223 nm. (Ban et al., 2014).

Numerous isosbestic points were identified between Np(III) and
Np(IV) spectra. Isosbestic points were not identified between all four
Np oxidation states. The most useful isosbestic points for the more
process-relevant oxidation states [i.e., Np(VI), Np(V), Np(IV)]
occurred near 608 and 646 nm. In general, less peak overlap
occurred in the NIR region >900 nm (other than the
970–990 nm region), and the peak intensities are somewhat
balanced. Therefore, this region was assessed by PCA analysis.

3.2 PCA analysis and KS sample selection

A 3D scores plot for the PCA model built using baseline-
corrected NIR spectra, collected during the scan from Np(VI) to
Np(III), is shown in Figure 2. The Np(III) will not typically be
encountered in process solutions, but it was included here to make

the modeling more challenging. Principal components (PCs)
1–3 describe a total of 99.94% of the explained X-variance.
Despite spectral data corresponding to the presence of four Np
oxidation states, only three PCs were needed to describe the
structured variation in the data set. A 3D scatter plot revealed a
systematic sample pattern (Figure 2). The closer samples are in the
3D scores plot, the more similar they are with respect to the three

FIGURE 1
Np(III/IV/V/VI) absorption spectra generated from the sequential step from Np(VI) to Np(III): (A) Vis, (B) NIR, and (C) fused spectra.

TABLE 1 Characteristic Np absorption bands by oxidation state.

Oxidation state Primary absorption bands (nm)

Np(III) 555, 601, 658, 782, 847, 979, 1,355

Np(IV) 494, 522, 700, 714, 802, 933, 953, 972, 1,138

Np(V) 476, 616, 980, 1,097

Np(VI) 557, 1,223

FIGURE 2
3D scatter plot of the scores for principal component (PC)-1, PC-
2, and PC-3. Sample selected by the KS algorithm are shown as the red
squares. Location of pure Np oxidation states are noted as the end
points and vertex points.
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components. The periodicity (i.e., regular increase/decrease) is
consistent with the electrochemical scan, which gradually
converted Np from one oxidation state to the next. A separate
PCA model was built using the entire NIR spectrum, and four PCs
were needed to describe 99.97% of the data variance because of the
saturation of the 980 nm peak, which required an additional loading
to compensate for the peak broadening and so-called flat top. This
behavior has been leveraged in a recent study to construct a
hierarchical model to monitor a larger concentration range.
(Andrews and Sadergaski, 2023b).

Pure Np(VI), Np(V), Np(IV), and Np(III) spectra corresponded
to the end points or vertex points in the plot. The points connecting
each end point or vertex point correspond to mixtures of two
oxidation states at a time. This result confirms that no more than
two Np oxidations coexisted in solution at a given time. Each PCA
loading in the model gave importance (i.e., large positive or negative
values) to spectral variables corresponding to the predominant
peaks in the spectra for each Np oxidation state. However, each
loading contained spectral features for two or more oxidation states
(data not shown here).

The KS sample selection algorithm was used to select a subset of
15 calibration and 15 validation samples to evenly cover the
multivariate space described by PCA. The locations of KS
calibration samples are shown in Figure 2 (red squares), and the
spectra corresponding to each sample are shown in Supplementary
Figure S2. This method reduced the number of spectra from 1,300 to
15 for further evaluation. These samples were used to train
supervised PLSR models to develop a method for isolating the
relative concentration of each Np oxidation state in the mixed
spectra.

3.3 PLSR regression models

PLSR models X and Y matrices to find the structure in X that
best predicts the concentration matrix Y by maximizing the
covariance between X and Y. The set of 15 KS-selected spectra
comprised the matrix X, and a deconvolution method, also
known as digital subtraction, was used to assign concentration
values to each spectrum. (Chatterjee et al., 2017). It is common
practice to trim spectral data because trimming typically
improves model performance by removing noise so the model
can focus on regions of high correlations to the response matrix.
(Lackey et al., 2023). Because of the substantial overlap of peaks in
the spectrum, the entire region was included in the model.
However, the region corresponding to the 980 nm peak was
removed from the regression model owing to peak saturation
at high Np(V) concentrations. Future work could evaluate the
development of PLS-1 regression models, which could be tailored
to each species individually, and a hierarchical approach could
account for a wide range of Np(V) concentrations. (Andrews and
Sadergaski, 2023b).

