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Partial least squares regression (PLSR) and support vector regression (SVR) models
were optimized for the quantification of U(VI) (10–320 g L−1) and HNO3 (0.6–6 M)
by Raman spectroscopy with optimized calibration sets chosen by optimal design
of experiments. The designed approach effectively minimized the number of
samples in the calibration set for PLSR and SVR by selecting sample
concentrations with a quadratic process model, despite complex confounding
and covarying spectral features in the spectra. The top PLS2 model resulted in
percent root mean square errors of prediction for U(VI), HNO3, and NO3

− of 3.7%,
3.6%, and 2.9%, respectively. PLS1 models performed similarly despite modeling an
analyte with a majority linear response (i.e., uranyl symmetric stretch) and another
with more covarying vibrational modes (i.e., HNO3). Partial least squares (PLS)
model loadings and regression coefficients were evaluated to better understand
the relationship between weaker Raman bands and covarying spectral features.
Support vector machine models outperformed PLS1 models, resulting in percent
root mean square error of prediction values for U(VI) and HNO3 of 1.5% and 3.1%,
respectively. The optimal nonlinear SVR model was trained using a similar number
of samples (11) compared with the PLSR model, even though PLS is a linear
modeling approach. The generic D-optimal design presented in this work
provides a robust statistical framework for selecting training set samples in
disparate two-factor systems. This approach reinforces Raman spectroscopy for
the quantification of species relevant to the nuclear fuel cycle and provides a robust
chemometric modeling approach to bolster online monitoring in challenging
process environments.
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1 Introduction

Online monitoring techniques have been investigated for process monitoring
applications in the nuclear field for many decades via direct techniques (e.g.,
spectrophotometry) and physiochemical measurements (e.g., density) (Bryan et al.,
2011; Kirsanov et al., 2017; Colle et al., 2020). These methods can characterize multiple
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species simultaneously and yield information within seconds to
minutes (Kirsanov et al., 2017; Lascola et al., 2017; Lines et al.,
2020; Sadergaski et al., 2020; Sadergaski et al., 2022a). Rapid, in-line
quantification provides numerous operational benefits for processes
commonly taking place in harsh, restrictive, and expensive working
environments such as hot cells. Identifying deviations from normal
operations in nuclear facilities is important for many reasons such as
controlling processing streams for efficient radiochemical
separations and monitoring diversions for proliferation and
safeguards purposes.

Ultraviolet–visible–near-infrared spectrophotometry has been
used since the 1970s for the quantification of actinide and HNO3

concentrations and metal ion speciation (Burck, 1992). Raman
spectroscopy is also useful for actinide measurements,
particularly actinyl ions, including U(VI), Np(V), Np(VI), and
Pu(VI), which have Raman-active vibrational modes (Guillaume
et al., 1982; Felmy et al., 2023). For trace U(VI), time-resolved laser-
induced fluorescence can be used to quantify concentration and
determine speciation (Matusi et al., 1988; Moulin et al., 1994;
Couston et al., 1995; Moulin et al., 1996; Sadergaski and
Andrews, 2022; Sadergaski et al., 2024). With increasing HNO3

concentration, UO2
2+ hydrate complexes are replaced by

coordinating nitrate ions (NO3
−) to form U(NO3)

+, U(NO3)2,
and even U(NO3)3

−, which produce unique spectral features,
particularly in electronic spectroscopy (Burck, 1992; Ikeda-Ohno
et al., 2009).

Optical spectra collected in challenging process media over a
wide range of conditions are often best modeled using multivariate
analysis or chemometrics (Pelletier, 2003; Casella et al., 2013;
Sadergaski et al., 2022b). Areas where chemometrics have been
most successful include multivariate calibration, pattern
recognition, classification, multivariate processing monitoring,
and others (Wold and Sjostrom, 1998). A well-established
supervised chemometric method is partial least squares regression
(PLSR), which is a factor analysis method that models entire spectra
to find the structure inX (i.e., spectral matrix) that is most predictive
for Y matrix (i.e., concentration matrix) (Wold et al., 2001).

Although this supervised chemometric approach is very
powerful, it normally depends on collecting a spectral dataset
representative of the anticipated process conditions. It can be
challenging to produce these training sets in the nuclear field
because radioactive materials are in short supply or difficult to
handle. Design of experiments (e.g., optimum designs) can be used
to minimize the number of samples in a training set without
sacrificing predictive capabilities to minimize time and waste
compared with more traditional methods (Czitrom, 1999; Wold
et al., 2003; Guo et al., 2021). The primary goal is generating a
balanced sample distribution in each direction of the design space to
ensure all points have reasonable influence on the solution
(i.e., PLSR model). However, the relationship between the
designed concentration matrix and PLSR prediction performance
is somewhat empirical because optimal design only considers Y,
while a PLSR model correlates both spectra (Xmatrix) and response
variable(s) (i.e., Y matrix). Additionally, most examples of this
method are not generalized and are often applied to relatively
simple systems with little covariance or confounding spectral
features (Bondi et al., 2012; Steinbach et al., 2017; Sadergaski
et al., 2022b; Sadergaski et al., 2023).

