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In this article, we introduce parallelproj, a novel open-source framework
designed for efficient parallel computation of projections in tomography
leveraging either multiple CPU cores or GPUs. This framework efficiently
implements forward and back projection functions for both sinogram and
listmode data, utilizing Joseph’s method, which is further extended to
encompass time-of-flight (TOF) PET projections. Our evaluation involves a
series of tests focusing on PET image reconstruction using data sourced
from a state-of-the-art clinical PET/CT system. We thoroughly benchmark
the performance of the projectors in non-TOF and TOF, sinogram, and
listmode employing multi CPU-cores, hybrid CPU/GPU, and exclusive GPU
mode. Moreover, we also investigate the timing of non-TOF sinogram
projections calculated in STIR (Software for Tomographic Image
Reconstruction) which recently integrated parallelproj as one of its
projection backends. Our results indicate that the exclusive GPU mode
provides acceleration factors between 25 and 68 relative to the multi-CPU-
core mode. Furthermore, we demonstrate that OSEM listmode
reconstruction of state-of-the-art real-world PET data sets is achievable
within a few seconds using a single consumer GPU.
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1 Introduction

For tomographic imaging techniques used in medicine, such as X-ray computed

tomography (CT), positron emission tomography (PET) and single photon emission

tomography (SPECT), image reconstruction results are usually expected within

seconds or minutes after data acquisition, creating a severe computational challenge

when reconstructing data from state-of-the-art systems using iterative algorithms (1).

With new scanner generations, this challenge is steadily growing, since (i) the data

size is increasing due to higher resolution detectors and scanners with bigger field of

view (2), and (ii) more advanced (iterative) reconstruction algorithms are being used

that try to exploit more information from the acquired data, which usually

necessitates the calculation of a huge amount of projections. An example of the latter

is the data-driven motion correction in PET (3) where, instead of reconstructing a

single “static frame”, many very short time frames are reconstructed and subsequently

used for motion estimation and correction. Another example for (ii) is the

combination of deep learning and tomographic image reconstruction (4–6), using,

e.g., unrolled networks, where during training a tremendous number of projections
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also have to be calculated to evaluate the gradient of the data

fidelity term across a mini batch in every training epoch.

For most tomographic image reconstruction algorithms, the

bottleneck in terms of computation time is the evaluation of a

linear forward model that describes the physics of the data

acquisition process. In CT, and PET, the forward model includes

the computation of many (weighted) line or volume integrals

through an image volume, commonly called “projections” -

which can be slow when executed on a single processor.

Fortunately, for most reconstruction algorithms, the computation

of projections can be executed in parallel on multiple processors,

e.g., using multiple CPU-cores or one or more graphics

processing units (GPUs). Note that the parallel evaluation of the

adjoint of the forward model - commonly called “back

projection” - is more demanding, since race conditions, where

multiple threads/processes need to update the same memory

location, can occur. In recent decades, the use of GPUs for faster

calculation of projections in tomographic imaging has been

studied extensively; see, e.g., (7–22) or the reviews (1, 23) for the

use of GPUs in PET reconstruction. All of these articles conclude

that the time needed to calculate forward and back projections

on state-of-the-art GPUs is usually much shorter compared to

using multiple CPU-cores.

Motivated by these findings and the recent availability of very

powerful low- and high-level GPU programming frameworks such

as CUDA and cupy (24), we developed a new open source research

framework, called parallelproj, for fast calculations of forward

and back projections in tomographic image reconstruction.

The objectives of the parallelproj framework are

as follows:

• To provide an open-source framework for fast parallel calculation

of time-of-flight (TOF) as well as non-TOF projections suited for

tomographic image reconstruction in sinogram as well as

listmode using multiple CPU-cores or GPUs.

• To provide an accessible framework that can be easily installed

without the need for compilation of source code on all major

operating systems (Linux, Windows, and macOS).

• To provide a framework that can be efficiently used in

conjunction with pytorch (25) GPU arrays to facilitate

research on tomographic imaging methods, including

deep learning.

