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The application of radiomics for non-oncologic diseases is currently emerging.
Despite its relative infancy state, the evidence highlights the potential of
radiomics approaches to serve as neuroimaging biomarkers in the field of the
neurodegenerative brain. This systematic review presents the last progress and
potential application of radiomics in the field of neurodegenerative nuclear
imaging applied to positron-emission tomography (PET) and single-photon
emission computed tomography (SPECT) by focusing mainly on the two most
common neurodegenerative disorders, Alzheimer’s (AD) and Parkinson’s disease
(PD). A comprehensive review of the current literature was performed using the
PubMed and Web of Science databases up to November 2022. The final
collection of eighteen relevant publications was grouped as AD-related and PD-
related. The main efforts in the field of AD dealt with radiomics-based early
diagnosis of preclinical AD and the prediction of MCI to AD conversion,
meanwhile, in the setting of PD, the radiomics techniques have been used in
the attempt to improve the assessment of PD diagnosis, the differential
diagnosis between PD and other parkinsonism, severity assessment, and
outcome prediction. Although limited evidence with relatively small cohort
studies, it seems that radiomics-based analysis using nuclear medicine tools,
mainly [18F]Fluorodeoxyglucose (FDG) and β-amyloid (Aβ) PET, and dopamine
transporter (DAT) SPECT, can be used for computer-aided diagnoses in AD-
continuum and parkinsonian disorders. Combining nuclear radiomics analysis
with clinical factors and introducing a multimodality approach can significantly
improve classification and prediction efficiency in neurodegenerative disorders.

KEYWORDS

radiomics, nuclear medicine, neurodegenerative disease, Alzheimer’s disease (AD),
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1. Introduction

In the past decade, the field of medical image analysis using radiomics has grown

exponentially enabling the conversion of digital medical images into mineable high-

dimensional data (1). Radiomics is a quantitative approach to medical imaging and aims

to enhance the contained information otherwise non-appreciable by the naked eye

through advanced mathematical analysis (2). Although radiomics can be applied to many
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conditions, it is most well-developed in oncological imaging

offering an infinite supply of imaging biomarkers that could

potentially aid cancer detection, diagnosis, prognosis, response

prediction, and monitoring of disease (1). The imaging

biomarkers extracted from radiomics analysis may reflect the

genotype and phenotype heterogeneity, and microenvironment,

expressed, at the biological level, by cellular density, proliferation,

angiogenesis, hypoxia, receptor expression, necrosis, fibrosis, and

inflammation (3). Radiomics has achieved significant momentum

in oncological imaging research, meanwhile, the application for

non-oncologic diseases is currently emerging. Since the capability

of radiomics to use high-dimensional data mining of radiological

features prone to represent aging progression and contain unique

information about spatial change rate at the microscopic level (4,

5) its endorsement for other multi-factorial diseases, such as

neurodegenerative disorders, seems to be a natural evolution (6).

Radiomics applied to neurodegenerative brain imaging is in its

relative infancy state with most of the studies focused on MRI-

based features for modeling classification and/or prediction

algorithms in the areas of Alzheimer’s (AD) and Parkinson’s

disease (PD) – the two most common neurodegenerative

disorders (6). AD is the most common cause of dementia, which

results in memory loss, cognitive impairment, and behavioral

changes. The population of patients with dementia is estimated

to exceed 50 million worldwide and is expected to increase to

152 million by 2050 (7). PD is the second most common

degenerative neurological disorder after AD, which is

characterized by progressive motor symptoms over time. It is

estimated that PD affects 1% of the population over the age of

60 with an estimated prevalence ranging from 7 to 10 million

people worldwide. Pronounced increasing trends of PD burden

are observed worldwide, and in most regions and countries,

indicating that PD is an increasing challenge to global health (8).