This study minimized the number of calibration set samples
using a two-factor D-optimal design for the quantification of
U(VI) (10–320 g/L) and HNO3 (0.6–6 M) while optimizing PLSR
prediction performance to bolster the monitoring approach for
nuclear fuel cycle applications (Burns and Moyer, 2016; Einkauf
and Burns, 2020). The generic two-factor D-optimal design can
be extended to numerous systems by simply scaling the
endpoints to provide a more balanced estimate of model
parameters. Additionally, the performance of the linear PLSR
model was compared with nonlinear support vector regression
(SVR), which is a type of support vector machine (SVM) useful
for regression tasks (Deiss et al., 2020; Rodriguez-Perez and
Bajorath, 2022). Very few studies have evaluated the effect of
training set size and composition on SVM modeling (Rodriguez-
Perez et al., 2017). The scientific advancements in this work are
threefold; this study 1) established a generalized D-optimal
design for optimizing training set sample compositions in
linear PLSR and nonlinear SVR models, 2) demonstrated a
consistent designed approach amenable to both simple and
more complex systems with collinear and covarying spectral
features, and 3) compared the prediction performance of more
traditional PLSR and nonlinear SVR models. These findings
further establish the optical spectroscopy and chemometric
methods for online monitoring applications within and
beyond the nuclear field.

2 Methods

All chemicals were commercially obtained (American
Chemical Society grade) and used as received unless otherwise
stated. Concentrated HNO3 (70%) was purchased from Sigma-
Aldrich. Certified 10,000 μg mL−1 U (238U, depleted) was
purchased from SPEX CertiPrep. Samples were prepared using
deionized water with MilliporeSigma Milli-Q purity
(18.2 MΩ•cm at 25°C). Uranyl nitrate hexahydrate (UNH)
crystals were purchased from International Bio-Analytical
Industries and purified by crystallization.

2.1 Sample preparation

Calibration samples (16) contained U (VI) (10–320 g L−1 U)
and HNO3 (0.6–6 M) to cover the anticipated solution
conditions, and several validation samples (27) were within
and slightly beyond this range (Supplementary Tables S1, S2).
Samples were prepared with volumetric flasks and pipettes and
gravimetrically measured using a Mettler Toledo model
XS204 balance with an accuracy of ±0.0001 g. A U stock
concentration at 533 g L−1 U was prepared by dissolving UNH
crystals in 0.01 M HNO3. The concentration of the U(VI) stock
solution was checked by diluting an aliquot for
spectrophotometry (QEPro by Ocean Insight) using a molar
extinction coefficient of 7.7 M−1cm−1 for the 415 nm
absorption peak. The molar extinction coefficient was
determined by analyzing a 10,000 ppm inductively coupled
plasma optical emission spectroscopy stock solution in 5%
HNO3 with a 1 cm quartz cuvette.
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2.2 Vibrational spectroscopy

An imaging iHR320 spectrometer (Horiba Scientific), a
continuous-wave CNI 532 nm laser operating at 150 mW, and a
general-purpose reflection probe (Spectra Solutions Inc.) were used
to collect Stokes Raman spectra. Two multimode fibers—a 105 µm
core diameter fiber and a 400 µm core diameter fiber—were used on
the excitation and emission side, respectively. Triplicate spectra were
recorded from 200 to 4,000 cm−1 using a grating with 600 grooves
per millimeter, a 100 µm slit size, a 0.5 s integration time, and four
accumulations. Each spectrum was processed using LabSpec
6 software (Horiba Scientific). Static liquid samples were analyzed
in 1.8 mL borosilicate glass vials with a threaded cap and using a
sample/Raman probe holder made by Spectra Solutions Inc.

2.3 Design of experiments

Experimental designs were built using Design-Expert (v.22.0.5)
by Stat-Ease Inc. D-optimal designs select sample concentrations by
iteratively minimizing the determinant of the variance-covariance
matrix. The U(VI) and HNO3 are referred to as factors, and
particular concentrations are levels. A run refers to a single
sample, and the sample size is the total number of runs in the
experiment. The design was generated for two continuous levels
1–10 using a quadratic process model and contained six required
model points and an additional 10 lack-of-fit (LOF) points
(Supplementary Table S3). Five LOF points were needed to
achieve a fraction of design space near one (0.98) calculated by
mean error type, δ = 2, σ = 1, and α = 0.05, which indicates good
prediction capability over the factor range (Zahran et al., 2003). The
variable δ describes the maximum acceptable half-width
(i.e., margin of error), σ is an estimate of the standard deviation,
and α is the significance level used in the statistical analysis. If
additional LOF points were needed, it would suggest that a higher-
order model should be used.