In light of the absence of an open-source framework that fully

meets these criteria at the time of writing, this article introduces

the new parallelproj framework and is structured as

follows: We first review Joseph’s method for calculating

projections, followed by a short overview of the design choices

and implementation of parallelproj. Subsequently, we

report the results of a few benchmark tests related to image

reconstruction in PET with and without TOF information using

sinograms or listmode (LM) before ending the article with a

detailed discussion and conclusion. In this article, we focus on

the performance of parallelproj projectors for non-TOF

and TOF PET reconstruction problems. Note, however, that

the non-TOF Joseph projectors could also be used in

iterative CT reconstruction.
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2 Materials and methods

2.1 Joseph’s method for projecting rays
through voxel images

Besides Siddon’s method (26), Wu’s method (27) and the

distance-drive method (28), Joseph’s method (29) is a very

efficient and popular way to calculate projections in

transmission and emission tomography. Rahmin et al. (30) have

shown that while being only 20% slower than Siddon’s method,

Joseph’s method leads to superior image quality in listmode

PET reconstructions. The basic idea of the original Joseph

method for calculating line integrals, which can be used to

model non-TOF projections, is shown in Figure 1. For a given

ray, the algorithm first determines the principal direction in the

image that is most parallel to the ray and then steps through

the image volume plane by plane along this principal direction.

In every plane, the intersection point between the ray and

the plane is calculated and the contribution of the image at

that point to the line integral is approximated using bi-linear

interpolation of the four nearest neighbors around the

intersection point. In other words, only the four nearest

neighboring voxels are contributing to the line integral and

their contributions are given by the bi-linear interpolation

weights. Finally, the contributions of all planes are added

and corrected for the incidence angle of the ray, see (29) for

more details.

An extension of the original Joseph method to calculate TOF-

weighted projections is straightforward. For every voxel

contributing to the line integral and every TOF bin along the

ray, a TOF weight can be computed by evaluating a TOF kernel

that is a function of the Euclidean distance between the voxel

and the center of the TOF bin. The TOF kernel can be e.g.,

modeled as a Gaussian kernel - representing the TOF uncertainty

of the detection system - convolved with a rectangular function -

representing the width of the TOF bin, resulting in the

evaluation of the difference of two error functions.
2.2 Design principles and implementation
details

The application programming interface (API) to the

parallelproj framework was designed such that:

• The input to the low-level projector functions are as generic as

possible. In practice, that means that these functions take a list

of coordinates representing the start and end point of the rays

to be projected as input, making the low-level functions

agnostic to specific scanner geometries (or symmetries). Thus,

any scanner geometry can be modeled.

• Projections can be performed in non-TOF or TOF mode.

• In the TOF mode, optimized projections for sinogram and

listmode are available. In the former, the contributions to all

available TOF bins along a ray are computed while traversing

the image volume plane by plane, whereas in the latter only
frontiersin.org
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FIGURE 1

Illustration of Joseph’s method for projecting rays through voxel images. In a ray-driven approach, the image volume is traversed plane by plane along
a principal direction. At every plane, the intersection point between the ray and image plane is calculated (orange dot). The contribution of the four
nearest voxels (gray dots) to the line integral is modeled using bi-linear interpolation weights. The method can also be easily extended to compute
TOF-weighted projections using a subdivision of the ray into TOF bins and by evaluation of a TOF kernel. See text and (29) for more details. Figure not
drawn to scale.

1The CUDA version of the parallelproj library is not available for macOS.
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the contribution to one specific TOF bin (the TOF bin of a given

listmode event) is evaluated.

• The back projections are the exact adjoint of the forward

projections (matched forward and back projections).

Parallelization across multiple processors was implemented in two

different ways. To enable parallelization across multiple CPUs, a

first version of the parallelproj library was implemented

using C and OpenMP (31) (libparalleproj_c).

Furthermore, the exact same projector functions were

implemented in CUDA to enable parallelization on one or

multiple GPUs (libparalleproj_cuda). In the CUDA

version, the input data is first transferred from the host to all

available GPU(s) followed by the parallel execution of the

projection kernels. After the kernel execution, the result is

transferred back to the host. To handle race conditions,

all implementations use atomic add operations in the

back projections.

2.3 Availability of source code and
precompiled libraries

parallelproj is an open-source project and its source

code is available at https://github.com/gschramm/parallelproj

under an MIT license. In addition to the sources, we also offer

precompiled libraries (libparallelproj_c and

libparallelproj_cuda) for all major operating systems

(Linux, Windows, and macOS) and various recent CUDA
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versions using the conda-forge package manager.1

Depending on the presence or absence of supported CUDA

devices and drivers, conda-forge automatically installs the

matching library type. In addition to the precompiled libraries,

the parallelproj package also includes the source file of the

CUDA projection kernels such that they can be directly executed

on GPU arrays using frameworks that allow for just-in-time

compilation of CUDA kernels such as, e.g., cupy (24). Moreover,

parallelproj also includes a minimal python interface to all

projection functions that is compatible with the Python array

API standard, enabling efficient projections and back projections

of various compatible array classes (e.g., numpy, cupy,

pytorch tensors).
2.4 parallelproj computation modes

Using the two aforementioned projection libraries, as well as

the CUDA projections kernels, projections can be performed in

the following three different computation modes:

1. CPU mode: Forward and back projections of image volumes

(arrays) stored on the host (CPU) can be performed using
frontiersin.org
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libparallelproj_c where parallelization across all

available CPU cores is performed using OpenMP.