PLS used three LVs to describe the variation in the data when the
980 nm band was removed from the analysis. Four factors were
needed to describe >99% of the variance when the entire NIR
spectrum was modeled. The number of LVs was comparable with
the number of oxidation states modeled in the system, which
suggests that spectral features related to interionic associations

from coexisting ions are possibly negligible. If these features were
significant, additional LVs would likely be included in the model.

The explained Y-variance using three factors for the
calibration and cross validation (CV) were 99.94% and 99.9%,
respectively. Therefore, additional latent variables (i.e., factors)
were not included in the model to avoid introducing noise. Parity
plots for the calibration and validation values are shown in
Figure 3. Similar values between RMSEC and RMSECV values
indicate a balanced model and enough samples in the calibration
set. However, the difference between RMSEC and RMSECV for
factors 1 and 2 suggests that the 15 spectra approach the
minimum required in the calibration set (Supplementary
Figure S3). The percent RMSECV values for Np(VI), Np(V),
Np(IV), and Np(III) are 1.3%, 3.0%, 2.8%, and 1.4%,
respectively. RMSECV values provide an estimate of the
deviation associated with future predictions and suggest that
the model has the desired level of accuracy for the intended
purpose. A 3D scores plot for the PLS-2 model is shown in
Supplementary Figure S4 and reveals similar systematic
features to the PCA 3D scores plot in Figure 2.

The scores relationship may be related to the spectra
incorporated in the model. Even though pure spectra for each
oxidation state are captured in the data set, only three unique
steps from one oxidation state are represented in the model
[i.e., Np(VI) to Np(V), Np(V) to Np(IV), and Np(IV) to
Np(III)]. Only one or two Np oxidation states existed in solution
at a given point during the scan. Therefore, synthetic spectra were
generated using a mixture design applied to pure end point spectra.
This process could be referred to as digital addition, which is the
antithesis of digital subtraction. The synthetic NIR mixture spectra
(Supplementary Figure S4) and the design parameters
(Supplementary Table S1) are shown in the Supporting
Information. The PLS-2 model generated from KS-selected NIR
spectra (KS-PLS2) was used to predict the relative concentrations of
Np oxidation states in these spectra. The synthetic spectra could be
considered outliers in some sense because unique proportions of Np
oxidation states are represented in the spectra that were not included
in the PLS-2 calibration set. The prediction performance for each
oxidation state was strong and comparable with the RMSECV
statistics presented in Figure 3. The RMSEP values for Np(VI),
Np(V), Np(IV), and Np(III) were 0.0043, 0.022, 0.0077, and 0.018,
respectively.

3.4 Predicting KS validation set

To further evaluate the difference between models generated
using true mixtures and synthetic mixtures, a mixture PLS-2 model
(M-PLS-2) was developed using the mixture spectra and relative
mixture concentrations. The RMSEC and RMSECV value rounded
to zero, which suggests that the data were fit seamlessly. This result is
an artifact of the so-called perfectly linear combinations of pure
spectra. The M-PLS-2 model and the KS-PLS2 model were used to
predict KS-selected validation spectra not included in either data set.
The prediction statistics are shown in Table 2. The RMSEP, SEP, and
bias values were all similar and represent strong prediction
performance. Bias values close to zero are preferred and indicate
a random distribution of points above and below the regression line.
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This result suggests that building synthetic models from pure
reference spectra may be sufficient to model systems with true
mixtures where spectral features related to interionic associations
may not be completely absent but are, in effect, negligible and
represent only a small portion of the variance in the model. This
result is significant because it means that each combination of Np
oxidation states may not need to be generated to build a useful
predictive model.

PCA analysis and PLSRmodels were also evaluated using the Vis
region from 450 to 900 nm. No clear advantages over the NIR region
(900–1,370 nm) were observed, so the results were not included in
this work. Under certain circumstances, it could be advantageous to
use this region of the absorption spectrum because no NIR water
absorption bands are present in this region. (Sadergaski et al.,
2021a). NIR absorption water bands occur near 960, 1,200, and

1,450 nm and are highly dependent on temperature, ionic strength,
and the presence of ions. The contribution from the NIR water band
to the Np spectral features are considered negligible in this work
because of the small path length (0.17 cm) and relatively low total
Np concentration. Future work could explore a sensor fusion or
stacked regression approach to account for the entire spectrum.
(Lines et al., 2020; Sadergaski and Andrews, 2022).