2.4 Multivariate analysis and preprocessing

The Vektor Direktor v2.0 software by the KAX Group was used
to build PLSR/SVR models and for data preprocessing. Cross
validation (CV) was used to determine the optimal number of
latent variables (LVs) to include in the model as the LV with the
last significant decrease in root mean square error (RMSE) of CV
(RMSECV). PLSR models were built with one Y variable (PLS1) and
multiple Y variables (PLS2) to compare performance. PLS2 models
are typically better at accounting for covariance or multicollinearity
in the spectral dataset. On the other hand, PLS1 models can be
tailored to the spectral features of each species, which may require
unique combinations of preprocessing and feature selection
strategies. A full leave-one-out CV was used for PLSR and SVR
models. This is performed by randomly leaving one sample out of
the calibration set until every sample is left out once and
recalibrating sub-models on the remaining data. Spectra were
mean-centered prior to analysis unless otherwise stated.

Spectral data were preprocessed prior to modeling.
Preprocessing strategies can account for artifacts (e.g., baseline

shifts) that are expected in monitoring applications and optimize
the regression. A simple baseline offset was used to subtract a slightly
increased baseline at higher U(VI) concentrations. Standard normal
variate (SNV) is one of the most common scatter correction
algorithms and only uses data within each individual spectrum to
center and scale the data (Supplementary Figure S1). Savitsky–Golay
first derivatives were tested but did not improve the models. Spectra
were trimmed to evaluate how different regions of the spectra
affected model performance.

The SVM algorithm is a widely used machine learning method
for classification, ranking, multiclass prediction, and regression
modeling (Rodriguez-Perez and Bajorath, 2022). The SVM
approach was introduced decades ago and was originally
designed for binary object classification. SVMs find a hyperplane
in a high dimensional space that maximizes the separation of
different classes or output values. It has been adapted for
predicting numerical values by projecting training data into a
predefined feature space to derive a model fitting a regression
function (SVR) (Rodriguez-Perez et al., 2017; Deiss et al., 2020).
SVR attempts to minimize RMSE by using both linear and nonlinear
kernels. A linear model could not explain the dataset. Therefore, the
dimensionality was increased with a 2D polynomial line, 3D
polynomial plane, and radial basis kernel. The radial basis kernel
relates two objects in an infinite number of dimensions as opposed
to the limit of three dimensions for a polynomial kernel. A 2D
polynomial was sufficient for robust models for U(VI) and HNO3

and was used to improve computation time. The software creates a
heat map displaying the validation results for multiple combinations
of required values for specific SVM configurations. Blue regions
indicate strong performance, and red regions indicate poor
calibration metrics. The parameters in the region with the lowest
validation error were used to generate a model. SVR is less prone to
overfitting than PLSR and handles outliers well; however, it requires
careful parameter selection and often requires large datasets. An
extreme-gradient boost algorithm (Chen and Guestrin, 2016) was
also evaluated without success (data not shown here).

2.5 Statistical comparison

Model performance was evaluated using calibration, CV, and
prediction metrics. The primary statistics used to evaluate model
performance were the RMSEs of the calibration (RMSEC), CV, and
prediction (RMSEP). RMSEs for the calibration, CV, and validation
(RMSEP) were calculated using Eq. 1:

RMSE �
����������∑n

i�1 ŷi-yi( )2
n

√
(1)

where ŷi is the predicted concentration, yi is the measured
concentration, and n is the number of samples. Percent RMSEP
was calculated by dividing the RMSEP by the average model values
using Eq. 2:

RMSEP% � RMSEP

yavg
× 100% (2)

where yavg represents the average of each analyte concentration
range. RMSE values are units of analyte concentration, and lower
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RMSEP values indicate better model performance. RMSEP values
were also separated into bias and standard error of prediction (SEP)
to help evaluate the bias–variance trade-off (Faber, 1999).

3 Results and discussion

3.1 Raman spectra

Raman spectroscopy, among other optical techniques (e.g.,
electronic), can be used to quantify U concentration when paired
with the appropriate regression model. In HNO3 solutions, the
primary UO2

2+ peak in the Raman spectrum corresponds to the
]1 symmetric stretching mode with Raman shift near 870 cm−1 with
a full width at half maximum of 22 cm−1 (Figure 1). The peak
intensity and area of this band over the range of acid concentrations
used in this study (0.6–6 M HNO3) were generally insensitive to
varying HNO3 concentrations because NO3

− is only weakly
complexing (Felmy et al., 2023). Raman spectroscopy is not
typically used to measure U speciation in nitric acid; however,
low-intensity peaks are attributed to various interactions of U
(VI) with NO3

− (Figure 1). Changes in UO2
2+ speciation with

increasing HNO3 concentration can be tracked using
ultraviolet–visible absorbance and photoluminescence
spectroscopy to identify UO2NO3

+ and UO2 (NO3)2 complexes
in the studied HNO3 concentration range (Burck, 1992; Moulin
et al., 1996).