2. hybrid CPU/GPU mode: Forward and back projections

of image volumes (arrays) stored on the host can be

performed using libparallelproj_cuda involving

data transfer from the host to all available GPUs, execution

of projection kernels on the GPUs, and transfer of the

results back to the host.

3. direct GPU mode: Forward and back projections of image

volumes (arrays) stored on a GPU can be performed by

direct execution of the projection kernels using a framework

that supports just-in-time compilation of CUDA kernels, such

as cupy (24). In contrast to the hybrid CPU/GPU mode,

memory transfer between host and GPU is avoided.2

2.5 Integration of parallelproj into STIR

Software for Tomographic Image Reconstruction (STIR) is

open-source software for PET and SPECT reconstruction (32,

33). It is a well-established tool for research in scanner modeling

and iterative reconstruction methods. Its modular design in C++

allows integrating external components such as projectors. We

integrated parallelproj into STIR since version 5.0 as a

user-selectable projector such that STIR users can benefit from

the high performance of the parallelproj. STIR’s conda-

forge recipe depends on parallelproj and therefore

installs the GPU or CPU version accordingly. Moreover, as STIR

forms the basis for the PET and SPECT support in the

open-source Synergistic Image Reconstruction Framework (SIRF)

(34), this was modified to allow calling parallelproj from

SIRF as well, making parallelproj usable for SIRF’s advanced

algorithms, including motion correction (35).

STIR uses parallelproj if the latter’s libraries are

found by CMake at compilation time. Currently, STIR

always uses libparallelproj_cuda if present and

libparallelproj_c otherwise. As parallelproj needs

the end-points of the lines of responses, these are computed by

the STIR interface based on its normal modeling of scanner

geometry, defaulting to cylindrical scanners, but recently also

accommodating block-cylindrical and arbitrary crystal locations.

These computations are performed once at set-up time, and end-

points are stored in std::vectors suitable for passing to the

low-level routines of parallelproj. Since STIR 5.2, these

arrays are filled in parallel using OpenMP, reducing the set-up

time. However, this set-up time is not included in the timings

below.

As STIR’s data-structures store sinograms and images in CPU

memory, this interface uses the hybrid CPU/GPU mode of

parallelproj. STIR’s design for projectors is optimized for

low-memory requirements, projecting only small chunks of
2A requirement for the use of the direct GPU mode is the presence of

enough GPU memory to store the input/output images and projections.
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sinogram data at the time, using OpenMP or the Message

Passing Interface3 (MPI) for non-shared memory architectures.

GPU computations however have best performance on larger

data-sets. Therefore, the current implementation uses temporary

objects to store the result of the forward projection, and data is

then copied as necessary. This is similar to the previous

integration of NiftyPET (19) into STIR. This creates an extra

(small) overhead, which could be avoided in the future.

At the time of writing, neither the TOF nor listmode projectors

of parallelproj have been integrated into STIR. We hope to

complete this in the near future.
2.6 Benchmark tests

To evaluate the performance of the parallelproj

projectors using the computation modes described above, we

implemented a series of benchmark tests. All tests are related to

a PET image reconstruction task and used the geometry and

properties of a state-of-the-art GE Discovery MI TOF PET/CT

scanner (36) with 20 cm axial FOV. This scanner has 36 detector

“rings”, where each “ring” has a radius of 380 mm and consists

of 34 modules containing 16 detectors each such that there are

16� 34� 36 ¼ 19,584 detectors in total. A non-TOF emission

sinogram for this scanner without any data size reduction (“span

1”) has 415 radial elements, 272 views, and 1,292 planes,

meaning that for a full non-TOF sinogram projection,

415� 272� 1,292 ¼ 146� 106 line integrals have to be

evaluated. For TOF data, each line of response (LOR) is

subdivided into 29 TOF bins using a TOF bin width of 169 ps

(25.4 mm). The reported TOF resolution of the scanner is 385 ps

(57.7 mm) FWHM (36). In the TOF projectors of

parallelproj, the Gaussian TOF kernel is truncated beyond

+3 standard deviations.