Converging evidence highlights the potential of radiomics

approaches to serve as neuroimaging biomarkers in the field of

the neurodegenerative brain (9–12). This narrative review

presents the last progress and potential application of radiomics

in the field of neurodegenerative nuclear imaging focusing

mainly on positron-emission tomography (PET) and single-

photon emission computerized tomography (SPECT) with

different radiotracers. As the central point of this narrative

review was radiomics with the explicit use of radiomics feature

extraction, we did not cover other AI-based approaches, such as

deep neuronal network (DNN), which represent the next-door

evolving field in medical imaging analysis for the

neurodegenerative brain.
2. Material and methods

A comprehensive review of the current literature was

performed using the PubMed and Web of Science databases up

to November 2022 using the following search criteria: (radiomic*

OR radiogenomic*) AND (“Neurodegenerative Diseases” [Mesh]

OR “Dementia” [Mesh] OR Alzheimer’s* OR “Basal Ganglia

Diseases” [Mesh] OR Parkinson*) AND [“Tomography,
Frontiers in Nuclear Medicine 02
Emission-Computed” (Mesh) OR PET OR DAT]. The exclusion

criteria were as follows: unavailability of full text; non-English

publications; image processing was not covering image segmentation

and radiomics feature extraction; publications unrelated to the

field of neurodegenerative disorders; imaging modalities other

than nuclear medicine imaging tools; reviews, conference

abstracts, and editorials. Following the PRISMA criteria (13),

Figure 1 was included to delineate the article selection process

(Figure 1).
3. Narrative synthesis of the results

The final collection of 18 relevant publications were included

and summarized in Table 1. Overall, n = 54 titles and abstracts

were screened, and n = 43 full papers were assessed. The records

including tumor (n = 9), non-radiomics study (n = 12), preclinical

study (n = 1), and MRI protocol (n = 3) were excluded. The first

study started in 2016, reflecting the fact that radiomics is a

relatively new approach in the field of nuclear neurology.

Selected papers were grouped as AD-related (n = 9) and PD-

related (n = 9).
4. Discussion

4.1. Radiomics in Alzheimer’s disease

The application of radiomics to analyze the complex patterns

of PET imaging of the AD brain is in its early stages. So far, few

studies have investigated the potential of radiomics using [18F]

Fluorodeoxyglucose (FDG) PET, and to a lesser extent, β-

amyloid (Aβ) PET brain images for the evaluation of

neurodegenerative diseases. At the time of selecting papers for

the current narrative review, there was overall a lack of studies

that applied radiomics for AD spectrum disorders beyond the

FDG and Aβ PET, despite the inherent potential of radiomics to

unveil quantitative imaging biomarkers, if any, using different

modalities and different compounds.

In recent years, the exchange of scientific views was mainly

focused on radiomics applied in early AD diagnosis and

prediction of mild cognitive impairment (MCI) conversion. Early

in-vivo diagnosis of AD is critical for accurate patient

management and the advanced radiomic features could fully

account for brain tissue heterogeneity allowing for the

identification of MCI patients who are likely to convert to AD.

Despite the simplicity of the acquisition of radiomic features, the

high-throughput nature, relative stability of the radiomics-based

classification and prediction algorithms, their role in precision

medicine for the population affected by AD yet remains at an

exploratory stage of development (14).

4.1.1. Radiomics-based classification for AD
spectrum

Automated classification of AD, nonetheless, in the evolving

state, has shown promise with AI algorithms to accurately
frontiersin.org

https://doi.org/10.3389/fnume.2023.1143256
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/


FIGURE 1

PRISMA flow diagram.
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differentiate between individuals who have been clinically

diagnosed with AD and MCI from those of healthy controls.

Currently, more extensive work for approaching the classification

tasks was done using DNN that can automatically learn

discriminatory multilevel and multimodal features with high

accuracy (15, 16). The advantage of DNN algorithms is that

these models do not require segmentation and are robust to scale

and rotation variations (15). However, the “black-box” nature of

DNNs makes them less trustworthy to physicians, thus hindering

their expansion into real clinical settings. On the other side, the

attractiveness of radiomics-based algorithms is that they can

serve as a potential bridge between brain imaging and

personalized medicine, as these algorithms are able to

incorporate patient-related information and disease-related

biomarkers.

The mainstream pipelines using radiomics, first, segment the

PET brain image into various regions of interest (ROIs), extract
Frontiers in Nuclear Medicine 03
and select the discriminate features for AD-target ROI regions,

and finally, input to state-of-the-art machine learning models

trained to support different tasks for clinical decision-making

(17). A few studies using ROI-based radiomics and support

vector machine (SVM) classifiers with selected radiomic features

extracted from [18F]FDG PET images reported stability

achieving good classification accuracies for classifying AD vs. HC

(91.5 to 92.9%), MCI vs. HC (83.1 to 83.7%), AD vs. MCI (85.9

to 87.9%), and MCIconverter vs. MCInon−converter (88%) (18, 19).

