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Purpose: We present a probabilistic approach to medical image analysis that
requires, and makes use of, explicit prior information provided by a medical
expert. Depending on the choice of prior model the method can be used
for image enhancement, analysis, and segmentation.
Methods: Themethodology is based on a probabilistic approach tomedical image
analysis, that allows integration of 1) arbitrarily complex prior information (forwhich
realizations can be generated), 2) information about a convolution operator of the
imaging system, and3) information about the noise in the reconstructed image into
a posterior probability density. The method was demonstrated on positron
emission tomography (PET) images obtained from a phantom and a patient with
lung cancer. The likelihood model (multivariate log-normal) and the convolution
operator were derived from phantom data. Two examples of prior information
were used to show the potential of the method. The extended Metropolis-
Hastings algorithm, a Markov chain Monte Carlo method, was used to generate
realizations of the posterior distribution of the tracer activity concentration.
Results: A set of realizations from the posterior was used as the base of a
quantitative PET image analysis. The mean and variance of activity
concentrations were computed, as well as the probability of high tracer uptake
and statistics on the size and activity concentration of high uptake regions. For
both phantom and in vivo images, the estimated images of mean activity
concentrations appeared to have reduced noise levels, and a sharper outline of
high activity regions, as compared to the original PET. The estimated variance of
activity concentrations was high at the edges of high activity regions.
Conclusions: The methodology provides a probabilistic approach for medical image
analysis that explicitly takes into account medical expert knowledge as prior
information. The presented first results indicate the potential of the method to
improve the detection of small lesions. The methodology allows for a probabilistic
measure of the size and activity level of high uptake regions, with possible long-term
perspectives forearlydetectionof cancer, aswell as treatment, planning, and follow-up.
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1. Introduction

The purpose of medical imaging is to provide images of

pertinent features and properties of the interior of the body,

that can be used by medical experts to, for example, diagnose

diseases, design a course of treatment, and monitor the effects

of treatment.

Imaging methods such as computed tomography (CT) and

magnetic resonance imaging (MRI) are widely used for

anatomical and structural imaging but have also physiological

and functional applications. Positron emission tomography

(PET) and single-photon emission computed tomography

(SPECT) have less spatial resolution than CT and MRI but

have unique capabilities and sensitivity for metabolic and

molecular imaging (1, 2).

PET imaging is a medical imaging method in which a

radioactive tracer is injected into the body. The radioactive

positron emitter gives rise to pairs of collinear photons being

emitted from the location of the tracer in the human body.

The photons are registered by a detector ring and from this

information, a 3D volume of the tracer distribution can be

reconstructed. A tracer such as the 2-[18F]-fluoro-2-deoxy-D-

glucose (FDG) tracer, is trapped intracellularly and has a

higher uptake in cancerous and inflammatory than in healthy

tissues due to the generally high energy consumption of

cancer and inflammatory cells. Therefore, FDG-PET is a

widely used clinical tool to locate and characterize cancer (3).

The goal of PET tomography is to estimate the in vivo

distribution of tracer uptake in the body. This can be done

using for example variants of filtered backprojection (FBP)

(4), or iterative methods such as the maximum likelihood

expectation-maximization (MLEM) method (5), and using

ordered subsets expectation-maximization (OSEM) (6). It can

also be done using maximum a posteriori methods (MAP)

(7). The resolution and noise in the output image depend on

the reconstruction method, the number of iterations and

number of used subsets (using OSEM), and the use of a

system matrix and point spread function (8, 9). See for

example (10) for an overview of PET image reconstruction

methods. In any case, we refer to the outcome of any such

(usually iterative) reconstruction algorithm as the

“reconstructed PET image.”

Analysis of reconstructed PET images is difficult due to 1)

noise in the PET image and 2) the relatively low resolution of

PET images as compared to, for example, images obtained

using MRI or CT. The low-resolution results from a

combination of the physical properties of the detector system

and the positron range of the PET tracer. In practice, this

means that the activity of adjacent regions will be mixed in

the PET image. The resulting Partial Volume Effect (PVE)

especially affects tracer uptake in small tumors (11). The

Point Spread Function (PSF) refers to the PET image one

would obtain by scanning a point source and is a way to
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quantify the system resolution and the smoothing inherent in

the formation of the image (12). The PSF depends on the

scanner geometry, properties of the crystals in the detector,

the radionuclide used, and the use of a reconstruction

algorithm typically without any resolution modeling (13). The

PSF can be estimated both experimentally, and theoretically

(14–17).

Several methods have been developed to address the

smoothing, noise, and limited spatial resolution related to

reconstructed PET images. Some of these are referred to as

Partial Volume Correction (PVC) or PSF methods (11, 12,

18). Both reconstruction and post-reconstruction techniques

can incorporate PSF deconvolution and/or other image types.

One class of methods is applied during reconstruction, for

example by including the PSF directly in the system matrix

(15, 19–22). Another class of methods is applied as post-

reconstruction techniques, sometimes referred to as image

restoration (11, 12, 23–26).

In more general terms, deconvolution of a reconstructed

PET image can be used to infer information about the in vivo

distribution of uptake (27, 28). But, straightforward

deconvolution tends to amplify the noise of the reconstructed

PET image and introduce “ringing” Gibbs artifacts in the PET

image. Gibbs artifacts can be removed by applying a

smoothing filter, which leads to a drop in resolution. The

Gibbs artifacts stem from the fact that any PET scanning

system is insensitive to higher frequency variations of the

distribution of uptake, due to the physical construction of the

scanner (17). One can choose to de-noise the PET image (29,

30) or make use of a priori information to introduce some of

the higher frequencies not detected by the PET scanner, as

anatomical priors from MRI or CT (23, 24). See e.g. (12) for

a review of PVC-based methods. Cabello and Ziegler (31)

provides a review of current imaging methods for combined

PET/MR data.

All reconstruction and restoration methods are based on

either a deterministic or probabilistic approach. Using

deterministic methods, such as FBP, the goal is to find one

PET image, that typically minimizes some objective function.

Subsequently a local uncertainty estimate can be computed (5,

14, 32, 33). Probabilistic/Bayesian methods allow (and

require) the specification of prior information (7, 34–37), and

the solution is a probability distribution, the posterior

distribution, that allows full uncertainty analysis. However, in

practice, this can be intractable to compute, and instead, two

different approaches can be taken to infer information about

the posterior distribution: optimization and sampling.

The most applied probabilistic method in medical imaging

is the use of non-linear optimization methods (e.g. MLEM,

OSEM) to locate a PET image, for example the one with

maximum likelihood or maximum a posteriori probability, i.e.

the MAP image (5–7, 38–41), sometimes based on

regularizing edge-preserving prior models (42, 43). In some
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cases, the uncertainty of the related PET image obtained using

optimization can also be estimated using analytical

approximations (32).

A less widely used probabilistic approach in medical

imaging is the sampling approach (44–46). Here the goal is to

generate a sample of the posterior distribution, i.e. a collection

of PET images that occur with a frequency proportional to

the posterior distribution. Given a large enough sample any

statistical property of the posterior distribution can be

estimated, and the method allows full uncertainty analysis.

Sampling methods are typically computationally demanding,

and also, it may be nontrivial to quantify prior information

such that it can be used with sampling methods. Filipović
et al. (46) propose such a Bayesian sampling method for PET

reconstruction using prior information from MR data, along

with a prior based on the distance-dependent Chinese

Restaurant Process (ddCRP) (47).

