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(PBIF) applied to dynamic whole-
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5Department of Radiotherapy, University Hospital of Brest, Brest, France, 6Department of Radiology,
Weil Cornell Medical College of Cornell University, New York, NY, United States

Rational: To validate a population-based input function (PBIF) model that
alleviates the need for scanning since injection time in dynamic whole-body
(WBdyn) PET.
Methods: Thirty-seven patients with suspected/known well-differentiated
neuroendocrine tumors were included (GAPETNET trial NTC03576040). All
WBdyn 68Ga-DOTATOC-PET/CT acquisitions were performed on a digital
PET system (one heart-centered 6 min-step followed by nine WB-passes). The
PBIF model was built from 20 image-derived input functions (IDIFs) obtained
from a respective number of patients’ WBdyn exams using an automated
left-ventricle segmentation tool. All IDIF peaks were aligned to the median
time-to-peak, normalized to patient weight and administrated activity, and
then fitted to an exponential model function. PBIF was then applied to 17
independent patient studies by scaling it to match the respective IDIF section
at 20–55 min post-injection time windows corresponding to WB-passes 3–7.
The ratio of area under the curves (AUCs) of IDIFs and PBIF3–7 were
compared using a Bland–Altman analysis (mean bias ± SD). The Patlak-
estimated mean Ki for physiological uptake (Ki-liver and Ki-spleen) and tumor
lesions (Ki-tumor) using either IDIF or PBIF were also compared.
Results: The mean AUC ratio (PBIF/IDIF) was 0.98±0.06. The mean Ki bias
between PBIF3–7 and IDIF was −2.6± 6.2% (confidence interval, CI: −5.8; 0.6).
For Ki-spleen and Ki-tumor, low relative bias with low SD were found
[4.65± 7.59% (CI: 0.26; 9.03) and 3.70± 8.29% (CI: −1.09; 8.49) respectively].
For Ki-liver analysis, relative bias and SD were slightly higher [7.43± 13.13% (CI:
−0.15; 15.01)].
Conclusion: Our study showed that the PBIF approach allows for reduction in
WBdyn DOTATOC-PET/CT acquisition times with a minimum gain of 20 min.
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Introduction

Neuroendocrine tumors (NETs) are a group of rare tumors

with a common embryological origin (1). NETs are

characterized by cellular overexpression of somatostatin receptors

(SSTr) allowing the use of radio-labeled somatostatin analogs for

diagnostic imaging or peptide-receptor radionuclide therapy.

Currently, Gallium-68 DOTA-conjugated somatostatin receptor-

targeted peptide (68Ga-DOTA-SSTr) positron emission

tomography computed tomography (PET/CT) is the mainstay of

well-differentiated NET (WD-NET) diagnosis, staging, and

monitoring (2, 3). Dynamic whole-body (WBdyn) acquisition

methods in PET imaging have been proposed to assess the

spatiotemporal distribution of radiotracers across the human

body, allowing calculation of kinetic parameters of clinical

relevance, such as the tracer uptake rate Ki using Patlak analysis

(4–6). In a recent prospective study, our team showed the

feasibility of a WBdyn acquisition in 68Ga-DOTATOC-PET/CT

in 61 patients (7). The realization of Ki parametric images

required a long dynamic PET acquisition (i.e., 45–60 min

depending on the radiotracer) with tracer injection under the

PET system to obtain the blood input function and to model

time–activity curves in physiological and tumor tissues (8, 9).

Currently, several solutions have been developed to make the

procedure less constraining such as image-derived input

function (IDIF) estimation that is less invasive than venous

blood sampling (10, 11). Nevertheless, the main issue in using

the Patlak model remains the need to know the time integral of

the radiotracer’s plasma concentration since injection time

throughout the images acquisition (12). One of the current

challenges is to reduce this long acquisition time to optimize

WBdyn PET studies. Several recent WBdyn 18F-FDG-PET/CT

studies have proposed the use of a population-based input

function (PBIF) to overcome this key issue (13–19), but to our

knowledge, no such data with 68Ga-DOTA-SSTr tracers are

available.