Similarly, Ciarmiello and co-authors demonstrated that ROI-

based radiomics using gray-level run-length matrix for texture

analysis and feed-forward multilayer neural network on Aβ-PET

data outperform SUVr-based performance (AUC 0.9 vs. 0.71) in

differentiation amnestic MCI subjects from healthy controls (20).

Besides conventional ROI-based radiomics, Ding et al. applied

voxel-wise radiomics on standard uptake value ratio (SUVr)

intensity data using Aβ-PET (9) as a biomarker to classify
frontiersin.org
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TABLE 1 Study characteristics.

First author Year Title Group Number of
cases

Tool Task Source

Alongi et al. 2022 Radiomics Analysis of Brain [ (18)F]FDG PET/CT to Predict
Alzheimer’s Disease in Patients with Amyloid PET Positivity:
A Preliminary Report on the Application of SPM Cortical
Segmentation, Pyradiomics and Machine-Learning Analysis.

AD-related 43 [18F]FDG PET Prediction local

Ciarmiello et al. 2022 Machine Learning Model to Predict Diagnosis of Mild
Cognitive Impairment by Using Radiomic and Amyloid Brain
PET.

AD-related 328 [18]F Florbetaben
(FBB) PET

Classification ADNIa

Jiang et al. 2022 Using radiomics-based modelling to predict individual
progression from mild cognitive impairment to Alzheimer’s
disease.

AD-related 884 [18F]FDG PET Classification and
Prediction

ADNI

Sheng et al 2022 Cross-Cultural Longitudinal Study on Cognitive Decline
(CLoCODE) for Subjective Cognitive Decline in China and
Germany: A Protocol for Study Design.

AD-related 479 [18]F-AV-45
(florbetapir) PET

Classification and
Correlation

ADNI

Yang et al. 2022 Combining PET with MRI to improve predictions of
progression from mild cognitive impairment to Alzheimer’s
disease: an exploratory radiomic analysis study.

AD-related 471 [18F]FDG PET Prediction and
Correlation

local,
ADNI

Ding et al. 2021 Quantitative Radiomic Features as New Biomarkers for
Alzheimer’s Disease: An Amyloid PET Study.

AD-related 1078 [18]F-AV-45
(florbetapir) PET

Classification local,
ADNI

Huang et al 2021 Radiogenomics of Alzheimer’s disease: exploring gene related
metabolic imaging markers.

AD-related 389 [18F]FDG PET Prediction multicenter

Li et al. 2019 Radiomics: a novel feature extraction method for brain neuron
degeneration disease using (18)F-FDG PET imaging and its
implementation for Alzheimer’s disease and mild cognitive
impairment.

AD-related 466 [18F]FDG PET Prediction local,
ADNI

Zhou et al. 2019 Dual-Model Radiomic Biomarkers Predict Development of
Mild Cognitive Impairment Progression to Alzheimer’s Disease.

AD-related 263 [18F]FDG PET Prediction ADNI

Comte et al. 2022 Development and validation of a radiomic model for the
diagnosis of dopaminergic denervation on [18F]FDOPA PET/
CT.

PD-related 443 [18F]FDOPA PET Classification local

Salmanpour et al. 2022 Longitudinal clustering analysis and prediction of Parkinson’s
disease progression using radiomics and hybrid machine
learning.

PD-related 143 DAT-SPECT
(123I-Ioflupane)

Classification local

Shiiba et al. 2022 Dopamine transporter single-photon emission computed
tomography-derived radiomics signature for detecting
Parkinson’s disease.

PD-related 413 DAT-SPECT
(123I-Ioflupane)

Prediction PPMIb

Hu et al. 2021 Multivariate radiomics models based on (18)F-FDG hybrid
PET/MRI for distinguishing between Parkinson’s disease and
multiple system atrophy.

PD-related 90 [18F]FDG PET/
CT

Prediction and
Correlation

local

Salmanpour et al. 2021 Robust identification of Parkinson’s disease subtypes using
radiomics and hybrid machine learning.