The purpose of this paper is to introduce a probabilistic

method for the analysis of a reconstructed PET image, based

on using available information, such as about the effective

PSF, a statistical model describing the noise in the

reconstructed PET image, and an explicit choice of a

statistical model describing the prior information, that should

preferably be chosen by a medical expert.

Specifically, the methodology allows relatively easy use of a

large collection of prior model types derived from geostatistical

simulation. These vary from simple multivariate Gaussian-

based models to multiple-point statistical models that allow

quantifying complex spatial patterns and features (48, 49). We

hypothesize that the method can both increase resolution and

decrease noise simultaneously, without producing artifacts

such as Gibbs ringing.

The output of the method is not a single PET image (such as

the MAP image), but instead a collection of PET images of the

tracer activity concentration, that represent a sample of the

posterior. Each of these PET images will by construction be

consistent with available information. We aim to demonstrate

how such a sample from the posterior distribution can be used

as a quantitative tool for reconstructed PET image analysis, to

for example assess, with uncertainty, the size and activity

concentration of regions of interest, such as high activity

regions indicative of cancer lesions.

In section 2 we lay out the theory, and propose a

methodology for probabilistic PET image analysis in the

image domain (i.e. based on a reconstructed PET image). We

demonstrate the method for a specific choice of PET scanner

(Siemens Biograph mMR) and PET reconstruction method

(OP-OSEM). Two data sets are considered, a phantom and an

in vivo case, and described in section 3. An example of how

to quantify the noise model (3.2.2), PSF (3.2.1) is provided,

and two examples of prior information (3.3) are used here to

show the potential of the method. Results of applying the

methodology are given in sections 4 and 5.
Frontiers in Nuclear Medicine 03
2. Theory and method

In the following, let F ¼ [f1, f2, . . . , fM] represent M

model parameters that define the in situ PET activity

concentration within M voxels. A pixel will refer to a voxel in

the x–y plane. A specific set of model parameters represents a

point in a high-dimensional model parameters space. Each

point (set of model parameters) in the model parameter space

refers to a specific PET image (in 2D or 3D).

A PET scanner measures the counts of pairs of photons, at

different locations, caused by positron emission decay of the

radionuclide (injected into a patient) whos activity is F. The

PET reconstruction problem, is then the inverse problem, of

inferring information about F given the observed data.

In the following FPET ¼ [fPET1
, fPET2

, . . . , fPETN
],

consisting of N pixel values, represents a noise-free

reconstructed PET image obtained using a specific

reconstruction method such as for example FBP, MLEM, or

OSEM (5, 6, 15, 19–22, 50). The relation g (analytical and/or

numerical) between the model parameters F and the noise

free PET image FPET is given by

FPET ¼ g(F): (1)

g consists of a physical mapping of the model parameters F

into photon counts, followed by an algorithmic

reconstruction. In the remainder of the text we make use of a

linear smoothing operator, G, such that relation, Eq. 1,

reduces to

FPET ¼ GF, (2)

and refer to a convolution problem. Note that if a non-linear

forward operator and/or algorithm exist it can trivially be

used with the methodology presented below.

Let Fobs
PET represent an actual observed reconstructed PET

image (as obtained from PET reconstruction of scanning a

target) that will never be the same as the noise free forward

response FPET, due to noise. In a probabilistic formulation

the uncertainty in the reconstructed PET image is defined by

a probability density rF(FPET), expressing the distribution of

the devations between the noise free PET image FPET and

Fobs
PET, which will be referred to as the noise distribution,

following (34).

The properties of the noise in a reconstructed PET image

depends on multiple factors such as machine type, injection

dose, and the type of reconstruction method used (8, 32, 51–

56). In general, using MLEM and OSEM leads to correlated

noise where the variance is linked to the local mean. The

higher the mean activity, the higher the variance. Also, the

longer iterative MLEM and OSEM algorithms are run, the
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higher the variance of the noise becomes (8, 51). Therefore, in

practice, such optimization algorithms are not run to

convergence, but rely on early stopping, using a fixed limited

number of iterations. Reconstruction of large homogenous

phantoms leads to non-stationary correlated noise using FBP,

but stationary noise using OSEM (53). The single pixel noise

properties is represented well by normal distribution using

FBP, (55). Using EM leads to a skewed single pixel noise

distribution which can be represented by both a multivariate

log-normal distribution using high photon count (low noise)

(32, 54), and a gamma distribution using low photon count

(higher noise) (56).

If the noise is considered multivariate Gaussian, with mean

Fobs
PET and data covariance CD, as when using FBP, then

rF(FPET) is given by

rF(FPET) ¼ 1

(2p)N=2jCDj1=2
exp (� 0:5 (FPET

�Fobs
PET)

TC�1
D (FPET �Fobs

PET)), (3)

Likewise, if the noise is multivariate log-normal, with mean

log (Fobs
PET) and data covariance Ct in log image space, such as

when using OSEM, then rF(FPET) is given by Kleiber and

Kotz (57)

rF(FPET) ¼ 1

(2p)N=2jCtj1=2
QN

i FPETi

� exp (� 0:5( log (FPET)

� log (Fobs
PET))

TC�1
t ( log (FPET)

� log (Fobs
PET))):

(4)

The same number of pixels/model parameters (and hence pixel

size) can be used for the reconstructed PET image FPET and

the model parameters describing the underlying activity

distribution F, such that N ¼ M, but this need not be the

case, as will be demonstrated. The chosen pixel size of F

provides a lower limit of the small scale variability that can be

resolved. It should therefore be chosen small enough to be

able to represent the resolution provided by whatever

inversion/deconvolution used (58).

Here we consider the post-reconstruction problem of

inferring information about the in situ activity concentration,

F, related to an already reconstructed noisy PET image, Fobs
PET.

Equation 2 represent a convolution, and hence inferring

information about F can be posed as a problem of

deconvolution with noisy data. This deconvolution problem

has been widely investigated as an optimization problem (12,

15, 19–22, 27, 28, 38, 59).

Below we present the problem of reconstructed PET image

deconvolution in a probabilistic formulation following (60). The
Frontiers in Nuclear Medicine 04
fundamental differences to most deconvolution methods are

that 1) the methodology allows the incorporation of, in

principle, arbitrarily complex prior information, and 2) the

solution is not one single optimal image, but instead a

collection of PET images from the posterior probability

distribution representing the combined information and

uncertainty of F. This can be used as a base for a quantitative

approach to reconstructed PET image analysis, which will be

demonstrated later.
2.1. Probabilistic deconvolution of a
reconstructed PET image

Tarantola and Valette (34) present inverse problem theory

through the concept of “conjunction of information” which is

a probabilistic framework for integration of information. The

solution is not one single optimal image, but instead, a

posterior probability distribution that represents the combined

information. Such a probability distribution represents, in

principle, infinitely many images, and the uncertainty and

resolution can be analyzed by analyzing such a set of realized

images.

The a posteriori probability distribution describing the PET

activity concentration s(F) represents the conjunction of

information from a prior probability distribution, r(F), and

the likelihood, L(F), (34, 61) given by e.g.

s(F) ¼ kr(F)L(F) (5)

where k is a constant. Equation 5 is similar to a Bayesian

formulation of data integration. The prior probability

distribution r(F) represents any information available about

F independently from data (the reconstructed PET image in

this case). This can be for example medical expert knowledge

and/or information about modalities from other types of

medical imaging data and biophysical prior information (41).

