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This paper focuses on the passive residual heat removal system of a typical large
advanced pressurized water reactor, analyzing its design, performance, and
reliability during station blackout conditions combined with the failure of the
auxiliary feedwater steam-driven pumps. The study employs modeling of passive
safety systems and utilizes response surface methodology to evaluate system
behavior during severe accident scenarios. Such comprehensive analysis
contributes to ensuring the safe operation and advancement of nuclear power
plants. The best-estimate program VITARS is used to analyze and calculate
accident scenarios, with sensitivity analysis conducted based on preliminary
thermal-hydraulic calculations to optimize parameter selection and simplify
the response surface model structure, thereby streamlining the analysis
process. An artificial neural network is employed as a surrogate model for
complex thermal-hydraulic calculations, significantly improving analysis
efficiency. The findings indicate that the passive residual heat removal system
has zero failure probability under normal uncertainty ranges within 72 h. Even
under extreme conditions, such as delayed opening of the steam generator’s
safety valve, the system maintains reactor safety with a failure probability of only
0.035%.
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1 Introduction

Passive systems leverage natural physical phenomena and inherent system
characteristics to fulfill their safety functions. Unlike active systems, they do not require
external power or manual intervention, relying instead on natural forces such as gravity and
temperature differences to dissipate heat generated by the reactor. Although initially
perceived as inherently reliable in the 1980s, subsequent studies have identified
potential vulnerabilities in passive systems. Consequently, their reliability has been
incorporated into Probability Safety Analysis (PSA) to optimize designs and enhance
overall plant safety.

When critical parameters like temperature exceed predefined safety thresholds, passive
systems may experience failures attributed to physical process deviations rather than
component failures. This failure mode cannot be adequately captured by traditional
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fault trees. Therefore, PSA based on Monte Carlo simulation is
generally used for evaluation.

To address this, the European Nuclear Energy Agency, along
with the Universities of Pisa and Milan, developed Reliability
Methods for Passive Safety Functions (REPAS) to analyze the
performance of passive natural circulation systems. REPAS
compares active and passive system behavior and evaluates
performance differences among various passive systems (Jafari
et al., 2003). This method uses Thermal-Hydraulic programs for
simulation (Burgazzi, 2012).

Marquès et al. further refined REPAS into Reliability Methods
for Passive Systems (RMPS), which identifies and quantifies
uncertainty sources, determines critical parameters, and employs
probability density functions (PDFs) to represent parameter
uncertainties. The Monte Carlo simulation method has also been
introduced for calculating reliability (Marquès et al., 2005).
Thermal-hydraulic codes propagate uncertainties, and passive
system unreliability is incorporated into accident sequence
analysis (Marquès et al., 2005). Pagani et al. used this method to
evaluate the failure probability of gas cooled fast reactor. They used
simpler conservative codes to evaluate system failures (Au and
Beck, 2003).

CNEA’s RMPS + iteratively refines response surfaces near
failure boundaries, as these regions are considered more critical
for reliability assessment (Mezio, 2010). New input parameters are
selected based on previous iteration results, and their performance
indices are compared to failure criteria. This iterative process
continues until convergence.

To address simplifying assumptions and subjective
probability distributions, Nayak et al. proposed Assessment of
Passive System Reliability (APSRA). APSRA assumes that
parameter variations are caused by component failures and
generates response surfaces considering deviations in all
critical parameters. While avoiding the need for parameter
uncertainty characterization, APSRA relies on classical fault
tree analysis and requires experimental or operational data
(Nayak et al., 2008).

Among these methods, APSRA is used to analyze equipment
reliability rather than physical process reliability. RMPS and RMPS
+ use advanced sampling techniques. For RMPS+, response surface
is necessary, while for RMPS and REPAS methods, response surface
is not necessary. Overall, choosing the RMPS+ is suitable for the
current problem.

Based on the aforementioned method, scholars have conducted
practical applications within the reactor, and have modified and
improved the theory in light of real-world application scenarios (Xie
et al., 2007; Liu, 2015; Wang et al., 2012; Wang, 2022).