PD-related 464 DAT-SPECT
(123I-Ioflupane)

Clustering PPMI

Tang et al. 2019 Artificial Neural Network-Based Prediction of Outcome in
Parkinson’s Disease Patients Using DaTscan SPECT Imaging
Features.

PD-related 69 DAT-SPECT
(123I-Ioflupane)

Clustering and
Prediction

PPMI

Wu et al. 2019 Use of radiomic features and support vector machine to
distinguish Parkinson’s disease cases from normal controls.

PD-related 230 [18F]FDG PET/
CT

Classification local

Rahmim et al. 2017 Improved prediction of outcome in Parkinson’s disease using
radiomics analysis of longitudinal DAT SPECT images.

PD-related 64 DAT-SPECT
(123I-Ioflupane)

Prediction PPMI

Rahmim et al. 2016 Application of texture analysis to DAT SPECT imaging:
Relationship to clinical assessments

PD-related 141 DAT-SPECT
(123I-Ioflupane)

Classification multicenter

aThe Alzheimer’s Disease Neuroimaging Initiative (ADNI) database, www.adni.loni.usc.edu.
bThe Parkinson’s Progression Markers Initiative (PPMI) database, www.ppmi-info.org.
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healthy controls and AD with a nonlinear SVM model and cross-

validation techniques. The classification performance was better

than that with only the Aβ scores based on regions (ACC = 0.75,

SPE = 0.80, SEN = 0.70, AUC = 0.81) or based on voxels

(ACC = 0.84, SPE = 0.86, SEN = 0.81, AUC = 0.90).

4.1.2. Radiomics-based prediction of MCI to AD
conversion

It is a significant challenge to evaluate and predict the

progression of MCI for early treatment of AD (9, 19). A classic

approach for predicting MCI conversion is to train a
Frontiers in Nuclear Medicine 04
classification model using the data of MCI converters and non-

converters and then use the trained classifier to classify new MCI

patients (Liu et al. 2018). In addition, the proportional hazards

(Cox) model is commonly constructed as the prediction model

for investigating the effect of several variables (predictive

features) upon the time (conversion time) (21).

Jiang and co-authors designed different Cox models (radiomics,

clinical, SUVr FDG PET) to compare the predictive performance of

MCI conversion (21). The experimental results showed that the

predictive performance of the radiomics-based Cox model was

better than that of other Cox models. In the validation dataset,
frontiersin.org
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Harrell’s consistency coefficient of the radiomics-based Cox model

was 0.703 ± 0.002, while those of the clinical and SUVR models

were 0.632 ± 0.006 and 0.683 ± 0.009, respectively.

Alongi et al. propose a radiomics approach on [18F]FDG PET/

CT brain images based on Statistical Parametric Mapping (SPM)

and Pyradiomics to predict PET-Amyloid positivity (22). The

authors found six radiomics features that predict cortical Aβ

deposition with high sensitivity, specificity, precision, and

accuracy of 84.92%, 75.13%, 73.75%, and 79.56%, respectively.

These preliminary results obtained from [18F]FDG PET/CT

brain radiomics for predicting the presence of Aβ deposition may

serve as a new approach for selecting those patients who can

benefit from the diagnostic use of Aβ PET.

The workflow for radiomics-based predictive analysis using Aβ

PET brain images was also reported (9). The Aβ PET radiomic

features with widely used machine learning and cross-validation

techniques are able to predict with good performance (AUC

0.83) the progression of high-risk MCI patients’ conversion to

AD (9). Interestingly, in the MCI and AD groups, the

classification outputs are significantly associated with clinical

measures, such as apolipoprotein E genotype, polygenic risk

scores, polygenic hazard scores, cerebrospinal fluid Aβ, and Tau,

cognitive ability score, the conversion time for progressive MCI

subjects and cognitive changes, thus, highlighting the solid

biological/clinical basis underlying the progression of AD (9).