The explicit choice of prior information is key to the use of

the probabilistic method as will be discussed in detail later.

The likelihood L(F) is a probabilistic measure of how well a

specific set of model parameters F explains the data, here the

reconstructed PET image FPET. In general, the likelihood

represents uncertainty on data as well as imperfections in the

physical model (modeling errors) (34). In the present case

this leads to L(F) ¼ rF(GF) which can be trivially obtained

using Eq. 3 in case the noise is multivariate Gaussian, and Eq.

4 in case the noise is multivariate log-normal. The likelihood

provides a probabilistic measure of how good a specific F is

in explaining the observed reconstructed PET image Fobs
PET

according to the noise model. The likelihood should be

chosen to represent these noise characteristics, as discussed

previously, and as an example will demonstrate (see 3).
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2.1.1. Sampling from s(F)/ L(F)s(F)
A number of methods exist that allow sampling of a

probability distribution, such as the posterior probability

distribution s(F) defined in Eq. 5, to provide a collection of

realizations distributed according to the probability

distribution (62–66). Most of these algorithms, such as the

rejection sampler, the Gibbs sampler, and the Metropolis-

Hastings algorithm, require that one can evaluate the

posterior distribution for any given set of model parameters,

s(F) (38, 62, 63).

The extended Metropolis algorithm (67), a variant of the

Metropolis-Hastings algorithm (62), can be used to sample

the product of two probability distributions, such as here the

prior r(F) and the likelihood L(F) in Eq. 5 (65). It can can

be implemented as follows:

1. Generate an initial set of model parameters Fcurrent as a

realization from r(F).

2. LOOP start

a. Exploration Generate a set of model parameters Fpropose

in the vicinity of Fcurrent. Iterating only this “exploration”

step must lead to sampling the prior r(F) through a

random walk.

b. Exploitation Accept the move from Fcurrent to Fpropose

with a probability of

Pacc ¼ min 1,
L(Fpropose)

L(Fcurrent)

� �
: (6)

If the move is not accepted the Markov chain stays at

Fcurrent, otherwise the state is updated such that

Fcurrent ¼ Fpropose.

c. Store current state, store Fcurrent.

3. LOOP until enough realizations have been sampled

A benefit of the extended Metropolis algorithm is that neither

s(F) (as is needed for applying the classical Metropolis type

algorithms (62, 63)) nor r(F) need to be evaluated, it is

enough that an algorithm exists that can sample r(F), and

that the likelihood L(F) can be evaluated for any set of model

parameters F.

This is important in the current context, as this means that

any algorithm that can generate a set of model parameters

representing a priori knowledge about the in vivo distribution

of activity concentration can in principle be used as prior

information. No analytical description of the prior needs to

be available. An analytical description may be available (such

as when using the multivariate Gaussian prior), but still, using

the extended Metropolis algorithm one must use a sampling

method to perform a random walk in the prior, which for a

multivariate model can be done using for example the

computationally efficient sequential Gaussian simulation (48)
Frontiers in Nuclear Medicine 05
or the computationally less efficient Metropolis-Hastings

algorithm.

The requirement of proposing a new set of model

parameters in the vicinity of the current set of model

parameters, such that the prior is sampled, can be achieved by

using, for example, the sequential Gibbs sampler, which

essentially relies on performing a conditional simulation of a

subset of the model parameters in an N-dimensional prior,

conditioned on the rest of the model parameters (60, 68).

In the geostatistical community, many statistical methods

have been proposed that allow sampling from statistical models

representing various simple to complex structures. These can

for example be based on 2-point Gaussian statistics (48), or

more complex multiple-point statistical models inferred from

sample images using either geostatistical simulation (49) or

generative adversial networks (GANs) (69–71).

Many of these methods can by themselves, and combined,

be used with the sequential Gibbs sampler in the exploration

step of the extended Metropolis algorithm described above

(60, 68–70, 72). As discussed and demonstrated in (65, 68,

72) this opens up the possibility of using many variants and

combinations of such geostatistical simulation methods (49,

73), to describe rather complex information about expected

spatial structures.

In practice, the first set of model parameters considered by

the sampling algorithm is selected as a random realization from

the prior model. Initially, the algorithm will search for an a

priori acceptable set of model parameters that leads to a data

fit according the noise model (as quantified by the likelihood).

This is called the burn-in phase, at the end of which the

Markov chain has reached burn-in. This is typically found

when the likelihood value stabilizes around a certain level.

The actual level is associated with the specific choice of noise

model. When burn-in has been reached the Markov chain has

converged, and the posterior distribution is being sampled,

and each set of current model parameters will represent a

realization of the posterior distribution. All sets of model

parameters considered before burn-in are discarded, and all

sets of model parameters (realizations) after burn-in represent

a sample of the posterior distribution. See more details about

running the extended Metropolis algorithm in (65, 72). No

single approach exists that allows determining both if and

when burn-in has been reached. In addition, it may be non-

trivial to determine whether the Markov chain has converged

and whether enough independent realizations have been

obtained, as discussed by e.g. (74, 75).

To summarize, to infer information about the in situ activity

concentration F from the reconstructed PET image FPET, as a

probabilistic formulated (deconvolution) inverse problem using

the extended Metropolis algorithm, one needs 1) to select a

prior model, from which realizations can be sampled through

a random walk, 2) to be able to evaluate the forward problem

(here in form of evaluation of the convolution GF, in Eq. 2),
frontiersin.org

https://doi.org/10.3389/fnume.2022.1028928
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/


FIGURE 1

Phantom experiment. (A) Zoom of reconstructed PET image showing the spheres of the NEMA phantom, Fobs
PET . Pixel size is 2:08� 2:08mm. (B) The

corresponding CT image.
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and 3) to be able to evaluate the likelihood L(F). Step 1) is

required in the exploration step, and step 2) and step 3) in

the exploitation step in the extended Metropolis algorithm.

The choices of G, L(F), and r(F) are problem specific, as

also demonstrated below. G and L(F) are related to the choice

of scanner and reconstruction method, while the choice of

prior information, r(F), will depend highly on the type of

tissue being scanned. In practice, this involves taking into

account and quantifying prior information from medical experts.
3. Example applications

Some performance aspects of the algorithm were evaluated

on PET images obtained using both a phantom experiment and

in vivo data. Both PET images were acquired using a combined

PET/MRI system (Siemens Biograph mMR) and a specific

choice of PET reconstruction algorithm.
3.1. Data

3.1.1. Phantom experiment
A phantom setup employed a body-mimicking National

Electrical Manufacturers Association (NEMA) phantom (PTW,

Freiburg, Germany). Briefly, a set of 6 hollow spheres and the

background was filled with aqueous solutions of [18F]FDG. A

low-dose CT (Siemens Biograph mCT) scan was used for CT-

based attenuation correction. Reconstruction utilized 3D OP-

OSEM with 3 iterations (i.e. using early stopping), 21 subsets,

and a 4-mm Gaussian post-reconstruction filter. No resolution

modeling was applied. Voxel size was 2:08� 2:08� 3:00 mm3.
Frontiers in Nuclear Medicine 06
A single slice through the center of the spheres, zoomed to the

central 90x90 voxels, was studied and shown together with a

corresponding CT in Figure 1.
3.1.2. In vivo data
An in vivo example was obtained from an ongoing study of

patients with advanced non-small cell lung cancer. The study

was approved by the departmental science committees at

Rigshospitalet, by the Regional Ethics Committee, approval

number H-3-2013-09, and by the Danish Data Protection

Agency. The patient was scanned for 8 min, 60 min after

injection of [18F] FDG (2MBq/kg). The same reconstruction

algorithm and parameters as used for the phantom case were

used here, as well as a reconstruction employing PSF

modelling and a 2-mm Gaussian post-reconstruction filter. A

single slice through the hilar tumor and a subcutaneous

metastasis was studied, and shown in Figure 2.