To evaluate the performance of parallelproj for

projections in sinogram mode, we measured the time needed for

a forward and back projection of a span 1 subset sinogram

containing 8 equally spaced views in non-TOF and TOF mode.

This is equivalent to the projection work required for an OSEM

subset update (37–39) using 34 subsets in total, a setting that is

used in many clinical reconstructions. Since it is known that the

in-memory data order severely affects the computation time,

especially on CUDA devices, we varied the order of the spatial

axis of the sinogram, as well as the order of the image axis

relative to the axial direction of the scanner (symmetry axis

mode). In the sinogram order mode “PVR”, the radial direction

increased the fastest and the plane direction increased the slowest

in memory. For the sinogram order mode “VRP”, the plane

direction increased the fastest and the view direction the slowest.

By varying the order of the image axis, we could test the impact
3https://www.mpi-forum.org/docs/mpi-4.0/mpi40-report.pdf.
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of different image volume memory layouts. For example, the

symmetry axis mode “2” meant that the image volume memory

increased the fastest in the axial direction of the scanner, while “0”

or “1” meant that one of the transaxial directions increased the

fastest. To test the integration of parallelproj projection

libraries into STIR, the same non-TOF projection benchmarks tests

were repeated using the timing tool included in STIR version 5.2.

These tests were only performed in the hybrid CPU/GPU mode,

since the exclusive GPU mode is currently not available in STIR.

Note that the current STIR integration uses the “PVR” and “2”

symmetry axis mode. Finally, we also compared the performance of

the parallelproj projectors in pure GPU and hybrid CPU/

GPU mode with the performance of the GPU projectors included in

the NiftyPET python package v2.0.0 (40) using a complete

forward and back projections of non-TOF sinograms of the Siemens

mMR (41). Since NiftyPET uses a span 11 sinogram, and

parallelproj so far only supports span 1 sinograms, we artificially

limited the maximal ring difference in this parallelproj test to 7 to

obtain a sinogram with approximately the same number of planes

(NiftyPET sinogram 837 planes, parallelproj sinogram 904 planes).

In all cases, an image of shape (344, 344, 127) with a voxel size of

(2.08 mm, 2.08 mm, 2.03 mm) was used.

In addition to the sinogram projection tests, we also evaluated

the performance of parallelproj for non-TOF and TOF

projections in listmode as a function of the number of acquired

listmode events. Instead of randomly generating the event

coordinates, listmode events from an acquisition of a NEMA

image quality phantom were used, which guaranteed a more

realistic event distribution. In contrast to the projections in

sinogram mode, where the ray directions and memory access are

somehow ordered, they are random for unsorted listmode data.

Similarly to the sinogram tests, the symmetry axis of the scanner

was also varied. For all sinogram and listmode projection

benchmarks, the coordinates of all LOR start and endpoints were

precalculated such that the overhead of calculating the LOR

coordinates was not included in these tests. All benchmarks were

repeated 10 times and the mean and standard deviation of the

results were calculated and visualized.

Finally, we also measured the time needed for a complete

listmode OSEM iteration using 34 subsets as a function of the

number of listmode events in the NEMA acquisition. The raw

listmode data, including 40 million prompt events, as well as all

quantitative corrections needed for reconstruction of the NEMA

phantom acquisition are available online at https://doi.org/10.

5281/zenodo.8404015.

All tests used an image of size (215, 215, 71), an isotropic voxel

size of 2.78 mm, and were performed on a workstation including an

AMD Ryzen Threadripper PRO 3955WX 16 core 32 thread CPU

with 256 GB RAM, and an NVIDIA GeForce RTX 3,090 GPU

with 24 GB RAM on Ubuntu 22.04 LTS using CUDA v11.2 and

parallelproj v1.5.0. Note that parallelproj’s projectors

also support non-isotropic voxel sizes. The scanner geometry, as

well as the list mode OSEM algorithm, was implemented in a

minimal proof-of-concept Python package available at https://

github.com/gschramm/parallelproj-benchmarks, except for the

STIR benchmark, where STIR’s normal geometric modelling was
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used. For the CPU and hybrid CPU/GPU mode, Python’s

ctypes module is used to project numpy arrays stored in CPU

(host) memory using a minimal interface to the low-level

projection functions defined in libparallelproj_c and

libparallelproj_cuda. In GPU mode, the CUDA

projection kernels were just-in-time compiled and directly

executed on cupy GPU arrays. Due to the interoperability

between numpy and cupy the same high-level listmode OSEM

implementation could be used for both modes. Note that in the

latter, all operations needed for the OSEM update were executed

directly on the cupy GPU arrays, eliminating any memory

transfer between the host and the GPU during OSEM updates.