The reliability of the passive residual heat removal system (PRS)
in large advanced pressurized water reactor is assessed under a
postulated station black-out condition accompanied by a failure of
the auxiliary feedwater steam-driven pump. VITARS is used to
simulate the plant and generate data for building and training
response surface models. Key points include parameter selection,
failure criteria definition, input parameter sampling, sensitivity
analysis, hyperparameter optimization, and response surface
model comparison. The developed model is used for large-scale
calculations to estimate failure probability and conduct
reliability analysis.

2 Passive system reliability
analysis research

2.1 Reliability analysis theory

Passive system failures can be categorized into two types:
equipment failure and physical process failure (Mezio, 2010).
Given that passive systems rely entirely on inherent system
attributes, the probability of equipment failure is relatively low,
and the primary cause of failure is usually a physical process failure.
Due to the lack of operational data for passive systems, uncertainty
in data is one of the primary challenges in passive system reliability
analysis (Nayak et al., 2008).

The physical processes of passive systems are typically described
by mathematical equations like Equations 1, 2. The calculation of the
failure probability can be expressed as:

Y � y X( ) (1)
X � X1, X2,/, Xn (2)

For a specific task, the system performance function is given by
Equation 3:

g X( ) � A − y X( ) (3)
where A is the failure criterion of the passive safety system; X is the
input parameter of the best estimate procedure; y(X) is the key
operating parameter calculated by the program; and g(X) is the
performance function representing the operating state of the system.

For notational convenience, let Y>A denote the failure
condition. The performance function can be defined as follows:
g(X) � 0 represents the limit state or failure surface, g(X)< 0
represents the space of failure events, and g(X)> 0 represents the
space of normal operation. Therefore, the failure probability can be
evaluated through the following integral:

Pf � ∫
g X( )< 0

f X( )dX (4)

where f(X) represents the joint probability density of the input
parameter X. If all input parameters are independent, Equation 5
will be obtained:

f X( ) � f1 X1( )f2 X2( ) · · · fn Xn( ) (5)

Traditionally, the Monte Carlo simulation method is used to
estimate the failure probability defined in Equation 4. By
establishing a model of the system under study, sampling the
basic variables, and conducting a large number of experiments
on the model, the value of y(X) is obtained. Then, according to
the selected failure criterion, the g(X)< 0 cases are calculated and
counted, and the ratio of this count to the total number of
simulations N is calculated, which is the estimated value of the
failure probability Pf. The larger the value of N, the closer Pf is to
the true failure probability. The accuracy of this estimation method
can be evaluated by its variance.

For a small number of simulation cycles, the variance may be
relatively large. To obtain an acceptable estimate, the sample size
should be at least 1/Pf (Xie et al., 2007). However, most passive
systems have a very small failure probability, which means that a
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large number of computational simulations are required (Liu, 2015).
Since the system analysis program takes a long time to calculate the
results of a single sample, the traditional method is time-consuming.
Additionally, for this problem, the system performance function
cannot be expressed by a specific mathematical formula, making it
impossible to obtain the failure probability simply by
solving Equation 4.

2.2 Response surface

To address the aforementioned issue, a rapidly computable
surrogate model can be established to simulate the response of
the thermal-hydraulic program. This type of model is generally
referred to as a Response Surface (RS).

The fundamental idea of the response surface method is as
follows: First, sampling is conducted based on the selected input
parameters and their distributions, and the corresponding output
results are calculated using the best-estimate code. Then, through
regression analysis, a “response surface” is constructed to represent
the relationship between the output results and the various input
parameters.

The response surface method can replace complex thermal-
hydraulic programs for calculations, significantly saving
computational resources and time, and thus improving the
efficiency of reliability analysis. In the application of the response
surface method, the variation of the dependent variable is generally
determined by multiple independent variables. The essential of this
method lies in constructing a mathematical model between the

independent and dependent variables, and further investigating the
key factors affecting the response surface and their mechanisms,
thereby achieving the optimization of the response surface. In this
paper, the common polynomial regression and artificial neural
network methods are used to construct the response surface.

Figure 1 shows the reliability analysis process using the response
surface method.

First, the passive system is identified, and its functions, failure
criteria, and performance indicators are clarified, laying the
foundation for subsequent simulations. Second, a best-estimate
code is developed that complies with internationally recognized
guidelines and is consistent with prior information. Third, the
relevant parameters affecting system uncertainty are defined, and
uncertainty is screened, labeled, and quantified based on the
available information. The randomness is described using
probability density functions, and the sampling method is
determined.