The goal is now to infer information about the tracer

distribution F, from the reconstructed PET image, Fobs
PET, using

the described methodology, which requires the ability to evaluate

the likelihood of a specific PET image, L(F), and the ability to

sample PET images from a chosen prior distribution r(F).
3.2. The likelihood

Barrett et al. (32) demonstrate in a theoretical study how the

pixel activity of a reconstructed PET image, Fobs
PET, obtained

using an EM reconstruction algorithm follows a multivariate

log-normal distribution. This is equivalent to assuming a

multivariate Gaussian model to describe the deviation

between the reconstructed PET image, Fobs
PET, and the
frontiersin.org
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FIGURE 2

In vivo data. Reference PET image, Fobs
PET . Pixel size is 2:08 � 2:08mm. The rectangles indicate three areas, A, B and C, to be analyzed further.
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convolved image, GF (Eq. 2), in the log image domain. Hence,

the likelihood can be evaluated using Eq. 4 as

L(F) ¼ rF(GF) (7)

Thus, evaluation of the likelihood, trough Eqs. 7 and 4, requires

knowledge about the linear convolution operator G, and a

covariance model, Ct, describing the covariance between pairs

of pixels in the log image domain. Below we demonstrate how

to empirically estimate G and Ct by scanning a known object

(the phantom) as suggested by e.g. (8, 56). As both considered

PET images have been scanned using the same scanner using

the same PET reconstruction algorithm, the same G is used.

The type of noise model (a multivariate log-normal model)

inferred from the phantom data is also used in both cases. But,

as the local variance depends on the local signal level, the

specific local magnitude of the covariance used will differ for

the two cases. If another scanner is used and/or another type

of reconstruction applied, then the noise model and the

convolutional operator needs to be estimated anew.
3.2.1. The convolution operator, G
The convolution operator G can be estimated by scanning a

known object, such as the phantom in Figure 1A, by ensuring

that the log-data residual

n ¼ log (Fobs
PET)� log (GFref ) (8)

is minimized. Fref refers to the known phantom model. The

point spread function is assumed to be described by a

Gaussian type averaging kernel given by

Gij ¼ kj exp (� h2ij=a
2) (9)
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where hij is the distance between sets of a centered pixel

representing fi, and other pixels, representing fj, in the PET

image, and a is the range that determines the width of the

Gaussian averaging kernel. kj is a normalization that ensures

that each row in G sums up to 1.

The optimal choice of the width of the averaging kernel a is

obtained by evaluating n for a range of values of a from 0.0 to

10.0 mm in steps of 0.1 mm. a ¼ 4:4 mm, or 2.1 pixels,

equivalent to a FWHM of 7.4 mm, leads to the lowest log-

data residual, and is used from hereon.
3.2.2. The noise model
Figure 3A shows a histogram (blue) of a 2D slice of the

activity concentration in a reconstructed PET image Fobs
PET

(shown in Figure 3A) in an area of known constant low

(0.43 kBq/ml) activity concentration. The 1D distribution is

skewed, and a best fitting 1D normal distribution (dashed line

in 3A), does not represent the histogram well. Figure 3B

shows the corresponding histogram in the log image domain,

i.e. the histogram of log (Fobs
PET), as well as the best fitting

normal distribution (dashed line). The findings are consistent

with the expectation that log-normal 1D distribution is a

good representation of the pixel variability in Fobs
PET (32), and

hence justifies the use of the log-normal model for the

likelihood function.

In addition, the noise variance depends on the local mean

activity concentration (32). The standard deviation of the

noise has been estimated in the log image domain for the low

and high activity concentration levels, around F ¼ 0:43 kBq/

ml (from Figure 3C) and F ¼ 2:77 kBq/ml (within the big

spheres in Figure 1A), and has been estimated at

std( log10 (F
obs
PET)) ¼ [0:1060, 0:0402]. As expected the relative

noise level is higher in the areas of low count and low

activity, and lower in areas of high activity (32). The standard

deviation of the noise in the log image domain for any
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FIGURE 3

Inferring the noise model from data. (A) 1D histogram (blue) and best fit 1D normal distribution (dotted) ofFobs
PET . (B) 1D histogram (blue) and best fit 1D

normal distribution (dotted) of Fobs
PET in log image domain. (C) Fobs

PET. (D) A realization of the inferred noise model rF(FPET) for activity level F ¼ 0:43
kBq/ml. (E) Experimental and modeled covariance in the log image domain.
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activity level is estimated using simple linear interpolation

between the two considered activity concentration levels. For

F � 0:43 kBq/ml the absolute noise level is assumed constant,
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both because the activity concentration estimate will be based

on very few data, and also because, for the clinical case of

cancer considered here, the focus on the case with in vivo
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data is the higher rather than lower activity levels. This may

differ among different clinical situations.

From Figure 3C it is evident, as also reported by (32, 52),

that some correlation between neighboring pixels exists, and

hence it is assumed that the noise can be described by a

correlated spatially isotropic 2D Gaussian probability

distribution in log image domain N (dt, Ct), where dt is the

mean activity concentration, and Ct the covariance of the data

residual in log image space.

Figure 3E (stars) shows the experimental covariance in log

image space computed from Fobs
PET in Figure 3C, assuming

dt ¼ 0:43 kBq/ml, as well as the best fitting Gaussian type

covariance model with an isotropic range of 1.85 pixels and a

variance of 0.01 (a standard deviation of 0.1) in log-space,

equivalent to a full width at half maximum (FWHM) of

6.4 mm. For this analysis, we relied on classical semivariogram

analysis, as described in e.g. (73).

Figure 3D shows one realization of the inferred noise

model, at the same low activity concentration level, dt ¼ 0:43

kBq/ml, as in Figure 3A. This realizations appears to have a

spatial distribution similar to the observed noise, Figure 3A,

which suggests that the chosen noise model does reflect the

actual noise well, for this specific signal level.

As the noise model is not linear in the signal level, ideally

one must construct and invert Ct in each iteration of the

Monte Carlo simulation (as the current set of model

parameters changes slightly at each iteration). This is however

computationally demanding. Instead, we suggest smoothing

the PET image data, using a simple 4� 4 pixel moving

average, from which a linear noise model is constructed as

described above, with the local variance in the log image

domain following the average signal value. In order not to

underestimate the noise due to the use of this linear noise

model (and hence risk overfitting), the noise variance is

increased by 20%. Using a linear noise model, Ct needs only

be constructed and inverted once, providing a more efficient

sampling. With this approach the same type of likelihood (Eq.

7) can be used for both the phantom and in vivo data, but, as

the magnitude of the two reconstructed PET images differs,

so will the specific choice of Ct.