The aims of this study were to develop a PBIF model in

WBdyn 68Ga-DOTATOC-PET/CT and to validate its clinical

use by the most accurate possible estimation of Ki parametric

images from fewer WB-passes in a WB-NET independent cohort.
Methods

Patient population

This is an ancillary study of GAPETNET trial

(NTC03576040), which is a prospective, observational, and

single-center cohort study.

Inclusion criteria were as follows: age ≥18 years old; well-

differentiated grade 1 or 2 (G1 or G2) neuroendocrine tumor;

primary location: gastroenteropancreatic, bronchopulmonary,
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or unknown; and WBdyn 68Ga-DOTATOC-PET/CT

acquisition performed on digital PET. The protocol was

approved by the Institutional Medical Ethics Committee of

Brest (29BRC17.0036). Informed consent was obtained from

all the patients to participate in the study.

A total of 37 subjects were recruited for this study. The

subjects were divided into two groups: a PBIF modeling group

(n = 20) and an independent validation cohort (n = 17).
PET/CT acquisition and image
reconstruction

All WBdyn 68Ga-DOTATOC-PET/CT acquisitions were

performed on two digital Biograph Vision 600 systems

(Siemens©, Erlangen, Germany).

CT acquisition was performed after injection of intravenous

iodine contrast agent (1.5 ml/kg), unless contraindicated. The

CT consisted of a 64-slice multidetector-row spiral scanner

with a transverse field of view of 500 mm. The CT images

were reconstructed with an iterative method (SAFIRE,

strength 5) for image interpretation. An additional

reconstruction of the CT data was performed for attenuation

correction using a filtered back projection algorithm and a

780 mm diameter to avoid truncation artifacts.
Dynamic whole-body PET protocol
PET images were then acquired immediately after a manual

injection of 68Ga-DOTATOC. The WBdyn PET acquisition was

performed according to the methodology previously described

by Karakatsanis et al. (5, 6, 9, 20).

A single dynamic cardiac-bed (DCB) position acquisition

was followed by a WBdyn craniocaudal continuous bed

motion acquisition: 6-min DCB (12 images × 5 s, 6 images ×

10 s, 8 images × 30 s) +WBdyn acquisition (9 passes with

2.2 mm/s ≈ 54-min duration for the whole WBdyn acquisition).

PET data were first reconstructed with attenuation

correction using an iterative reconstruction algorithm (OSEM

3D) with time of flight (ToF) and point spread function (PSF)

correction (TrueX). PET images were corrected for random

coincidence, scatter, deadtime, normalization, isotope decay,

and attenuation using CT data; no smoothing was applied

post reconstruction. The size of the transaxial reconstruction

was 440 × 440 (voxel size = 1.65 mm × 1.65 mm × 1.65 mm)

with three iterations, five subsets, and 2 mm Gaussian post-

filtering. Second, dynamic data were reconstructed using 4D

nested direct Patlak reconstruction, matrix 220 × 220, four

iterations, five subsets, and 3 mm Gaussian post-filtering,

thanks to the IDIF or PBIF described below.
frontiersin.org

https://doi.org/10.3389/fnume.2022.941848
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/


Thuillier et al. 10.3389/fnume.2022.941848
Input function
Theoretically, an arterial blood sample is required to obtain

an IF, but several studies have shown that it can be estimated

only from image data (21–25).

As previously described (26), the total radioactivity

concentration in the whole blood is quantified in the

reconstructed image and used for the extraction of the IDIF

and later for building the PBIF model. A sphere of radius

12 mm was automatically generated as close as possible at the

center of the left ventricle and away from the myocardium to

mitigate any partial volume effects (26) on both CT series

corresponding to DCB and WBdyn acquisitions using an

ALPHA [Automated Learning and Parsing of Human

Anatomy (27)] algorithm and then applied on PET

reconstructed images.