A few studies attempt to address the added value of dual-

modality imaging for the prediction of MCI conversion to AD

by using radiomic analysis (14, 23). Yang and co-authors

compared the predictive accuracy of single-modality MRI and

[18F]FDG PET and dual-modality [18F]FDG PET/MRI to

predict the MCI conversion to AD, demonstrating a large overlap

between [18F]FDG PET and MRI radiomics model performance,

while the dual-modality model resulted in only a modest

improvement over the single-modality models (Harrell’s C-index

of 0.798 for dual-modality vs. 0.760 for MRI, and 0.734 for PET;

both P < 0.001) (14). Even though the incremental benefit of

combining [18F]FDG PET and MRI for predicting MCI

conversion seems limited according to Yang et. al., the

integration of cross-modality approaches using radiomics should

be prioritized for their potential additive value allowing the

combination of the extracted imaging information for each

modality. Furthermore, as radiomics is naturally designed to

develop decision-support tools for precision medicine, it should

involve the combination of radiomic data with other patient

characteristics, as available, to increase the power of the decision-

support models (14). Zhou and co-authors showed improved

performance constructed similar prognostic Cox models, yet,

using the clinical data, MRI images, PET images, fused MRI/PET

images, and clinical variables and fused MRI/PET images in

combination (Harrell’s C-index 0.69, 0.73, 0.73 and 0.75, and

0.78, respectively) (23). Significant enhancement in the prediction

of conversion of the imaging models (MRI/PET/fused) compared

to clinical models was observed, and the combination of fused-

modality imaging and clinical variables resulted in the greatest

accuracy of prediction. According to the authors, the

combination of radiomic and Cox model analyses could be used
Frontiers in Nuclear Medicine 05
successfully in survival analysis and may be a powerful tool for

personalized precision medicine patients with the potential to

undergo conversion from MCI to AD (23).
4.2. Radiomics in Parkinson’s disease and
atypical parkinsonisms

In the last decade, radiomics techniques have been used in the

attempt to improve the assessment of key features of PD patients,

namely: PD diagnosis, the differential diagnosis between PD and

other parkinsonisms, severity assessment, and outcome prediction.

In this review, we summarize these attempts and evaluate their

potential and actual impact on PD patients’ management.

4.2.1. Clinical-Imaging correlation and disease
severity assessment

As the most urgent in clinical practice, the first application of

radiomics in nuclear medicine imaging of PD regarded the

possibility of effectively correlating imaging and clinical data

after diagnosis and initial clinical assessment.

Rahmim et al. analyzed cross-sectional data from Parkinson’s

Progressive Marker Initiative (PPMI) and found that striatal

dopamine transporter (DAT) single-photon emission computed

tomography (SPECT) textural features significantly correlated

with the cognitive and motor status of 85 PD patients (24).

Cognitive and motor performance were measured through

UPRDS (part III – motor) and Montreal Cognitive Assessment

(MoCA) scores, respectively. In this work, the most effective

textural metrics for clinical correlation were extracted from the

caudate by the most affected side. The authors discussed their

possible use for the early diagnosis of PD in subjects at increased

risk (e.g., mutation carriers or RBD patients).

Salmanpour et al. used cross-sectional and timeless data to

identify 3 distinct PD subtypes, defined as mild, intermediate,

and severe. In this research, non-imaging, conventional imaging

data and radiomics features were combined. Importantly, disease

clustering was robust to variations in features and sample size

(25). The inclusion of radiomics features (especially structural

features derived from MRI) was essential for cluster robustness.

4.2.2. Outcome prediction
Prompted by the previously cited paper from the same group, a

longitudinal investigation by Rahmim et al. found that radiomics

features from year-0 and year-1 DAT-SPECT images, together

with clinical data and conventional imaging features, contributed

to predicting the motor outcome of PD patients (26). In this

model, clinical variables (year-0 and year-1 UPDRS-III, the

unified Parkinson’s disease rating scale) were the most predictive,

but the addition of conventional imaging and radiomics features

allowed to reduce of the average absolute prediction error of the

year-4 UPDRS-III from 8 to 3 points.

The same attempt was made two years later, by using only year-

0 clinical and imaging data but using an artificial neural network

(ANN) to build a predictive model based on the radiomics

features extracted from basal ganglia DAT SPECT (27).
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Importantly, this study was performed on data extracted from the

same database (PPMI) as Rahmim et al. (26). The ANN reached

an accuracy of 75% in predicting year-4 UPDRS-III class (<30 vs.

≥30), with a clear benefit from the combination of imaging and

non-imaging (year-0 UPDRS-III) features to the model.