The estimated Ct (scaled by the local average activity

concentration) and linear forward operator G is used in the

remainder of the article. Based on this information the

likelihood (Eq. 7) can be computed, which allows evaluating

the “exploitation step” in the extended Metropolis algorithm.
3.3. Prior information

The method presented above requires realizations of the

prior probability density can be simulated using a sampling

algorithm. By construction, the realizations that are generated

by such an algorithm then represent the available prior
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information. The process of quantifying prior information is

in practice a two-step process. First, a medical expert

describes known (a priori) information. Then, a statistical

model is chosen that best reflects information from the

medical expert. Several realizations of this statistical model are

then generated and visualized and validated by the medical

expert. This process is iterated until the prior model generator

is deemed appropriate by the medical expert.

The prior model is, thus, not based on an implicit

mathematical model (in fact, no mathematical model is

needed to describe the prior) but is instead an explicit choice,

guided preferably by medical expertise, that can be visualized,

analyzed, and validated independently of the PET image data.

Below two such prior models are constructed to reflect prior

knowledge related to the phantom and in vivo cases.

3.3.1. A priori model for the phantom data, r1(F)
Everything is in principle known about the activity

concentration relating to the PET image data in Figure 1. It

should consist of 6 perfect circles, in different sizes with their

outline as imaged in the CT image, Figure 1B. The activity

concentration is expected to be constant and high within the

spheres and constant and low outside the spheres.

As an example, the following prior information is

considered: The real activity concentration distribution is

discrete and bimodal, and the low and high activity

concentration is assumed to be within [0:1, 1:1] and [2:1, 3:2]

kBq/ml respectively. In both cases, a uniform distribution is

used to represent the activity concentration level. The spatial

distribution of the areas of high and low activity

concentration is assumed to follow a truncated 2D

multivariate normal distribution, based on a 2D Gaussian

type isotropic covariance model with a range of 10 pixels.

Truncation is done such that the smallest 9% realized pixel

values are associated with high activity and the rest with low

activity.

In practice, a realization of such a model can be generated

by first generating a realization of the multivariate normal

distribution with unit variance followed by truncation, such

that all values above �1.34 (the 9% quantile of the normal

distribution) will refer to the low-activity region, and all

values below will refer to the high-activity region. See e.g. (48)

for description of several Gaussian based simulation methods.

Then, each region is populated with an activity value realized

from the two uniform distributions. The resulting set of

model parameters will be a realization of the prior model as

defined by the described algorithm. An analytical formula

does not exist to describe this prior model, but in any case, it

needs never be evaluated using the proposed method. It is

enough that an algorithm exists that can sample from the

prior model. Figure 4A shows 5 realizations of the prior

model r1(F), and Figure 5A the corresponding 1d marginal

distribution of activity concentration, r1(Fi).
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FIGURE 4

Five realizations from the two considered prior models (A) r1(F), and (B) r2(F). Colorscale as in Figure 1A.
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3.3.2. A priori model for the in vivo data, r2(F)
The PET image obtained by scanning near a lung, Figure 2,

represents a real in vivo case. The following observations were

made and reflect prior information:

† I1, Healthy tissue is expected to be associated with low

uptake.

† I2, Cancer lesions are expected to be associated with high

uptake.

† I3, The uptake can vary between and within tumors.

† I4, The boundary between regions with and without cancer,

is expected to be relatively sharp.

The prior model representing the phantom case, r1(F), is too

simple to represent this type of prior information. To

construct a more realistic prior resembling the available expert

information, I1-I4, a multivariate normal distribution with a

Gaussian type covariance model with a range of 8 pixels is

assumed, but with a trimodal 1D marginal distribution,

describing three types of tissue, t1, t2, and t3, is defined as:

t1: Cancer lesions. Homogeneous regions with activity

concentration following a Gaussian distribution with

mean 2.7 kBq/mL and standard deviation of 0.13 kBq/mL,

i.e. N (2:7, 0:132).

t2: Tissue, type A; e.g. representing physiologic uptake in

muscles and mediastinum. Intermediate activity

concentration following a Gaussian distribution with

mean 0.55 kBq/mL and standard deviation 0.15 kBq/mL,

i.e. N (0:55, 0:152).

t3: Tissue, type B; e.g. representing physiologic uptake in lung

parenchyma. Low activity concentration, uniform in the

interval from 0.06 to 0.2 kBq/mL.
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This prior is referred to as r2(F), from which 5 realizations are

shown in Figure 4B, and the 1D marginal, r2(Fi), is shown in

Figure 5B. The units on the axes in Figure 4 is pixels of size

2:1� 2:1 mm2, as given in the PET images, Figures 1 and 2,

but the resolution used in the prior space of activity

concentration is 4 times finer (pixel size 0:25� 0:25 mm2).

Several specific choices need to be made, especially setting

up r2(F). Any of these choices could, and should, be debated

between experts in the field (clinical experts and physicians),

in practice by analyzing realizations of the resulting prior, as

seen in Figure 4B. The prior model r2(F) is constructed to

represent the prior information available in the in vivo case

and is not a general prior model intended to be used for

other cases.

The two considered prior models, r1(F) and r2(F),

represent two explicit choices of a prior model. Any results

and analysis presented below should be considered relative to

the a priori assumptions as visualized in Figure 4.
4. Results - phantom experiment

Both prior models are consistent with what is known a

priori about the phantom case, in the sense that the real

tracer distribution is a possible realization of both r1(F) and

r2(F), while the former is more informed than the latter.

Therefore, as an example, both prior models are considered to

analyze the PET image phantom data.

Figure 6 shows 5 realizations (out of 385 generated) of the

posterior probability distribution, obtained by running the

extended Metropolis algorithm, using each type of prior

model. Sampling is initiated from an independent realization
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FIGURE 5

A priori 1d marginal distribution from (A) r1(F), and (B) r2(F).

FIGURE 6

Five realizations from the posterior distributions (A) s1(F), and (B) s2(F) related to the prior distributions r1(F) and r2(F). Colorscale as in Figure 1A.
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of the prior. Burn-in is reached at around 15,000 iterations, and

the Markov chain is run for 400,000 iterations. One

independent realization is obtained for around every 1,000

iterations after burn-in, which is identified using

autocorrelation analysis as discussed in (65).

The posterior distribution refers to the conjunction of all

available information, and each of the presented realizations is

consistent with both the prior model (compare to Figure 4),

the physics (smoothing), and the assumed noise model. The

variability within the whole collection of realizations

represents the combined uncertainty. Hence, the probability of

a certain event occurring is proportional to the frequency

with which it occurs in the posterior sample, Figure 6 (76).