In all listmode OSEM reconstructions, a shift-invariant image-

based resolution model was used, including a 3D isotropic

Gaussian kernel of 4.5 mm FWHM.
3 Results

Figures 2 and 3 show the results of the sinogram benchmarks

in non-TOF and TOF mode, respectively. In non-TOF mode, the

best results in terms of the summed time needed for the forward

and back projection of one subset sinogram were (compute

mode, sinogram order mode, scanner symmetry axis) 1.71 s for

(CPU, PVR, 0), 0.078 s for (hybrid CPU / GPU, VRP, 2) and

0.025 s for (GPU, RVP, 2), meaning that the pure GPU mode

was approximately 68x faster than the CPU mode and 3.1x faster

than the hybrid mode. Benchmarking the timing of the same

projections using paralleproj integrated into STIR using the

hybrid CPU/GPU mode revealed very similar performance -

0.051 s for forward projection and 0.169 s for back projection -

as compared to the corresponding results shown in the middle

row of Figure 2.

Table 1 shows the timing results for the forward and back

projection of a non-TOF sinogram of the Siemens mMR and

demonstrates that the timing performance of parallelproj

in both GPU compute modes is slightly superior to the

NiftyPET’s GPU projector.

In TOF mode, the corresponding results were 13.88 s for (CPU,

PVR, 1), 0.45 s for (hybrid CPU/GPU, RVP, 2), and 0.21 s for

(GPU, RVP, 2), which means that the pure GPU mode was

approximately 66� faster than the CPU mode and 2.1� faster

than the hybrid mode. As expected, especially for the back

projections where atomic operations are used, the memory order

in the sinogram as well as in the image has a substantial impact

on the results. The ratios between the fastest and slowest results

for the combined projection times in terms of sinogram order

and symmetry axis (non-TOF, TOF mode) were (2.3, 1.4) in the

CPU mode, (3.1, 2.0) in the hybrid mode, and (7.6, 3.6) in the

GPU mode.

Figures 4 and 5 show the results of the listmode benchmarks in

non-TOF and TOF mode, respectively. For 40� 106 events, the

best results in terms of time needed for the forward and back

projection (non-TOF, TOF) were (36.3 s, 13.9 s) in CPU mode,

(4.19 s, 0.94 s) in hybrid mode and (3.91 s, 0.56 s) in GPU mode.

For 1:25� 106 events, the best results in terms of time needed
frontiersin.org
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FIGURE 2

Results of the non-TOF sinogram benchmark tests. The non-TOF subset sinogram contained 415 radial elements, 8 views and 1,292 planes (1 out of
34 subsets). The image used in these tests contained (215, 215, 71) voxels with an isotropic voxel size of 2.78mm. The mean and the standard deviation
estimated from 10 runs are represented by the colored bars and the black error bars, respectively. Note the different limits on the y axes. The top,
middle, and bottom row show the results for (multi-core) CPU, hybrid CPU/GPU and pure GPU mode, respectively. The left, middle, and right
columns show the timing results for forward, back and combined forward and back projections, respectively. For comparison, the time needed to
calculate the same forward and back projection using the parallelproj projectors in hybrid CPU/GPU mode integrated into STIR was 0.051 s
and 0.169 s, respectively (see text).

Schramm and Thielemans 10.3389/fnume.2023.1324562
for the forward and back projection (non-TOF, TOF) were

(1.13 s, 0.45 s) in CPU mode, (0.13 s, 0.035 s) in hybrid mode,

and (0.1 s, 0.017 s) in GPU mode. In non-TOF mode, the pure

GPU mode was approximately 9.3� faster than the CPU mode

and 1.3� faster than the hybrid mode. In TOF mode, the pure

GPU mode was approximately 24.8� faster than the CPU mode

and 1.7� faster than the hybrid mode. In contrast to the

sinogram benchmark results, the impact of the scanner symmetry

axis direction was small. In the CPU and GPU mode, the
Frontiers in Nuclear Medicine 06
increase in projection time as a function of the number of

list-mode events was almost perfectly linear. In hybrid mode at

low number of events, the scaling was non linear due to the

overhead caused by the time needed for memory transfer.