Fourth, parameter sampling is performed, and the sample size is
determined based on reliability and confidence requirements. The
sampling results are grouped to form an input matrix. Fifth, the
input matrix is integrated into the developed model and the best-
estimate code is executed. Sixth, the performance indicators of each
model are calculated, and an output vector is generated. Seventh, the
reliability of the passive safety system is analyzed. Eighth, a new
input vector is obtained using the sampling method, and its
corresponding performance indicators and output vector are
obtained through the response surface (step nine). Subsequent
work is to determine whether the calculation converges and to
improve the calculation accuracy.

3 System modeling and analysis

3.1 System modeling

This paper uses VITARS as the best-estimate code to model and
calculate. Referring to the overall VITARS coolant system model
developed by Lu Guoqing (Liu, 2015), the reactor core, pressurizer,
steam generator, and secondary-side passive residual heat removal
system relevant to this problem are remodeled based on the
requirements of this study.

The passive residual heat removal system studied in this paper is
an important measure for preventing severe accidents in the
advanced pressurized water reactor. In the event of a loss of
feedwater to the steam generator or the station black-out
accident combined with the failure of auxiliary feedwater steam-
driven pumps, the reactor cooling system is no longer capable of
continuously removing heat, resulting in a sharp rise in the reactor
temperature and pressure to rise continuously, and thus preventing
the normal operation of the residual heat removal system (Wang
et al., 2012). In this emergency situation, the PRS system is activated.
The height difference between the PRS heat exchanger and the steam
generator forms a natural circulation, passively removing the core
decay heat and the stored heat of various equipment in the reactor
coolant system, further reducing the primary circuit temperature
and pressure, and thus avoiding a loss-of-coolant accident that may
be caused by primary circuit overpressure. In addition, a cooling
water tank is set outside the containment to provide sufficient

FIGURE 1
Schematic diagram of the reliability analysis for passive systems.
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cooling water for the heat exchanger, ensuring that the PRS system
can continue to operate self-sustainably for 72 h after an accident,
providing valuable buffer time for accident management and
emergency response. The secondary-side passive residual heat
removal system is installed on the secondary side of the steam
generator in all three coolant loops. The VITARS modeling diagram
is shown in Figure 2.

3.2 Simulation study on the station black-out
accident combined with the failure of
auxiliary feedwater steam-driven pumps

Based on the aforementioned characteristic parameters, the
formed debris bed in its natural state exhibits a significant
extent of spreading. With an increase in the mass of molten
material, the proportion of large-sized fragments in the formed
debris bed also increases. Under the constant pressure
conditions, as the subcooling of water decreases, the
proportion of large-sized fragments in the debris bed
increases. Since the molten material is sufficiently cooled in

water, the high-temperature impact on the bottom plate of the
water tank is relatively small.

In this simulation, to better understand the safety performance
of nuclear power plants under extreme conditions and to provide a
scientific basis for preventing and responding to similar accidents,
we assume that both the auxiliary feedwater system and the
emergency core cooling system fail after the accident occurs.
Therefore, the residual heat of the reactor will be mainly
removed by the PRS system.

The accident sequence is shown in Table 1.
Figures 3, 4 show the water level of the cooling water tank and

the peak temperature of the coolant outlet over the entire 72 h after
the accident, respectively. Figure 3 shows that the water in the
cooling water tank is nearly depleted at around 70 h, while Figure 4
shows that the coolant outlet temperature has not shown an upward
trend, indicating that the water volume setting of the PRS cooling

FIGURE 2
Node diagram of passive heat removal system.

TABLE 1 Sequence of events for station blackout with auxiliary feedwater
steam-driven pump failure.

Event Time/s

Station Black-out 0.00

Main Pump Trip 1.53

RCCA starts dropping 2.25

Turbine trip 3.06

Primary system pressure peak 4.42

PRS system activation 49.57

FIGURE 3
Water level in heat exchanger water tank within 72 h after
reactor trip.