Because we did not performed arterial or venous blood tests

during image acquisition, we decided to apply a fixed plasma-

to-whole-blood ratio to correct for the IDIF by multiplying by

1.6 the arterial time–activity concentration curve, as

previously reported (24, 28).
PBIF creation and IDIF validation cohort

PBIF modeling and fitting (group 1)
The first step was to model a PBIF from the IDIFs of the 20

patients in group 1 as follows: first, all IDIF peaks were aligned

to the median time-to-peak (TTP); then, all IDIFs were

normalized to the patient’s weight and administered activity;

finally, the mean IDIF value at each time was used to model

the PBIF (Supplementary Figure S1).

The second step was to fit the PBIF using a mathematical

model. For this, the PBIF was fitted with a linear

interpolation of the concentration before TTP and with an

exponential model function using Labfit software® after TTP

as follows:

SUV tð Þ ¼
0:54 tð Þ � 5:54 If t , TTP;

e
2:27þ

22:33
t

�0:47lnðtÞ
If t � TTP

8<
:

where t is in seconds.
Validation cohort (group 2)
The third step was to use the modeling PBIF in group 2,

including 17 independent patients. The modeled PBIF had to

be scaled for each patient and a scaling factor was calculated

using the tail part of the IDIF, from the third to seventh

passes. For each patient, the PBIF was scaled so that the area

under the curve matched the IDIF from the third to seventh

WB-passes (PBIF3–7) corresponding approximately to 20–

55 min time windows. We used PBIF3–7 because Patlak plots
Frontiers in Nuclear Medicine 03
were also calculated from the third to seventh passes of the

WBdyn acquisition (7).

An example of the process is illustrated in Supplementary

Figure S2.
Patlak reconstruction and Ki extraction

Patlak reconstructions were performed using 4D nested

generalized Patlak expectation-maximization reconstruction in

the validation cohort, using both IDIF and the scaled PBIFs

to obtain parametric images (5, 29–31). Mean Ki-Liver, Ki-

spleen, and Ki-tumor values (in ml/min/100 ml) were

generated from the different reconstructed parametric images

by applying circular 3- and 1-cm diameter region of interests

(ROI), respectively, drawn over an uninvaded part of the liver

(in the right hepatic lobe) and spleen organs, as previously

recommended (32); spherical volume of interests (VOI) drawn

over the highest tumor uptake using a fixed threshold method

delineating a 3D contour around voxels equal to or greater

than 40% of the lesion Ki max, by analogy with the SUV

approach. Each ROI and VOI were segmented on the last

ninth frame and applied to generate time–activity curves.

An example of parametric images reconstructed using both

IDIF and PBIF is represented in the Figure 1.
Statistical analysis

The performance of each scaled PBIF was compared one-

by-one to the corresponding IDIF with AUCs. The mean Ki-

Liver, Ki-spleen, and Ki-tumor values using both PBIF and

IDIF were also compared together. AUC ratio (AUCPBIF/IDIF)

and Ki ratio (KiPBIF/IDIF) were calculated. Data comparisons

were performed using a linear correlation test (R2− slope)

and a Bland–Altman analysis [mean relative bias; confidence

interval (CI) 95%].

The significance level of the p-value was 0.05. All statistical

analyses were performed using XLStat 2021 (Addinsoft©, Paris,

France) and Excel (Microsoft©, Redmond, Washington, United

States) software.
Results

Population

The mean injected tracer doses were 204 ± 45 MBq (range:

136–295) and 2.67 ± 0.29 MBq/Kg (range: 2.02–3.06) in the

PBIF modeling group. The mean injected tracer doses were

199 ± 46 MBq (range: 108–287) and 2.81 ± 0.28 MBq/Kg

(range: 2.08–3.29) in the validation cohort. There were no

significant differences in the demographics parameters (age,
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FIGURE 1

Parametric images reconstructed with IDIF on top and with PBIF3-7 on the bottom.
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sex ratio, and body mass index) between the PBIF modeling

group and the independent validation cohort.
WBdyn PET results

Scaled PBIFs with IDIF comparison
The mean AUCPBIF/IDIF ratio was 0.98 ± 0.06 (range: 0.88–

1.11) and R2 = 0.96 (slope = 1.00).