In addition to uranyl peaks, the primary nitrate bands occurred
near 1,047 cm−1 (]1 symmetric), 1,350 cm−1 (]3 asymmetric), and
716 cm−1 (]4 in-plane deformation). The Raman O–H band is
composed of multiple peaks from approximately 3,100 to
3,700 cm−1 corresponding to water molecules in unique local
environments. Several species of U (VI), NO3

−, and HNO3

affect the profile of the O–H band. The band can be used to
quantify strong acid concentration and other ions at high-enough
concentrations to perturb the water bonding network in solution
(Casella et al., 2013).

Lower-intensity NO3
−, UO2(NO3)

+, and HNO3 peaks can
become more intense or change shape upon increasing U(VI)
and HNO3 concentrations. For example, the NO3

− ]4 in-plane
deformation peak splits into two bands when interacting with
cations at higher concentrations. Additionally, the dissociation of
HNO3 to H+ and NO3

− above 1 M HNO3 is not complete; HNO3

can be identified at higher acid concentrations above
approximately 3 M by the peak near 968 cm−1 (Ziouane and
Leturcq, 2018). The most resolved UO2(NO3)

+ peak occurred
near 750 cm−1, but additional peaks occurred near 1,542 and
1,620 cm−1. The range of HNO3 concentrations resulted in the
formation of several species, most of which were spectrally active,
including UO2

2+, UO2(NO3)
+, UO2(NO3)2, NO3

−, H+, and
HNO3, several of which have concentration-dependent
features in solution. However, with exception to the uranyl
symmetric stretching mode, most features observed in the
Raman spectra are confounding and covarying and are
therefore best modeled using multivariate analysis.

3.2 D-optimal design

Supervised chemometric regression models depend on the
selection of a training set. Training set selection is often up to the
user to decide, or a full factorial design can be used. User
selection creates the potential for significant user bias and full
factorial designs produce unnecessarily large sample sets
(Czitrom, 1999). This work evaluates whether a D-optimal
design–selected Y concentration matrix can result in robust
PLSR and SVR models and determines the minimum number
of samples and the type needed to build robust chemometric
models. In other words, this study determines if the variance
captured in Y by the D-optimal design captures the necessary
X-variance in the spectral matrix. Developing a generalized
D-optimal sample selection approach that applies to
numerous spectroscopy systems will make the method
practical for widespread use and more efficient for model
development and implementation. Although various optical
techniques with chemometric methods have been evaluated
for monitoring U(VI) and HNO3, none have attempted to
generalize the training set while minimizing the sample size
using this type of experiment design criterion (Felmy
et al., 2023).

The D-optimal design approach allows a researcher to select
sample concentrations within a consistent statistical framework and
with minimal user bias. A D-optimal design was used to select U
(VI) and HNO3 concentrations (Supplementary Table S3). The
concentration range of the design was chosen such that the scale
went from 1 to 10 for each analyte. After generating the design, the
concentration range was scaled to cover the entire range of
concentrations [10–300 g L−1U(VI)] or match the acid level
range (0.6–6 M HNO3). In the case of analyte concentration
ranges that span more than one order of magnitude, the scaling
approach creates a more balanced set of concentrations over an
extended range and a model that can readily adapt to various
analytes. The designed approach can readily scale to at least
10 continuous variables and additional discrete variables to
account for numerous species and perturbations that would be

FIGURE 1
Raman spectrum of two U (VI) solutions in 0.6 or 6 M HNO3, with
several primary peaks labeled.
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encountered in some complex process conditions (Sadergaski
et al., 2024).

The fraction of design space can be used to determine whether
a design will capture the anticipated variation in a data set (Zahran
et al., 2003). Based on previous work, a fraction of design space
(FDS) near 0.98 was achieved using the six required model points,
and an additional five LOF points, which suggests that 11 samples
would be sufficient to train a robust PLSR model (Sadergaski et al.,
2022b). This metric is consistent between statistically equivalent
computer-generated designs, even when slightly different
concentration values are selected. However, the design does not
consider X spectra, so the relationship of the concentration matrix
(Y) to the resulting PLSR model is empirically derived. Previous
works have shown that this FDS coverage is sufficient to build
robust PLS2 and PLS1 models but were mostly applied to simpler
spectroscopy datasets (Bondi et al., 2012; Sadergaski et al., 2020;
Sadergaski and Andrews, 2022; Sadergaski et al., 2023; Sadergaski
et al., 2024). To understand how universal this metric is, the design
must be generalized and tested on more complex systems,
preferably with some multicollinear effects, to see if the
metric holds.