3.5 MCR-ALS resolve the Np(VI) to Np(III)
scan

MCR-ALS was also evaluated because it could be advantageous
compared with the PLSR model approach because it would not
require the researcher to deconvolute training set spectra. The
30 KS-selected calibration and validation spectra were analyzed by
MCR-ALS to determine the optimal conditions. This method
improved the speed of calculations. Solutions derived from the
entire set (1,300 spectra) compared with the set of 30 KS spectra
were similar (data not shown here). Constraints can minimize the
ambiguity in the data decomposition and results but can also play a
negative role in the resolution process. The application of
constraints should always be grounded in sound reasoning and
understanding of the system. Several of the most common
constraints were evaluated in this work, including non-
negativity, unimodality, and closure. The non-negativity
constraint for concentrations and spectra applied in this
situation. Additionally, the closure constraint was useful
because the total Np concentration, the principle of mass

FIGURE 3
PLS-2 regression model parity plots (Factor-3) for the calibration and cross validation data from the KS-selected NIR spectra for the normalized
concentrations of (A) Np(VI), (B) Np(V), (C) Np(IV), and (D) Np(III).

TABLE 2 Prediction statistics for the KS-PLS2 model and M-PLS-2 models.

KS CAL model Np(VI) Np(V) Np(IV) Np(III)

RMSEP 0.0050 0.0115 0.0110 0.0045

SEP 0.0047 0.0117 0.0114 0.0047

Bias 0.00205 −0.00196 0.000163 −0.00043

M-PLS-2 model Np(VI) Np(V) Np(IV) Np(III)

RMSEP 0.0064 0.0131 0.0125 0.0074

SEP 0.0065 0.0131 0.0129 0.0075

Bias 0.00113 0.003241 −0.00589 −0.00153
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balance, was constant across all samples in the model. Initial
estimates from pure reference spectra were also tested but did
not appear to improve the resolution process. Regions of the most
overlap between oxidation states and the nonlinear 980 nm peak
were also omitted from the model.

The MCR-ALS component concentrations and spectra are
shown in Supplementary Figure S7. The model suffered from
some rotational ambiguity owing to overlapping peaks but was
useful for resolving the general features in the data set. It
resolved Np(VI), Np(IV), and Np(III) concentrations well.
However, the primary Np(V) peak near 1,097 nm was not
resolved owing to overlap with both Np(IV) and Np(VI) peaks
in this region. On the other hand, the model appeared to resolve
Np(IV) concentrations even through they overlapped significantly
with the Np(III) peak in the 900–950 nm region. MCR-ALS analysis
of the visible region (450–900 nm) yielded similar results. Future
iterations could evaluate nonlinear MCR-ALS to account for the
nonlinearity of the Np(V) 980 nm peak and include local rank or
physiochemical constraints. These constraints can help suppress the
ambiguity linked to overlapping peaks.

3.6 PLSR predictions

The KS-PLS2 and M-PLS-2 models were used to predict the
relative concentration of Np oxidation states in each sample
generated during the scan from VI to III. The normalized
concentration profiles are shown in Figure 4. The predicted
concentrations of Np in each oxidation state are nearly identical.

Slight fluctuation was observed above and below zero, but the
estimated deviation (average of 0.01) was sufficient to cover this
and not misinterpret the presence of oxidation states that were not
coexisting in the sample. The estimated deviation in the M-PLS-
2 prediction was comparable with the KS-PLS2 model. However, the
error bars shrunk as the relative fraction of oxidation states
approached 1. It was lowered by nearly an order of magnitude
to ±0.001. This result is likely because of bias in the model toward
the pure end points because the model was built using only these
spectra. Future versions could investigate the addition of noise or
other artifacts to the pure spectra that could help the model cope
with pure end points and mixtures more consistently.