The mean relative bias ± SD between PBIF3–7 and IDIF was

−2.6 ± 6.2% (CI: −5.8; 0.6) (Figure 2).
Ki values analysis
The mean KiPBIF/IDIF ratio, R2 correlation coefficient, and

mean relative bias ± SD between PBIF and IDIF are presented

in Table 1.
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The lowest relative bias ± SD were found for Ki-tumor

[3.70 ± 8.29% (CI: −1.09; 8.49)] and Ki-spleen [4.65 ± 7.59%

(CI: 0.26; 9.03)] metrics comparison (Figures 3A,B). For Ki-

liver analysis, the relative bias and SD were slightly higher

[7.43 ± 13.13% (CI: −0.15; 15.01)] (Figure 3C).
Discussion

In our study, we showed the feasibility of using a PBIF to

estimate Ki values of WD-NETs from fewer whole-body

passes in WBdyn 68Ga-DOTATOC-PET/CT. To our

knowledge, this is the first study with such a 68Ga-DOTA-

SSTr tracer comparing the PBIF and IDIF approaches for

Patlak analysis in WBdyn PET/CT. Implementation of routine

WBdyn acquisition for patients with WD-NETs could lead to
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FIGURE 2

Comparison of AUCIDIF with AUCPBIF3-7 using IDIF Bland–Altman plot.

TABLE 1 Mean Ki ratio of Ki-liver, Ki-spleen, and Ki-tumor with results
of the correlation test and Bland–Altman analysis between PBIF3−7 and
IDIF.

Mean Ki
(PBIF/IDIF)
[mean ± SD
(range)]

Correlation
analysis R2

(slope)

Mean relative bias
[mean ± SD (CI)]

Ki-liver 1.09 ± 0.14
(0.80–1.31)

0.80 (1.08) 7.43 ± 13.13% (−0.15; 15.01)

Ki-spleen 1.05 ± 0.08
(0.91–1.18)

0.96 (1.05) 4.65 ± 7.59% (0.26; 9.03)

Ki-tumor 1.04 ± 0.09
(0.92–1.26)

1.00 (1.02) 3.70 ± 8.29% (−1.09; 8.49)

PBIF, population-based input function; IDIF, image-derived input function; CI,

confidence interval.

Thuillier et al. 10.3389/fnume.2022.941848
a better characterization of the physiological and tumoral tracer

uptake in the future, providing in vivo additional quantitative

value in the characterization of SSTR expression in WD-NETs

as previously reported (7).

Regarding the comparison between IDIF and scaled PBIF3–

7, we found a low bias [AUC ratio = 0.98 ± 0.06, R2 = 0.96 (slope
Frontiers in Nuclear Medicine 05
= 1.00), mean bias −2.6 ± 6.2%]. In comparison with literature

data, Naganawa et al. compared IDIF and PBIF in oncological

WBdyn 18F-FDG-PET/CT studies with the gold standard as

an arterial input function (AIF). The authors highlighted that

using the PBIF on 15–45 and 30–60 min time windows

allowed us to obtained respective mean bias of −1 ± 6% (R2 =

0.93) and 3 ± 6% (R2 = 0.94) compared to AIF (13). These

time windows are finally quite like the one used in our study

(20–55 min). Moreover, they found similar results in using

the IDIF with a bias of −1 ± 5% (R2 = 0.91). However, the

choice of later time windows (45–75 and 60–90 min) led to

an overestimation of the AIF in their series [mean bias of 9 ±

7%, (R2 = 0.93) and 19 ± 10% (R2 = 0.88), respectively].