3.3 PLS2 model optimization

PLS2 models were used to correlate spectral features to analyte
concentration values using three Y variables [U(VI) (g L−1), HNO3

(M), and total nitrate (M)]. Multivariate analysis provides several
benefits compared to univariate options including the ability to
account for changing band properties (i.e., position, width, shape),
multivariate signal averaging, and diagnostic capabilities (e.g.,
outlier detection) of an over-determined system (Pelletier, 2003).
Nitrate concentration was treated as its own Y variable because the
total nitrate concentration depended on both the UO2(NO3)2 and
HNO3 added to the system. The entire D-optimal set of
16 calibration samples was used to build PLS2 models, and the
prediction performance was tested on a separate set of 27 samples
(validation set). Four latent variables were included in each
PLS2 model. This inclusion was based on the last significant
decrease in RMSECV (Figure 2). The last reasonable increase in
explained Y-variance also occurred at this point, although it is
difficult to see this visually in Figure 2. With four latent
variables, 99.85% of the total Y-variation in the dataset was
captured by the calibration and 99.68% by CV. Similar

FIGURE 2
PLS2 model with preprocessing (A) RMSE and (B) explained Y-variance vs. the number of LVs. The dashed box corresponds to the optimal number
of LVs.
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calibration and validation RMSEs and explained Y-variance values
in Figure 2 suggest that the model is balanced with 4 LVs. Evaluation
of the X-loadings and regression coefficient plots revealed that the
uranyl and nitrate symmetric stretching peaks likely contribute most
to the structured variation in the dataset, but other peaks in the
spectrum are also important in the regression, including the water
band and lower-intensity peaks (Supplementary Figure S2).

In this first comparison, a PLS2 model without preprocessing
and one with a baseline offset, SNV, and mean centering were
compared (Table 1). Additional preprocessing combinations were
evaluated (Sadergaski et al., 2022b) but did not make substantial
improvements in lowering the percent RMSEP. Prediction values of
percent RMSEP less than 10% are considered satisfactory, but less
than 5% is considered strong (Andrews and Sadergaski, 2023).
RMSEC measures the dispersion of calibration samples about the
regression line. The standard error (SE) is corrected for bias, and
similar values of RMSEP and SEP indicate that bias is insignificant
(Faber, 1999). Bias measures whether points lie systematically above
or below the regression line, and values close to zero indicate a
random distribution.

Calibration, CV, and prediction statistics were used to evaluate if
preprocessing improved the PLS2 models (Table 1). The entire
spectrum was modeled to see how well the models could cope

with each feature. Trimming spectra regions to include the most
dominant peaks was tested but did not substantially change the
results. RMSEC, RMSECV, and RMSEP values for U(VI) (g L−1),
HNO3 (M), and NO3

− (M) were similar, which suggests that the
model was balanced and able to predict new samples well. Each
analyte for the PLS2 model in Table 1 had slope and R2 values of the
calibration plot greater than 0.99. RMSE and standard error (SE)
values for the calibration, CV, and prediction were similar for all
models in Table 1, indicating that each model had minimal bias.

Percent RMSEP values for each analyte predicted by the
PLS2 model built with preprocessing was below the 5% target.
On the contrary, the percent RMSEP values for the PLS2 model
built with no preprocessing (i.e., raw data) achieved near 10% or
greater. This result emphasizes how much preprocessing can
improve model performance and make it more resilient to
artifacts in the X matrix that are not correlated to the Y matrix
(Sadergaski et al., 2022b). The limit of detection values for U(VI)
based on a simple univariate check suggested that limits of detection
were near 0.5 g L−1 U(VI) (Supplementary Figures S3, S4). However,
with respect to modeling the entire system, the RMSEP values
provide an estimate of the ± deviation in the predictions. This
result suggests that the PLS2 model limit of detection for U(VI) was
near approximately 6 g L−1 U(VI). The validation set contained
samples at concentrations within and slightly below and above the
calibration set. Each PLS2 preprocessed model prediction fell within
the Hotelling’s T2 critical limit (p-value 5%), indicating that each
sample fell within the multivariate space described by the model
(Supplementary Figure S5).

3.4 Comparing PLS1 with SVR

PLS1 and SVR models were evaluated based on U(VI) and
HNO3 concentration determination accuracy because these were the
primary analytes of interest. SVR models in Vektor Direktor
v2.0 could only be built for one Y variable, so the SVR results
were only compared to PLS1 models. PLS1 and SVR models were
built for U(VI) (g L−1) and HNO3 (M) to evaluate the performance of
linear PLSR and nonlinear SVR models. Techniques such as

TABLE 1 PLS2 model calibration (C), cross calibration (CV), and prediction
(P) statistics for each analyte with preprocessing and no preprocessing.