FIGURE 4
Coolant temperature of core outlet within 72 h after reactor trip.
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water tank is sufficient. In addition, the reactor outlet temperature
reaches its peak within 1 h, which means that the analysis of the
results within 1 h has already covered the most dangerous situation
of the reactor. In subsequent batch calculations, in order to save
time, only the reactor parameter response in the first hour is
calculated.

During this process, the temperature of the outermost layer of the
fuel cladding never exceeds 672K, and the coolant in the core region is
always in a liquid state, and the core is not exposed, indicating that the
core is always in a safe state. Within 72 h after the accident, the outlet
temperature of the reactor coolant can be reduced to nearly 400K, and
natural circulation can be maintained in both the primary and
secondary sides of the fluid, so it is considered that the reactor
coolant system has entered a safe state.

4 Reliability analysis of PRS

4.1 Critical parameters and failure criteria

Critical parameters are those that have the greatest impact on
system performance. They can generally be divided into operating

parameters and structural parameters. For the secondary-side
passive residual heat removal system, based on literature research
and expert judgment, the input parameters that need to be
considered are shown in Table 2.

Since the distribution ranges of general system critical
parameters (such as heat transfer area) are not completely
symmetrical, their actual parameter ranges may deviate from the
standard normal distribution. In this case, a truncated normal
distribution is more reasonable, and its distribution is shown
in Figure 5.

Therefore, the normal distributions used in this paper are all
truncated normal distributions, and the probability density function
can be expressed as ψ(μ,σ,a,b;x), and the specific expression is as
shown in the Equation 6:

ψ �μ, �σ, a, b;x( ) �
0 x≤ a;

ϕ �μ, �σ2x( )
Φ �μ, �σ2; b( ) −Φ �μ, �σ2; a( ) a< x< b;

0 b≤x.

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(6)

where �μ and �σ are the mean and standard deviation, respectively, of
the standard normal distribution; a and b are the lower and upper
bounds, respectively, of the truncated normal distribution
parameter values.

In the reliability analysis of passive systems, the most important
step is to determine the failure criterion of the system. For the PRS
system studied in this paper, its key task is to remove the decay heat
generated after the reactor shutdown through natural circulation
under the accident conditions, and to reduce the coolant
temperature and the pressure of the primary cooling system
timely and effectively, preventing the occurrence of local boiling
in the coolant inside the core, and thus ensuring the integrity of the
reactor core cladding (Wang, 2022). Therefore, this study takes the
peak temperature of the coolant at the core outlet as the failure
criterion of the PRS system. The failure region can be determined as
shown in the Equation 7:

F � Ω: Tpeak > 618K{ } (7)

After determining the uncertainty of the critical parameters,
Latin Hypercube Sampling (LHS) is employed to sample the critical

TABLE 2 Summary of critical parameters and their statistical distributions.

NO. Parameter Distribution type Mean Standard deviation Range

1 Reactor power/MW Normal 3,050 50 [2950,3150]

2 Pressurizer pressure/MPa Normal 15.5 2 [14.5,16.0]

3 Effective total flow area of PRHX/ m2 Normal 0.088357 0.002 [0.054, 0.088357]

4 Diameter of PRHX pipe/m Normal 0.02 0.001 [0.02,0.025]

5 Thickness of PRHX pipe/m Normal 0.0025 0.01 [0.0025,0.005]

6 Initial water temperature of cooling water tank/K Uniform — — [273.15,343.15]

7 Inlet resistance coefficient of PRS Uniform — — [0,10]

8 Outlet resistance coefficient of PRS Uniform — — [0,10]

9 Delayed opening time of safety valve Uniform — — [0,60]

FIGURE 5
Probability density function of a truncated normal distribution.
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parameters listed in Table 2. According to the research object, the
key parameters mainly come from PRS heat exchangers (PRHX).

LHS draws samples from the entire distribution of random
variables and produces more stable and reliable results. In other
words, LHS can obtain good sampling results with fewer samples
(Huang and Kuang, 2012).

After sampling, a self-written script is used to batch modify the
relevant parts of the key parameters in the input cards, and
100 groups of input cards are obtained. Then, the VITARS
program is used to calculate these 100 groups of input cards, and
the operating data of the reactor is obtained. The output parameters
of interest are extracted, and finally, the input parameters and
corresponding output parameters of each calculation are grouped
as a set for subsequent analysis.