This allows a quantitative approach for the analysis of the in

situ activity concentration. An event could, for example, be E:

“Pixel A has high activity”, or E: “Pixel A and Pixel B are

connected by a coherent region of high activity.”
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A simple visual inspection of the realizations of the

posterior, Figure 6, reveals that the correct location and size

of the spheres can be seen in most realizations, which suggest

they are well resolved. It also suggests that the resolution of

s1(F) is higher than that of s2(F). This is simply related to

the fact that the information content of r1(F) is higher than

that of r2(F). r2(F) allows some correlated spatial variability

within both regions of high and low activity, which can be

seen, as expected a priori.
4.1. Analysis of the sample from the
posterior

Several statistical properties of the posterior can now be

computed, which can be useful for decision-making for a

medical expert. The simplest measure is the point-wise mean
frontiersin.org

https://doi.org/10.3389/fnume.2022.1028928
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/


FIGURE 7

(A) Reconstructed PET image, Fobs
PET, as Figure 1A. Point-wise mean tracer activity from (B) s1(F), and (C) s2(F).
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activity concentration level, as shown in Figures 7B,C for both

r1(F) and r2(F). These images can be compared to the original

PET image data, Figure 7A, and provides, in comparison, a

sharper image with less noise and more accurate activity

concentration levels, as will be analyzed below. Notice that no

ringing effects often referred to as Gibbs ringing are

noticeable near the sharp boundaries of the spheres. Such

ringing effects are often visible when applying deconvolution

methods, (17). The low amplitude correlated features in the

low activity region in Figure 7C is due to the correlated

features of r2(F).

Figure 8 present posterior statistics (in case considering

r1(F) as prior information) around each of the 6 spheres.

The first column shows the pointwise mean, and the second

column the pointwise variance of 400 realizations. The third

column shows the corresponding part of the CT image, and it

is clear that the location of high variance in column two

corresponds closely to the edges of the spheres as imaged in

the CT image in column three. The fourth column shows the

pointwise probability that the activity concentration is higher

than 1.5 kBq/ml, P(F . 1:5 kBq/ml). This particular threshold

value is chosen as it marks a clear split between low and high

activity regions, as illustrated on the 1D marginal distribution

in Figure 5A. The last column shows the posterior

distribution of the area of the coherent set pixels with activity

concentration above 1.5 kBq/ml, found by counting the

number of high-activity pixels in a connected region around

the center pixel in all obtained realizations of the posterior.

The inner area of the circles in the CT image is shown by the

blue line (which is used as a reference for comparison). The

red lines reflect the area of coherent high activity, using

simple thresholding on the reconstructed PET image. Neither

the mean estimate (column 1) or the probability of high

activity (column 4) shows perfect circular shapes (as the real

phantom has), due to the noise on the reconstructed PET

image. However, a key feature in Figure 8 is that the
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posterior uncertainty is high at the transition between high

and low activity, where the imperfections in the circular

shapes are visible. The inner (high activity) and outer (low

activity) regions are very well resolved.

Figure 8 column 5 demonstrates that simple thresholding to

obtain the area of high activity is problematic. If a low threshold

is used (>1.0 kBq/ml, thick red line) the area is overestimated for

larger spheres. If a medium threshold is used (>1.5 kBq/ml,

medium-thick red line) the area is well estimated for larger

spheres, but underestimated for smaller spheres. If a realistic

threshold for the expected activity is used (>1.5 kBq/ml, thin

red line) the area is underestimated for all sphere sizes. These

effects are related to the smoothing and damping of the

amplitude of small high activity regions in the reconstructed

PET image discussed previously.

Figure 8, and the equal tailed 95% credible interval in

Table 1, shows that the area of the spheres computed from

the CT image is very consistent with the posterior distribution

of the area of the spheres obtained from s1(F), as it is well

within the 95% credible interval.

Table 2 contain statistics related to the posterior

distribution of the activity within each sphere. The first row

lists the probability that the center location of the sphere has

high activity (F . 1:5 kBq/ml). The following three rows list

some quantiles of the average activity,Fav, incoherent high-

activity regions in the posterior sample. For all spheres the

p0:025 quantile is above 2.47 indicating a 95% probability that

Fav . 2:47 kBq/ml. This in contrast to the activity within the

spheres obtained from the PET image, is below 2.0 kBq/ml for

the three smallest spheres.

To summarize, Table 1 and Figure 8 suggest that the

estimated areas (and associated uncertainty) of high-activity

regions are consistent with the actual area, of the particular

3mm slice of the 2D phantom. Table 2 suggests that the

posterior median activity and the credible intervals for the

activity within each sphere are consistent with the expected high
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FIGURE 8

Statistics from s1(F), around the 6 spheres (S1–S6). Column 1: Pointwise mean activity (colorscale as in Figure 1A). Column 2: Pointwise variance
(black:high, white:low). Column 3: CT data. Column 4: Posterior probability of having high activity (>1.5 kBq/ml) (black:1, white:0). Column 5:
Posterior probability of the area of the region with high activity (>1.5 kBq/ml). The blue line indicates the area obtained from the CT image. Red
lines indicate areas obtained by thresholding the reconstructed PET image at levels >1.0 (thick), >1.5 (medium), and >2.0 kBq/ml (thin).
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activity levels. The posterior mean activity images in Figures 7 and

8 provide a sharper, less noisy, image of the activity concentration

than the observed Fobs
PET in Figure 1. Also, uncertainty analysis is

readily available, and coherent sets of high-activity regions can be
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assigned with a probability of existence. The area and activity of

these regions can also be quantified through a probability

distribution, which in this case provided results consistent with

the used reference phantom model.
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TABLE 2 Posterior statistics on the median activity within each sphere.

S1 S2 S3 S4 S5 S6

P(F . 1:5 kBq/ml) 1.0 1.0 1.0 1.0 0.99 0.94

Activity p0:025 2.56 2.50 2.48 2.47 2.47 2.47

Activity p0:500 2.76 2.73 2.72 2.67 2.69 2.68

Activity p0:975 2.88 2.88 2.88 2.86 2.88 2.88

Activity from Fobs
PET 2.46 2.28 2.02 1.76 1.51 1.30

Row 1) Probability of locating high activity at the center of the known position

of the sphere. Row 2-4) 2.5, 50, and 97.5% quantile of the distribution of the

mean activity (in kBq/ml) within the six spheres (when high activity

identified). Row 5) median activity as measured directly in the reconstructed

PET image Fobs
PET .

TABLE 1 Row 1–3) 2.5, 50, and 97.5% quantile of the posterior
distribution of the area (in number of pixels) of high activity. Row 4)
The inner area from the CT image. See also last column in Figure 8.

S1 S2 S3 S4 S5 S6

Area p0:025 223 113 58 29 12 6

Area p0:500 244 129 70 40 21 13

Area p0:975 266 150 85 53 30 22

Area from CT 241 130 76 43 21 13
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5. Results - in vivo

For the analysis of the in vivo PET image, Figure 2, only the

prior model representing the three tissue types, r2(F), is

considered, as the discrete bimodal nature of r1(F) is

expected to be inconsistent with the observed PET image

data. Figure 2 shows the outline of three data subsets, A, B,

and C, that will be considered below.

Figure 9 shows the posterior statistics obtained considering

the subset data set A. Figure 9A shows the reference PET image

data in subset A, Fobs
PETA

. This is equivalent to subset A in

Figure 2. For comparison, Figure 9B shows the PET image

data reconstructed with PSF modelling. Figures 9C,D show

the pointwise mean and variance of the sample obtained from

the posterior distribution s(FA). As tissue type t1 represents

a high-activity cancer lesion, the probability of locating cancer

can be quantified by computing the probability that the

activity concentration is above 1.5 kBq/ml. This can trivially

be computed from the obtained sample of the posterior and is

shown in Figure 9E.