PLS2 metrics Raw data Transformed

No. LVs 4 4

Calibration/CV statistics

RMSEC (U(VI)) 6.2 4.1

RMSECV (U(VI)) 9.4 6.5

RMSEC (HNO3) 0.21 0.053

RMSECV (HNO3) 0.33 0.088

RMSEC (NO3
−) 0.25 0.044

RMSECV (NO3
−) 0.39 0.076

Validation statistics

RMSEP (U(VI)) 19 6.4

RMSEP% (U(VI)) 12 3.8

SEP (U(VI)) 20 6.4

Bias (U(VI)) 1.6 −1.3

RMSEP (HNO3) 0.34 0.12

RMSEP% (HNO3) 10 3.7

SEP (HNO3) 0.34 0.11

Bias (HNO3) 0.039 0.063

RMSEP (NO3
−) 0.46 0.090

RMSEP% (NO3
−) 9.7 1.9

SEP (NO3
−) 0.47 0.070

Bias (NO3
−) 0.053 0.052

Note: Spectra were transformed by baseline offset, SNV, and mean centering.

TABLE 2 Values for PLS1 and SVR models using the entire 16 sample
training set.

Metrics U(VI) U(VI) HNO3 HNO3

Model type PLS1 SVR PLS1 SVR

LVs or (γ, ε) 4 (20, 23) 3 (10, 49)

Calibration statistics

RMSEC 4.1 1.8 0.055 0.065

RMSECV 6.5 4.5 0.13 0.18

Validation statistics

RMSEP 6.4 2.8 0.124 0.10

RMSEP% 3.8 1.6 3.7 3.1

SEP 6.4 2.8 0.11 0.095

Bias −1.3 −0.10 0.060 0.048
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principal component regression, locally weighted regression, and
PLSR have been applied to similar datasets, although SVR could
provide benefits compared with the former linear options (Burck,
1992; Kirsanov et al., 2017; Felmy et al., 2023). Two types of SVMs
were tested: Type 1 (C-SVM) and Type 2 (ν-SVM). Type
1 performed better, having somewhat-balanced RMSE and
RMSECV values and lower RMSEP values.

The PLSR and SVR model results are presented in Table 2. The
performance of PLS1 models was similar to the PLS2 model
(compare Table 1). The PLS1 model percent RMSEP values for
U(VI) and HNO3 were 3.8% and 3.7%, respectively, indicating
nearly identical strong performance. This result was unexpected
because PLS1 models for U(VI) were expected to have lower percent
RMSEP values owing to the nearly linear response of the uranyl
symmetric stretching mode, and PLS1 models for HNO3 described
the more multivariate response of HNO3 spectral features. This
could be a result of nonlinearity in lower-intensity UO2 (NO3)

+

peaks, but trimming the spectra to only include the uranyl
symmetric stretching mode did not make significant
improvements in RMSEP (data not shown here). Even though
PLSR is a linear model, it can describe some nonlinearity in
spectral systems using combinations of LVs. The RMSEC,

RMSECV, and RMSEP values were balanced for U(VI) and
HNO3, indicating robust and stable regression models.

The two SVR hyperparameters (γ and ε) were optimized by
minimizing the difference between RMSEV and RMSECV. The γ
value describes the distance the influence of a single training sample
reaches from the separation line. SVR tends to overfit when γ is large
and underfit when γ is small. The ε value, referred to as the epsilon
intensive loss function, seeks to optimize the regression bounds. In
each SVR model, moderate ε and γ values near the center of the heat
maps were chosen to mitigate overfitting and underfitting (see
Supplementary Figure S6).

SVR models for U(VI) and HNO3 performed better than the
PLS1 models in terms of percent RMSEP, SEP, and bias. The top
SVRmodels for U(VI) and HNO3 resulted in percent RMSEP values
of 1.6% and 3.1%, respectively. The percent RMSEP value for U(VI)
approached the error in the sample preparation (see detailed
discussion in the Supplementary Material), suggesting that the
model accounted for nearly all the spectral variation. RMSEP and
SEP values were similar for all models in Table 2, indicating that
each model had minimal bias despite comprising only 16 samples.
SVR model ε and γ values and the number of PLS1 model LVs are
shown in Table 2.