4.2 Computational analysis of sample data

Preliminary batch calculations were conducted, and the results
are shown in Figure 6. It was found that within the range of
uncertain parameters, the coolant outlet temperature generally
reached its peak at around 500 s, with the peak temperature
fluctuating slightly around 592 K, which is far below the failure
temperature. Therefore, an attempt was made to find the worst-case
condition within the range of uncertain parameters to determine
whether the PRS system had a probability of failure within the range
of uncertainty. After a series of sampling and calculations, the worst-
case condition within the range of uncertainty was found, and the
coolant temperature response without the PRS system was
calculated. A comparison of the two is shown in Figure 7. The
results come from small batches simulations using Thermal-
Hydraulic programs.

Without PRS system, the coolant outlet temperature began to
rise at around 1800 s. This was due to the loss of all feedwater,
causing the water in the steam generator to continuously boil while
absorbing the heat generated by the core. Finally, the water
evaporated at around 1,800 s, and the coolant lost its ultimate

heat sink, leading to a temperature increase. The reactor coolant
would then begin to boil. However, under the worst-case condition
with the PRS system, where the peak temperature of the coolant
outlet is highest within the uncertainty parameter range, the friction
factor and inlet/outlet resistance coefficient in the heat exchanger
tubes were both at their maximum values within the range of
uncertainty. Due to tube blockage, the effective flow area was at
its minimum value. Due to scaling, the tube thickness increased, and
the initial temperature of the heat exchanger water tank was 40°C.
Even under these conditions, the PRS system could still effectively
remove the heat generated by the core. According to the calculations,
the coolant outlet temperature would not rise again within 72 h, and
the water in the tank would not be depleted. Therefore, it can be
concluded that the PRS is not prone to failure within the range of
uncertain parameters and has superior safety.

Therefore, some extreme conditions are superimposed to further
test the reliability of PRS system. The coolant temperature decreases
due to the opening of the steam generator safety valve and the
pressure drop. Therefore, it is feasible to delay the opening of the
steam generator safety valve. Considering the maximum allowable
pressure of the steam generator, the delay opening time is limited to
within 1 min.

4.3 Sensitivity analysis

Before establishing the response surface, sensitivity analysis is
needed to compare the importance of each input parameter to the
output parameters. Input parameters with relatively low importance
can be directly set to fixed values after sensitivity analysis, thereby
reducing the model complexity and minimizing the interference of
unnecessary input parameters on the model. In this paper,
Spearman’s rank correlation coefficient is selected as the basis for
sensitivity analysis.

Spearman’s rank correlation coefficient is used to estimate the
strength of the correlation between two random variables and is
generally represented by ρ. Its value ranges from [-1, 1]. The

FIGURE 6
Curve of coolant temperature of core outlet.

FIGURE 7
Comparison of coolant outlet temperaturewith andwithout PRS.
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stronger the correlation between the two variables, the closer the
absolute value of the rank correlation coefficient is to 1. A positive
value indicates a positive correlation, a negative value indicates a
negative correlation, and a value close to 0 indicates no correlation
(Chen et al., 2013).

Sensitivity analysis was performed on the above input
parameters and corresponding output parameters, and the results
are shown in Figure 8. The output parameter is the failure criterion,
which is the peak temperature of the coolant outlet.

Parameters numbered 1, 4, 6, and 9 are the reactor power, PRHX
tube diameter, initial water temperature of the cooling water tank,
and safety valve delay opening time, respectively. These four
parameters have a strong correlation with the output parameters
and are selected as the input parameters for response surface
training. Given the significant differences in magnitudes among
the various feature variables, normalization is necessary to mitigate
their impact when used as training data for a response
surface model.

5 Response surface methodology and
reliability analysis

Batch calculations are performed to obtain the training data for
the response surface. To test the effectiveness of the response surface,
100 groups of data are divided into 90 training sets and 10 test sets.

5.1 Polynomial response surface

The order of the highest-order term of the polynomial response
surface can be selected according to the relationship between the
response value and the input parameters. In general, the operation of
a passive system is more complex, and a first-order model cannot
accurately predict its operating results. Therefore, a second-order
model is selected to establish the response surface model here
(Kirchsteiger and Lavín, 2004).