As expected, using a PSF in the PET reconstruction lead to

slightly higher estimates of activity concentration, Figure 9B,

than when no PSF was used, Figure 9A. Comparing the

pointwise mean of the marginal posterior, Figure 9C, to both

the PET image image obtained without and with a PSF,

Figures 9A,B, it is clear that some of the noise has been

suppressed, and that at the same time sharper structures can
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be identified, especially around the regions of interest, regions

B and C, which are the only areas in which high intensities

are present, Figure 9D. Figure 9D reveals that most of the

uncertainty is related to the location and activity

concentration of the boundary of the high-activity regions.

Figure 10 shows the same statistics as Figure 9, but only for

data subsets B, to focus on the details. Each subset has been

treated with a separate run of the proposed method, only in

the specific subset. This allows using an even smaller pixel

size of the model parameters, here 0:5� 0:5 mm (1/4 of the

pixel size of Fobs
PET), and will provide similar results as using

the full data subset A, except in a small region at the

boundary where correlations exist due to the correlations in

the prior, noise model, and G. As discussed previously, the

choice of parameterization (the pixel size) provides an upper

limit of the resolution one can expect and is here chosen

small enough, that the resolution limit is controlled by the

available information, and not the parameterization.

Figure 10D illustrates that the uncertainty is limited to the

boundary of the high-activity lesion (that shows high posterior

variance), but that the centre of the lesion is well resolved, with

an apparent high high, as also evident in Figures 10C,E.

Further, the size of the high-activity cancer lesion can be

computed from each obtained realization, which can produce

a posterior distribution of the size of the lesion in subset B as

given in Figure 11A. These results suggest, that not only can

a small cancer lesion (with an area between 1 and 7 pixels,

each of size 2:2� 2:2 mm) be resolved, the actual size and

activity can potentially be quantified as well.

The same analysis has been performed in data subset C, and

the results are shown Figures 12 and 13. For data subset C,

Figure 12A, the larger potential cancer lesion can be resolved

quite well. The area and average activity can also be quantified

as presented in Figure 13. The uncertainty is again limited to

the boundary of the lesion, with a width of only about 1 pixel

(in the original PET image) or 2.2 mm, Figure 12B. The two

areas of relatively high activity to the left of the large lesion, are

not resolved with respect to representing high activity (cancer)

or not. They can represent high-activity lesions but only with a

probability of around 0.1, Figure 12D.

The actual accuracy of the results obtained for this in vivo

case, cannot be validated as the real in situ activity

concentration is not known. The results indicate that using an

informed prior model (given that the inferred noise model

and smoothing operator are reasonable) could lead to both

increased resolution, lower noise, and the possibility of

informative quantitative analysis of the posterior distribution.
6. Discussion

A probabilistic approach for analysis of PET tracer activity

concentrations from a PET image has been proposed,
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FIGURE 9

Subset A, (A) Fobs
PET . (B) Fobs PET using PSF. (C) Point-wise posterior mean. Colorscale in (A), (B) and (C) as in Figure 1A). (D) Point-wise posterior

variance (white:low, dark:high). (E) Point-wise probability of high activity (white:0, black:1).

FIGURE 10

As Figure 9, but for subset B.

FIGURE 11

Mean activity (left) and area (right) of potential high activity cancer lesion at the center of data subset B.
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employing a noise model, a linear convolutional operator, and

the use of explicit prior information. The approach was

demonstrated on phantom and in vivo data using PET images

obtained from a specific scanner (Siemens Biograph mMR)

using a specific PET reconstruction method (OP-OSEM).
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The method can be used to construct an enhanced image of

the activity concentration distribution. Earlier methods for image

enhancement based on partial volume or PSF correction (11, 12,

18) are in general associated with a trade-off between increased

resolution or reduced noise. The early results shown here
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FIGURE 12

As Figure 9, but for subset C.

FIGURE 13

Mean activity (left) and area (right) of potential high activity cancer lesion at the center of data subset C.

Hansen et al. 10.3389/fnume.2022.1028928
indicate that our method could be capable of both increasing

resolution and decreasing noise, without producing artifacts

such as Gibbs ringing, see e.g. Figure 9A vs 9B.

The full potential of the proposed method, though, should

be realized by exploiting its properties as a probabilistic

approach for image analysis. The probabilistic approach to

image analysis of Eq. 5 has been considered in a number of

cases (41), both for image restoration (36, 38) and image

reconstruction (5, 35, 41, 46). However, in most cases the

assumed prior information has been quite simple or based on

a specific choice of mathematical model (38, 46). Also, most

previous works have computed a statistical property of the

posterior distribution, such as the model with maximum

posterior probability FMAP (The MAP solution) (7, 12, 13, 41,

77). Often. in medical imaging the term “Bayesian” or

“probabilistic” solution is used to describe the MAP solution

(16). However, such a single set of model parameters will not

in general be a representative realization of s(F), and will not

allow uncertainty analysis (34, 46).

Sampling methods, for a full sampling of the posterior, have

also been considered in some cases for a specific choice of prior
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(46, 78) for both image reconstruction and restoration.

Sampling of the posterior enables a probabilistic statistical

analysis of the PET activity concentration (such as inferring

information about the size and activity of potential cancer

lesions, if the prior allows this), and is not limited to a

particular statistical property such as the MAP. Our analysis

was possible due to the use of probabilistic analysis with an

explicit choice of prior, which was designed specifically to

represent available knowledge from a medical expert.

In summary, our method differs from previous approaches,

and in particular, MAP-based approaches, by 1) sampling the

full posterior probability distribution, and 2) making use of

any prior model (that can be sampled).
6.1. The explicit choice of a prior model

A key property of the proposed method is that it relies on,

and requires, an explicit quantification of a medical expert’s

prior information. The only requirement to the prior is that

an algorithm exists that can sample from the prior through a
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random walk. The limit to what prior assumptions can be taken

into account is therefore only limited by the capabilities of

available simulation methods. Several simulation methods

developed with the specific aim of reproducing spatial

patterns with various complexity have been developed in the

field of geostatistics (48, 49), and can readily be utilized (and

combined) in the current workflow (60, 68).

Other types of prior information have been considered for

Bayesian image analysis. Gibbs distributions are widely used

priors for Bayesian image analysis (38, 78) and also used for

Bayesian PET image reconstruction (46, 79). Filipović et al.

(46) propose to use the distance-dependent Chinese

Restaurant Process (ddCRP) (47) as a prior model in a case of

Bayesian PET image reconstruction case, where the full

posterior is sampled.

For some choices of prior distribution (where one can

evaluate the prior distribution) one can directly compute

statistics of the posterior distribution using, for example, least

squares inversion, and optimization methods (to find the e.g.

MAP model). In these cases, existing optimization based

algorithms may by computationally much faster than the

proposed sampling algorithm. But for the choices of prior

distributions considered for the two cases above, an analytical

formulation of the prior does not exist, and hence the prior

distribution cannot be evaluated. In these situations

optimization methods cannot be readily used.

The proposed method, based on the extended Metropolis

sampler, separates the choice of the prior from the sampling

algorithm. It does not need a specific mathematical model for

the prior and does not need an evaluation of the prior

probability. This allows using geostatistical models, GANs,

and also e.g. the Gibbs distribution, the ddCRP, and in

principle any combination of these to quantify prior

information. One can mix and modify the output of any such

simulation method, and thus consider a broad set of prior

models, to reflect the expectations of a medical expert.