FIGURE 3
Parity plot pf the calibration and prediction data for (A) PLS1 U (VI) model, (B) PLS1 HNO3 model, (C) SVR U (VI) model, and (D) SVR HNO3 model.
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It is useful to show where the predicted values fall in comparison
with the target line (1:1) by evaluating parity plots of model
predictions vs. reference values. Parity plots of the predicted
U(VI) and HNO3 concentrations relative to the reference values
are shown in Figure 3. The calibration and prediction values fall
close to the 1:1 line, indicating strong performance. The highest-
concentration U(VI) sample in the validation set was slightly higher
than the highest concentration in the calibration set. The
PLS1 model underpredicted this sample (Figure 3A), while the
SVR model predicted it much closer to the 1:1 line (Figure 3C)

3.5 Comparing LOF points

There are numerous examples of minimizing training sets for
PLSR regression but very few for SVR models (Bondi et al., 2012;
Sadergaski et al., 2022b). It is important to empirically determine the
relationship between sample set size and SVR model performance
(Rodriguez-Perez et al., 2017). It is not apparent whether nonlinear
SVR models must be trained with a different number of calibration
standards then PLSR. Testing will determine if the D-optimal
sample selection approach, mostly evaluated for PLSR model
development, is also amenable to minimizing samples in training
sets for SVR (Rodriguez-Perez et al., 2017; Sadergaski et al., 2022b).
When many samples are regressed and a model is too complex,
variance dominates the uncertainty. If the model comprises too few
sampling points, then bias dominants the uncertainty
(i.e., bias–variance trade-off) (Faber, 1999). An ideal model
would balance variance and bias and use the minimum number
of samples needed to achieve the measurement accuracy required.

A relatively wide range of ε and γ values resulted in robust SVR
predictive models. Similar regions of the heat map for γ and ε values
were chosen for SVR LOF point comparisons. The SVR prediction
performance was somewhat similar despite using various ε and γ
values, but the variables did require some fine-tuning for
optimization. Further optimization could be pursued in future
work. The suggested range of values in the heat map often
presented the lowest RMSECV values but also unreasonably low
RMSEC values for U (e.g., 0.1 for U). Thus, various regions were
evaluated to balance RMSEC and RMSECV by finding a point of
RMSEC near 1 or greater for U. Any lower RMSEC values are
considered unrealistic compared with the error in sample
preparation. For example, when using just the required model
points, a wide range of ε and γ values (e.g., 14.3, 30.6) generated
a RMSEC of 0.1 and RMSECV of 20.43, which resulted in an RMSEP
of 8.2. Finding a slightly different combination (13.4, 22.3) with a
somewhat more reasonable RMSEC of 1.3 and similar RMSECV of
20.8 resulted in an RMSEP value of 9.3. In either case, averaging
RMSEC and RMSECV resulted in a realistic estimate of RMSEP.

CV statistics that are high when compared with prediction
metrics may imply that a model is not balanced. It could also
mean that no redundant samples are in the calibration set, so that
when one is left out, it has a major effect on the performance,
inflating the CV metrics. RMSECV provides an estimate of the
RMSEP, but each RMSECV statistic for PLS1 and SVR U models
built using just six samples in the calibration set greatly
overestimated RMSEP (Figure 4). Thus, when minimizing

samples in the calibration set, it is more important that the
calibration and prediction metrics are comparable.

RMSEC, RMSECV, and RMSEP values for PLS1 and SVR
models built for U (VI) are shown in Figure 4. The region
corresponding to 11 and 12 total samples is marked by a dashed
rectangle. Per FDS, 11 calibration samples were expected to provide
the minimum number of samples needed for sufficient sample
coverage while balancing RMSE values and maintaining bias. The
percent RMSEP values for PLS1 U(VI) models with just 11 samples
outperformed models built with 14 and 16 D-optimal samples,
approaching percent RMSEP values close to 3% as opposed to
nearly 4% (Figure 4A) This emphasizes the significance of
sample set size and composition. The RMSECV also provided a
reasonable estimate of the RMSEP values. The bias for PLS1 U (VI)
models remained essentially constant when 10 or greater samples
were included in the calibration set, which indicates that enough
samples were used to train the models. Thus, the presumed optimal
sample set of 11 per the 0.98 FDS metric held true. However,
12 samples would also be a reasonable estimate of samples as the
first quantity resulting in an FDS (1.0).

FIGURE 4
RMSE values for U(VI) with varying LOF points included in the
calibration set for (A) PLS1 models and (B) SVR models. The dashed
black box correspondes the optimal number of samples suggested by
FDS considerations.
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RMSE values were less balanced for SVR U(VI) models
(Figure 4B). The RMSECV decreased with increasing LOF points,
as expected. Interestingly, the sample set comprising just eight
samples (two LOF points) resulted in the lowest percent RMSEP
value of 1.3%. The bias of predictions also remained consistent and
near zero when eight or more samples were used in the regression.
The nature of the linear uranyl symmetric stretching mode response
likely resulted in somewhat unbalanced RMSEC and RMSEP values
for SVRU(VI) models. To achieve a better balance between RMSEC,
RMSECV, and RMSEP values, more samples (8 or 10 LOF points)
were required in the model. The difference between RMSEC and
RMSEP values for the 10-sample training set was reasonable, and if
sample size is important and the fitting aspect is less important than
a model’s predictive ability, the 11-sample set would be acceptable.