Using the above 100 groups of data for training and testing, a
self-written script is written for regression analysis, and the final
result of the quadratic polynomial response surface is obtained as
shown in Equation 8:

Y X( ) � 477.74 − 0.04X0 + 2509.91X1 + 0.54X2 − 0.01X3

−0.83X0X1 − 10.61X1X2 − 0.72X1X3 + 16434.8X2
1

(8)

where X0 is the reactor power; X1 is the PRHX tube diameter; X2 is
the initial water temperature of the cooling water tank; X3 is the
safety valve delay opening time.

5.2 Neural network response surface

When constructing a multi-layer neural network, a issue that
needs attention is the number of hidden layers and the number of
nodes in the hidden layer. The hidden layer plays an abstracting role
and is responsible for extracting key features from the input
parameters, and the number of nodes in the hidden layer directly
determines the size and capacity of the network.

To enhance the ability of the neural network to process
information, adding hidden layers is an effective way. However,
this will also lead to an increase in the complexity of the training
process, thus requiring more training data and a longer training
period. For the response surface model of this problem, in order to
replace the complex thermo-hydraulic program, efforts should be
made to reduce the scale of the network structure in order to reduce
the length of the training time. Generally, a BP neural network with a
three-layer structure is already able to meet the needs of most
response surface models. Based on these factors, this study chose
to construct a neural network model with only a single hidden layer
(Wang et al., 2025).

For the regression problem of this topic, a three-layer BP neural
network is selected. The number of neurons in the input layer is 4,
the number of neurons in the hidden layer is 9, and the number of
neurons in the output layer is 1, which can be expressed as N (4, 9, 1),
and the structure is shown in Figure 9. The optimal number of
hidden layer neurons is obtained using Bayesian optimization. The
principle of Bayesian optimization is based on Bayes’ theorem. First,
a probability model of the objective function is constructed, and then

FIGURE 8
Sensitivity analysis results.

FIGURE 9
Neural network response surface structure diagram.

Frontiers in Nuclear Engineering frontiersin.org07

Li et al. 10.3389/fnuen.2025.1516841

https://www.frontiersin.org/journals/nuclear-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fnuen.2025.1516841


this probability model is continuously updated with new sampling
points. Based on the model, the next most promising sampling point
is calculated, so as to efficiently find the optimal solution of the
objective function (Pedroni and Zio, 2017; Lu, 2022).

After automatic parameter tuning using the Bayesian
optimization method, the final configuration determined is that
the hidden layer uses PReLU, the output layer uses Linear, and the
Adam optimizer is used with an initial learning rate of lr = 0.01. For
this neural network response surface, the mean squared error (MSE)
is 0.008003.

The Adam optimizer used in this article not only achieves the
function of adaptive learning rate, but also has simple
implementation, high computational efficiency, and low memory
requirements, making it an optimizer with excellent performance
(Wang et al., 2018; Helton and Davis, 2003; Ye, 2020; Dong
et al., 2024).

PReLU, also known as Parametric Rectified Linear Unit, is an
improvement on ReLU. As shown in Figure 10, it introduces a
learnable slope parameter on the negative half-axis, where
represents the output of the previous layer. This design enables
neurons to remain in an activated state even when the input is
negative, effectively avoiding the “neuron death” problem that may
be caused by excessive gradients during the backpropagation process
of ReLU. In addition, PReLU also demonstrates many advantages
such as high computational efficiency and stable gradient
propagation, making it suitable for most deep learning tasks.

5.3 Prediction result comparison

After the establishment and training of the response surface
model, it is necessary to compare the prediction capabilities of the
two response surfaces. By sampling 5,000 times for the input
parameters and distributions determined in Section 3.5, new
input samples are obtained and substituted into the established
quadratic polynomial response surface and neural network response
surface for calculation. Using the 100 groups of data generated by
VITARS and the 5,000 groups of data output by each response
surface, probability distribution diagrams as shown in Figure 11 and
cumulative probability distribution diagrams as shown in Figure 12
are plotted.