The prior used in the present work is based on the knowledge

of a medical expert, thus allowing to consider each realization of

the posterior as an example of the actual tracer concentration

distribution. This allows medical experts to participate in the

construction and evaluation of the specific chosen prior model.

The choice of prior is likely the driving factor behind the

apparent resolution enhancement reported above. PET

standardized uptake values for both normal tissue and in

particular cancer can be highly variable, both within and

between subjects. For an eventual clinical implementation, prior

models should, therefore, be demonstrated to be robust to the

choice of parameters of the prior model.

In principle, any collection of independently obtained PET

images can be used to represent a prior model. If the sample is

large enough it can be used with the proposed methodology,

simply by drawing random PET images from the collection in

the exploration step of each iteration of the extended
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Metropolis algorithm. This will then become an example of

an independent extended Metropolis sampler, in which one

needs only to be able to sample from the prior. Performing a

random walk is not necessary. This independent approach is

though computationally very inefficient.

One can also use the multiple-point statistical methods to

infer conditional higher-order spatial statistics from the

collection of realizations (49), or construct a GAN that allows

generating realizations with similar spatial statistics (69). In

these cases, one can sample the corresponding prior through

a random walk, useful in the exploration phase of the

proposed algorithm (60, 68).

In the future, we envision a set of generic prior models

developed specifically to represent different types of tissue and

organs and different diseases. These types of prior models

could be distributed to share quantitative prior information.
6.2. Perspectives

Detection of small lesions by PET imaging is a well-known

and non-trivial diagnostic challenge. The presented

methodology can quantify the probability of locating small,

high-activity lesions, potentially allowing the identification of

cancer lesions at an earlier stage. Our approach may also play

a role for treatment response monitoring, with the possibility

to quantify not only the activity concentration and lesion size

but also the statistical uncertainty of those, which may be

useful when analyzing the time evolution of PET images

during treatment. This potentially allows quantification of the

probability that a lesion has changed in size or activity

concentration over time.

The results presented above show the potential of the

method, using two examples of prior information. Still, before

any preactical clinical application, the method needs to be

evaluated on a larger set of data, including Monte Carlo

simulation of clinical scenarios.
6.3. Current limitations

6.3.1. Stationary and position-invariant
convolution operator

In the examples above the convolution operator, G, is

assumed to be stationary and position-invariant. And while

(12) notes that in many situations the use of a position-

invariant point spread function is reasonable, it is an

approximation, and ideally, a spatially varying convolution

operator should be used (15, 21, 80). Such information can be

incorporated in our method by associating each pixel in a

PET image by a specific convolution kernel as given by each

row in G. The local width of the convolutional operator could

be estimated by scanning a known phantom at several
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locations in the scanner. Further, in the presented methodology,

the choice of forward model and noise are closely linked, so

limitations of the forward model leading to modeling errors

can in principle be taken into account through the likelihood

model (81), though such errors may be difficult to quantify.
6.3.2. The noise model
The method requires that a representative noise model can

be selected. The PET images considered above were obtained

using the 3D OP-OSEM algorithm. Other reconstruction

methods exist, such as filtered back projection, MLEM, or

recent reconstruction methods based on machine learning

such as DeepPET (82), that all lead to reconstructed PET

images with different noise properties. While in principle all

types of PET images can be used with the proposed

methodology, it may be non-trivial to represent the associated

noise model for a given choice of linear smoothing operator.

Future work will reveal the difficulty related to quantifying

such other noise models related to using other PET

reconstruction algorithms.

We make use of a multivariate log-normal model to describe

the noise, where the noise level is related to the signal level, as

also advocated by (32, 52, 83). Figure 3A suggests a slight

variability in the magnitude of the noise level from the center

to the edge of the PET image that we do not currently model.

That should be considered in future work. We estimate the

noise variance in two homogeneous areas. Such analysis could

be done for more activity levels to get a better model of the

distribution of the noise. Here we analyze the noise from a

single reconstructed PET image of a known phantom model.

Ideally, one could perform multiple PET scans of the same

phantom, to get multiple realizations of the noise.

Different PET centers will use different scanners and

different reconstruction methods. A known phantom should

be scanned regularly for each type of equipment and

reconstruction method used, to obtain an optimal noise

model and convolution operator. In case this is not possible, a

generic noise model could potentially be analytically estimated

based on the work of (32, 52).
1See supplementary material for an application of the method in 3D to a

local 3D subset of phantom data.
6.3.3. Computational demands
Sampling methods are known to be computational

demanding. This is also the case for the methodology

presented here. Sampling the posterior for 2D data subset A

of the in vivo case, see Figure 2, takes several hours. On the

other hand, sampling the posterior of data subset B takes

around 15min. A simple approach, not considered here, to

reduce simulation time is to run multiple shorter independent

Markov chains in parallel as opposed to running one single

Markov chain as here, utilizing parallel computing capabilities

that are constantly being improved.
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6.3.4. Extension to 3D
Only 2D cases are considered above. Extension to full 3D is

conceptually simple, but in practice, the Monte Carlo based

approach will be computationally harder in 3D.1 One can

though readily analyze, in parallel, a set of 2D slices of data as

demonstrated above, from which a pseudo-3D enhanced PET

image volume can be obtained.
6.4. Probabilistic PET reconstruction
using photon count data

Above we have described the PET restoration problem in a

probabilistic setting, where the goal is to estimate the true activity

concentration distribution from a noisy PET image. The

methodology can be used to solve the PET reconstruction

problem, where the goal is to estimate the true activity

concentration distribution from a set of measured coincidence

counts. This will in principle be simple and requires using 1)

another forward model, and 2) another noise model, while the

prior model would be the same. All corrections normally applied

during reconstruction will have to be included in the forward

model, but the general solution to this forward problem of

simulation of a set of counts from F is well-known (84), and the

noise model for the (measured) coincidence counts is known to

follow a Poisson distribution (5). However, the computational

complexity of solving the forward problem will be much higher

than when considering the use of a local convolutional operator

for PET restoration as we do here. Future research should pursue

the ability to perform probabilistic PET restoration, using raw

photon count data.
7. Conclusion

A probabilistic approach for analysis of the tracer activity

concentration from a PET image has been proposed and

demonstrated in two examples of phantom and in vivo data. It is

based on the conjunction of available information, such as a

convolution operator (linked to the point spread function), noise,

and an explicit choice of prior information. It has been

demonstrated how the convolution operator and noise can be

inferred from scanning a known object. Prior information is

described by a medical expert and quantified through an

algorithm that can simulate examples of tracer uptake reflecting

medical expert prior information.
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The presented approach allows quantifying the posterior

probability of any feature (size, volume, connectivity, activity)

simply by analyzing the generated set of images (realizations) of

the posterior probability distribution. As an example it has been

demonstrated how an image of the average activity concentration

can be constructed, that has better resolution and less noise than

the original PET image. Also, it has been demonstrated how

estimates of both the size and activity of a high-activity lesion can

be quantified, as well as the average tracer uptake of a lesion,

including estimates of the associated uncertainty.

The proposed methodology allows a quantitative, and

probabilistic, approach to PET image analysis, that has the

potential to allow a medical expert to identify smaller cancer

lesions than possible from the original PET image. Further, the

methodology has the potential of being used to monitor the

evolution of cancer lesions, as it allows a probabilistic assessment

of both the area and activity of cancer lesions, which are

important metrics for analyzing the effect of cancer treatment.
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