The behavior of model performance with varying LOF points for
HNO3 was unique compared with U(VI). The concentration range
of HNO3 was smaller than U(VI), which could explain why fewer
samples were needed in the calibration set. The SVR HNO3 model
with no LOF points (i.e., six samples) had the largest gap between
RMSEC, RMSECV, and RMSEP (Figure 5A). The six samples fit
very well in the calibration model, and leaving one out CV had a

major effect on RMSECV. However, the RMSEP values for models
built with varying LOF points remained approximately constant.
Finding balanced ε and γ values in the heat map for SVRmodels and
HNO3 was simpler than U(VI). The RMSEC and RMSECV values
were more balanced throughout the heat map plot in the blue
regions. It also appeared that fewer samples were required
because the RMSEC and RMSEP values were balanced even with
six samples (required model points). This result was somewhat
unexpected given the covarying spectral response of HNO3

compared with the more linear response of the uranyl
symmetric mode.

The difference in RMSEC and RMSEP was more than a factor of
two for SVR models in Figure 5. However, this result is expected to
some degree given the prediction performance on the larger
validation set (27 samples) compared with the smaller calibration
set (6–16 samples). Ultimately, it appears that having a minimum of
eight samples resulted in relatively robust predictive PLS1 and SVR
models for HNO3, and SVR models provided lower RMSEP values
for HNO3 (0.10). This result suggests that the designed calibration
set provides a statistically sound method for selecting samples for
both modeling types. Thus, the designed approach applies to SVR
modeling for models describing both U(VI) and HNO3. The
D-optimal selection approach for calibration sets applies to both
PLSR and SVR models.

The 11-sample training set that balances prediction
performance and resources is highlighted in Supplementary Table
S3. The 11-sample training shown in Supplementary Table S3 could
be leveraged in future studies as the foundational samples needed to
account for U(VI) and HNO3. Additional samples will be added
when accounting for additional variables. This set of 5 LOF points
was chosen at random out of the available 10 LOF samples. Differing
combinations of 5 LOF points randomly selected out of the
10 possible points resulted in similar performance (data not
shown here). Researchers have shown that performance changes
depending on which LOF points are included (Andrews and
Sadergaski, 2023). It is recommended to analyze additional
samples with disparate datasets; generating a D-optimal model
with just 5 LOF points, as opposed to the 10 evaluated in this
study, may yield slightly different results because varying
combinations of LOF points can yield different prediction
performance.

Understanding the performance of PLSR and SVR models with
minimized sample sets has great benefits for numerous applications.
It also provides a starting point for future studies that will aim to
include varying temperature and fission/corrosion product levels,
where the number of training set samples will increased
substantially. The designed approach in this work can be
extended to include additional factors that could be encountered
in real-world systems (Sadergaski et al., 2024). Complex spectra
features need to be accounted for in applications like nuclear fuel
reprocessing where self-absorption effects, temperature fluctuations,
and other things will be prevalent (Moulin et al., 1996). In this
situation, we hypothesize that a non-linear SVR model may be
advantageous compared to more traditional methods (e.g., PLSR).

Prior to this work, it was unclear how sample set size and
composition for SVR and PLSRmodels would compare and whether
a D-optimal designed approach could be leveraged for SVR model
training set selection. If SVR required more samples than PLSR,

FIGURE 5
RMSE values for HNO3 with varying LOF points included in the
calibration set for (A) PLS1 models and (B) SVR models. The dashed
black box correspondes the optimal number of samples suggested by
FDS considerations.
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then the designed approach and integration of such a technique for
process monitoring would be more challenging. The results presented
herein are promising and suggest that continuedwork to evaluate SVR
for monitoring complex chemical processes in the nuclear field and
beyond is warranted.

4 Conclusion

Results of this study indicate that D-optimal design–selected
training sets are useful for optimizing PLSR and SVR regression
models that may be used for quantitative measurements of
U(VI) and HNO3 by Raman spectroscopy over a wide range
of concentrations relevant to nuclear fuel cycle processes. A
D-optimal design can effectively minimize time and materials
associated with training chemometric models while maintaining
or even improving prediction performance. Nonlinear SVR
models outperformed more-traditional linear PLSR models
with lower percent RMSEP values for both U(VI) (1.5%) and
HNO3 (3.1%). Even with the nearly linear response of the uranyl
symmetric stretching mode, SVR model optimization required
more adjustments of ε and γ values to tune the performance than
attempts to model the covarying spectral response of HNO3.
Considering calibration and CV statistics alone may yield over-
and underestimated estimates of prediction performance, when
evaluating designed training sets, it is essential to test the model’s
prediction performance on validation samples not included in the
calibration set. Future workwill leverage the training set andmodeling
capabilities developed in this work for the analysis of more complex
systems with additional factors (e.g., metal cation nitrate and dynamic
temperature). Findings presented here provide promising results for
efficient and effective chemometric applications within and beyond
the nuclear field.
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