Therefore, we can assume that in terms of AUC ratio, using a

3–7 time window does not lead to a significant overall impact

compared to IDIF.

Our results showed excellent results for Ki-tumor

estimation with PBIF providing low bias with low standard

deviation. Moreover, the confidence interval of this relative

bias included the value 0 in our comparison [bias = 3.70 ±

8.29% (CI: −1.09; 8.49)] that is of major importance in a

context of optimizing the characterization of NETs in
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FIGURE 3

Comparison between Ki-liver, Ki-spleen, and Ki-tumor calculated with IDIF versus PBIF3-7 using Bland–Altman plot.
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68Ga-DOTATOC-PET/CT. In a recent study including 14

patients with lung cancer, Indovina et al. found similar

results on Ki-metrics estimation using a PBIF model scaled

on a 40–60 min time window in WBdyn 18F-FDG-PET/

CT (correlation of mean KiIDIF and KiPBIF values of R2 =

0.997) (14).

We also studied physiological Ki-metrics because spleen

and liver uptakes were historically used in scintigraphy to

estimate SSTr density expression in NETs (33). Using

PBIF3–7, we found relatively same results for Ki-spleen

than for Ki-tumor estimation with a low relative bias

[Ki ratio = 1.05 ± 0.08, R2 = 0.96 (slope = 1.05), bias = 4.66 ±

7.59% (CI: 0.26; 9.03)]. However, for Ki-liver analysis, we

found a positive bias with higher SD of 7.43 ± 13.13%.

In our cohort, mean Ki-liver values were lower to the

mean Ki-spleen and Ki-tumor values in our 17 scans

(1.35 ± 0.36, 6.65 ± 2.77, and 11.09 ± 9.87 ml/min/100 ml,

respectively). So, we assume that higher variance of bias in

our Ki-liver analysis is mainly related to their low values,

whose small changes had a greater impact in modeling the

input function. Finally, it might also be explained by

physiological motion of such organ (i.e., breathing) during

data acquisition.

Our study has several limitations. First, we did not

perform arterial blood sample for PBIF scaling. Hence,

our analysis allows only a comparison to the IDIF-based

approach. Therefore, we cannot conclude whether the use

of PBIF results in more accurate estimation of Ki values

compared to the AIF gold standard. However, we applied

a fixed plasma-to-whole-blood ratio of 1.6 to correct for

the IDIF as previously reported, which leads to estimate

accurately the Ki values without performing iterative

arterial or venous blood tests during image acquisition

(24). Furthermore, we only used the WB-passes time

window proposed by our reconstruction software. The

comparison of results using different time windows will

be the topic of a future publication to find out what is
Frontiers in Nuclear Medicine 06
the best compromise between the acquisition time

duration and the most optimized PBIF in terms of bias

and variance. Finally, due to the relatively small number

of patients, we did not perform subgroup analysis such as

with patient age- or gender-specific IFs that could

improve the accuracy of the PBIF modeling.
Conclusion

Our study showed that the PBIF approach allows for a

reduction in WBdyn DOTATOC-PET/CT acquisition time,

allowing a minimum time gain of 20 min using WB-passes 3–

7 and thereby facilitating its use in routine clinical practice.

Further evaluation with a larger dataset is needed to confirm

these promising results.
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Supplementary Figure 1

Mean ± SD of the 20 IDIFs of the group 1 and corresponding modelized
PBIF.

Supplementary Figure 2

Example of nonscaled PBIF and IDIF for the full acquisition (top) and the
scaled PBIF using 3–7 pass points from the IDIF (bottom).

Supplementary Table 1

General characteristics of the PBIF creation (group 1) and IDIF validation
population (group 2).
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