From Figure 11, it can be seen that similar to the VITARS
calculation data, the output results of the two response surfaces
approximately follow a normal distribution, and the probability
peak appears between 595K and 600K. However, compared with the
quadratic polynomial response surface, the neural network can
better cover the parameter range of the training set, reflecting the
true distribution of the data. For the cumulative probability
distribution in Figure 12, due to the scarcity of VITARS data
samples, the cumulative distribution has abrupt changes and is
not smooth, but the output of the neural network response
surface is still very close to the VITARS data, and is sufficiently
approximate the true distribution curve. In contrast, the cumulative
distribution of the quadratic polynomial response surface lacks a
temperature range of about 10K, which is significantly different
from the actual distribution. Although the limited sample of the

FIGURE 10
PReLU image.

FIGURE 11
Probability distribution of coolant temperature of core outlet.

FIGURE 12
Cumulative probability distribution of coolant temperature of
core outlet.
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VITARS data results in abrupt changes rather than smooth
transitions in its cumulative distribution, the output of the neural
network response surface is still more similar to the VITARS data.

To further compare the differences in the fitting capabilities of
the two response surface models, the input parameters of the
original 100 groups of data are used as the input of the response
surface, and the predicted values output by the two response surfaces
are compared with the real output of VITARS. In Figure 13, a Parity
plot is shown, which is a scatter plot that compares the differences
between the model results and the baseline data. A baseline is added
to the figure to represent the perfect prediction value of the model.
When the predicted point of the model falls on the baseline, it means
that the prediction error of the model at that point is 0, and the
farther away from this line, the greater the error. In addition, an
error interval is also drawn. The predicted values of the neural
network response surface are all within the 1% error interval, while
only 90% of the predicted results of the quadratic polynomial are

within the error interval, which indicates that the prediction
capability of the neural network response is also better than that
of the quadratic polynomial.

In general, the prediction results of the neural network response
surface can well reflect the probability distribution characteristics of
the parameters, and compared with the baseline values, the error can
be controlled within 1%, which can meet the large-scale and high-
precision calculation requirements of the passive system
reliability analysis.

5.4 Failure probability calculation

Based on the above comparison, the neural network response
surface with better prediction performance is adopted as the
surrogate model of VITARS. After extracting 5,000, 10,000,
50,000, 100,000, and 200,000 groups of sampling data using Latin
hypercube sampling, the trained neural network response surface is
used for prediction. To reduce the impact of different results for each
sampling, each group of calculations is performed 5 times, and the
average value of the results is taken. The failure probability is
summarized in Table 3. It can be seen that the failure probability
converges at 100,000 calculations, and the failure probability is
0.035%, which is acceptable. The prediction results of 10,000 and
100,000 times are shown in Figure 14.

FIGURE 13
Comparison of prediction accuracy between two
response surfaces.

TABLE 3 Failure probability.

Simulation runs Failure probability

5,000 0.03%

10,000 0.04%

50,000 0.038%

100,000 0.035%

200,000 0.035%

FIGURE 14
Neural network calculation results. (A) Sample size = 10,000. (B) Sample size = 100,000.
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6 Conclusion

This paper conducts a reliability analysis on the passive residual
heat removal system of the typical large advanced pressurized water
reactor. The main findings and conclusions are summarized
as follows:

(1) Two response surface models were established to predict the
peak temperature of the reactor coolant outlet, including a
quadratic polynomial response surface and a neural network
response surface. A comparative study was conducted on the
performance of the two response surfaces. The neural
network response surface model is more suitable as a
surrogate model for the VITARS code, with higher
prediction accuracy. The error in the predicted peak
coolant outlet temperature can be controlled within 1%.

(2) A reliability analysis was performed on the PRS. The VITARS
code was used to model the PRS, and then Latin hypercube
sampling was used to obtain samples, which were input into
the VITARS code for calculation. Within the range of
parameter uncertainty, the PRS can ensure very high
reliability under the accident condition of the station
black-out accident combined with auxiliary feedwater
steam-driven pump failure. Only under extreme
conditions, such as the additional delayed opening of the
steam generator safety valves, is there a possibility of failure.

(3) After an extra-delayed opening of the steam generator safety
valve, the trained neural network response surface was used to
calculate the coolant outlet peak temperature for
100,000 samples. Under extreme conditions, the final
failure probability is 0.035%, which is acceptable.
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