The Ymatrix for PLS was scaled by the Np concentration (g/L) to
achieve the desired units. Multiplying the Y matrix composed of
fractions by the total Np concentration adjusted the magnitude of the
vectors but not the direction. This method is a simple way to scale the
regression model to the appropriate units. The scaled KS-PLS2-NIR
model was used to predict the Np oxidation states in a rapid scan from
Np(III) to Np(VI), where the potential was changed abruptly from
reducing to oxidizing conditions (Figures S1). This oxidizing scan was
more rapid (11 min) than the stepwise reducing scan described above
(43 min). This process generated a unique combination of oxidation
states, primarily Np(IV) and Np(VI) (Figure 5). This method tested
the model’s prediction performance on samples not included in the
training set to see if it could cope with spectra corresponding to a
unique combination of Np oxidation states [i.e., Np(IV) and Np(VI)].
Very little Np(V) was produced in this scan because the conversion
from NpO2

+ to NpO2
2+ is rapid and not hindered by the formation of

the actinyl ion from free Np4+ ions. The scan stepped slightly outside

FIGURE 4
Comparing PLSR model Np(VI), Np(V), Np(IV), and Np(III) normalized concentration predictions by (A) KS-PLS2-NIR model and (B)M-PLS-2 model.
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the electrochemical window for HNO3, which produced bubbles in
the optical pathlength; thus, the scan was stopped prior to complete
Np(VI) conversion.

A Hotelling’s T2 statistic with a critical limit based on an F-test
(p-value of 5%) was used to identify outliers or situations where
spectra were outside the variation captured in the calibration set. It
describes the distance to the model center based on the principal
components. Each sample falls within the confidence interval, which
suggests that the model viewed these samples as falling within the
space described by the training set (Supplementary Figure S8). Thus,
it is unlikely that significant interionic associations between Np(IV)
and Np(VI) resulted in distinct spectral characteristics for this
system. This result implies that useful models can still be
developed and deployed even when models are not built using
spectra representative of each coexisting ion.

The Np molar absorptivity values depend on solution
composition, acidity, ionic strength, and temperature. Previous
work identified temperature fluctuations in the Np(V) absorption
spectrum. (Sadergaski and Morgan, 2022). These shifts can be
accounted for using multivariate chemometric methods, but
overall, temperature effects presented a small portion of the
structured variation in the data set that could likely be neglected
over minor temperature differences. In general, Beer’s law applies
well for dilute solutions approximately ≤0.01 M for most solutes.
(Harris, 2007). In concentrated solutions, solute molecules begin to
influence one another owing to their proximity, which changes their
properties. The absorbing molecule could also participate in
concentration-dependent chemical equilibria. A conservative
assumption was that digital subtraction ignores spectral features
related to interionic associations. (Chatterjee et al., 2017). It likely
depends on the medium, but accounting for interionic associations
may not be necessary in certain conditions to develop models that
are useful for the intended purpose. (Topin et al., 2010). This work
reveals that interionic associations between Np ions of various
oxidation states is likely insignificant in HNO3. However,
cation–cation (e.g., NpO2

+ to NpO2
2+) interactions are expected

at concentrations near 0.2 M Np and greater and will likely need to

be accounted for. (Guillaume et al., 1982). This work, along with
previous work, suggests that accounting for differences owing to
acidity, particularly Np(VI) nitrate complexes, may pose the greatest
challenge and richest opportunity for online monitoring
applications of Np and other actinides (e.g., Pu).. (Ryan, 1960;
Lines et al., 2017).

4 Conclusion

A combined spectroelectrochemical and chemometric method
was established for the quantification of Np(III/IV/V/VI) in HNO3.
PCA described the data within a multivariate space compatible with
KS sample selection. This approach successfully chose a set of
representative samples spanning the range of anticipated
conditions in the data set. PLSR models built using synthetic
mixtures and spectra corresponding to samples with coexisting
neptunium oxidation states had similar prediction performance.
This result suggests that interionic associations are negligible in
this system (~20 g/L Np) and minimizes the number of
experiments necessary to train and validate chemometric models,
which is particularly useful for harsh and restrictive radiological
applications. Error statistics associated with the model derived
from synthetic (i.e., digital addition) mixtures should be considered
with caution because of the pristine nature of the data, which caused
RMSEC and RMSECV values in the model to approach zero and
questionable estimates of the deviation in predicting pure endpoint
spectra. Overall, PLSR is a promising option to make accurate
predictions in process solutions with multiple Np oxidation states
without requiring post-analysis by subject matter experts. This
technique and the overarching findings could be leveraged for
building spectral data sets and predictive chemometric models to
bolster online monitoring applications to support the 238Pu Supply
Program at Oak Ridge National Laboratory and additional
opportunities within the nuclear field.
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