In recent work, Salmanpour et al. applied their clustering

approach to the outcome prediction problem, and divided PD

patients from PPMI database into 3 distinct progression trajectories

over a 4-years follow-up, based on the motor, and non-motor

clinical features, and radiomics features (28). The authors also used

clinical and imaging features to build a model for the prediction of

the disease trajectory, reaching an accuracy of 79%. In trajectory I

(35% of patients), the disease was stable for the whole follow-up

duration; in trajectory II (27%), patients underwent a clinical-

imaging improvement for the first 2 years and then worsened to

severe disease at 4 years; in trajectory 3 (38%), patients showed a

monophasic worsening throughout the follow-up. Importantly, the

consistency of the three cross-sectional disease subtypes described

in previous work was observed at each timepoint in the follow-up

(25). While these clusters remained distinct, longitudinal trajectories

allowed patients to move across PD subtypes through time.

Considering this finding, timeless disease subtyping can be seen as

a multidimensional phenotypic description, which is not necessarily

correlated to longitudinal progression.

4.2.3. Diagnosis and early differentiation from
atypical Parkinsonisms

[18F]FDG-PET radiomics was first tested for the diagnosis of

PD vs. HC by Wu et al. (29). They found that, in multiple ROIs,

features like LGZE (low gray-level zone emphasis), skewness (a

measure of asymmetry) and LRHGE (long-run high gray-level

emphasis) were predictive of PD diagnosis with an overall

accuracy of 88%. Notably, some of these features were also

significantly correlated with UPDRS (part III) and uptake values

in the ROIs. Recently, Comte et al. used textural features from

FDOPA PET to predict dopaminergic denervation (30).

Conventional imaging features performed poorly, but the textural

features allowed the model to reach an accuracy of 95.83%.

Notably, no model was built here for subtyping the

dopaminergic denervation into PD/ atypical-parkinsonisms.

Shiiba et al. compared DAT-SPECT conventional features and a

radiomics signature for the classification of 413 PPMI patients

into PD or HC (31). Radiomics signature included features

mostly from putamen and pallidum and was up to 96.8%

accurate in the discrimination of PD patients. Nevertheless, it

failed to outperform the conventional striatal uptake ratio (SUR).

Although automated image-based classification methods have

been investigated for more than a decade in the differential

diagnosis of PD and atypical parkinsonism, the first radiomics-

based approach to this problem was by Hu et al. (32). Here, a

combined clinical and [18F]FDG PET/MRI model with imaging

features from PET, T1- and susceptibility-weighted imaging

reached an accuracy of 96.3% in the differential diagnosis

between PD and multiple system atrophy (MSA).

In a study with DAT PET, Zhao et al., found differences in

basal ganglia relative binding ratios among patients with different
Frontiers in Nuclear Medicine 06
parkinsonisms but failed to demonstrate differences between PD

and MSA (33). Despite the authors extracting conventional

radiomics features which were significantly different among

atypical parkinsonisms no predictive model was built for the

differential diagnosis, because the study was centered on deep

learning-based applications.
5. Comparative model performance

The model comparison is commonly used in radiomics studies

to compare the explanatory power of two or more models, with

the goal of identifying the model that best explains the variance.

Comparison of the classification and prediction performance

usually achieved by constructing different single- and/or multiple

modality models including clinical, conventional imaging,

radiomics and other available parameters. It has been shown that

radiomics-based models regularly overperform conventional SUVr-

based regional models (20, 21, 31), as well as single clinical

models that usually incorporate age, gender, education, Mini-

Mental State Examination (MMSE), MoCA, UPDRS (for PD) and

APOE ϵ4 genotype (14, 18, 23, 24, 27). The growing evidence

suggests that the best performance is achieved with combined

models using clinical, conventional imaging (MRI-based, DAT-

SPECT and SUVr PET-based models) and radiomics parameters

in comparison to single-modality models (14, 18, 23), which is

foreseeable, as a model with more parameters will almost always

explain slightly more variance than a model with less parameters.
6. Conclusions

Despite limited evidence with relatively small cohort studies, it

seems that radiomics-based analysis using nuclear medicine tools

can be used for computer-aided diagnoses in AD-continuum and

parkinsonian disorders. Combining radiomics analysis with

clinical factors and introducing a multimodality approach can

significantly improve classification efficiency leading to potential

applications of radiomics-based early diagnosis of preclinical AD,

prediction of MCI to AD conversion, assessing disease severity

and early differentiation of different parkinsonian disorders.
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