Figure 6 shows the results for the timing of a complete TOF

listmode OSEM iteration, including 34 subset updates, as well as

a reconstruction of the NEMA image quality phantom data set

using 40� 106 total prompt events. The best results for

(40� 106, 1:25� 106) events were (23.82 s, 4.47 s) in CPU mode,
frontiersin.org
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FIGURE 3

Same as Figure 2 for the results of the TOF sinogram benchmark tests. The TOF subset sinogram contained 415 radial elements, 8 views, 1,292 planes
and 29 TOF bins with a width of 169 ps. The modeled TOF resolution was 375 ps.

TABLE 1 Timing results for the forward and back projection of a non-TOF
sinogram of the Siemens mMR using parallelproj’s GPU and hybrid CPU/
GPU mode, as well as NiftyPET’s projectors. See text for details.

projector t forward (s) t back (s)
parallelproj GPU mode 0.21 0.43

parallelproj hybrid CPU/GPU mode 0.62 0.95

NiftyPET 0.68 1.56

Schramm and Thielemans 10.3389/fnume.2023.1324562
(9.17 s, 3.97 s) in hybrid mode, and (0.60 s, 0.057 s) in GPU mode,

which means that for 40� 106 events the pure GPU mode was

approximately 40x faster than the CPU mode and 15� faster

than the hybrid mode.
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4 Discussion

All results shown in our article demonstrate once more

that parallel computation of forward and back projections

using a state-of-the-art GPU is substantially faster compared

to parallelization using OpenMP on a state-of-the-art

multicore CPU system. Certainly, the achievable GPU

acceleration factor strongly depends on the computational

problem itself (e.g., sinogram or listmode reconstruction) and

the problem size. In our non-TOF and TOF sinogram and

listmode benchmark tests, we observed GPU acceleration

factors between 25 and 68.
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FIGURE 4

Same as Figure 2 for results of the non-TOF listmode benchmark tests for different number of listmode events. Note the different limits on the y axes
and that the x-axis scale is non-linear.
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One important aspect that emerged fromour sinogrambenchmark

tests - where the projection data and memory access is ordered - is the

fact that the projection times varied substantially when using different

memory layouts (up to a factor of 7.6 in the GPU mode). This can be

understood by taking into account that the amount of race conditions

that are created during the back projectionwithin a thread block heavily

depends on the order and possible intersections of rays to be projected

within that block. Note that in pure GPU mode, the time needed for

sinogram forward projections also varied substantially across the

different memory layouts, which is probably due to the way image

memory is accessed and cached on CUDA GPUs.

Another interesting observation is the fact that in all compute

modes the time needed to calculate TOF sinogram projections was
Frontiers in Nuclear Medicine 08
much longer than the times needed to calculate non-TOF sinogram

projections, whereas the situation was reversed in listmode. For

TOF sinogram projections, more floating point operations have to

be computed compared to non-TOF sinogram projections due to

the evaluations of the TOF kernels between the contributing voxels

and a number of TOF bins. In listmode, however, the

computational work needed to project a TOF event is much lower

compared to projecting a non-TOF event. This is the case because

a TOF listmode event detected in a specific TOF bin is only

affected by a few voxels along the complete LOR in the image,

where the number of affected voxels is inversely proportional to the

TOF resolution of the scanner. That in turn means that with

scanner TOF resolutions becoming better and better, the gap
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FIGURE 5

Same as Figure 2 for results of the TOF listmode benchmark tests for different number of listmode events. Note the different limits on the y axes and
that the x-axis scale is non-linear.
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between the TOF projection times in sinogram and listmode will

become bigger and bigger, strongly favoring listmode processing.

According to our experience, projection times in listmode are

already much faster for most standard clinical acquisitions (except

for very long static brain scans with high affinity tracers) on

current PET systems with TOF resolutions between 250–400 ps.4

Extrapolating the timing results of one complete OSEM listmode
4An alternative way to further accelerate sinogram-based reconstructions is

the use of dedicated sinogram rebinning techniques.
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iteration of an acquisition with 40� 106 counts in Figure 6, clinical

listmode OSEM reconstructions of a single bed position of a

standard static FDG whole-body acquisition using PET scanner

with 20–25 cm axial FOV seem to be possible in a couple of

seconds and could even be faster than the acquisition time.5
5This is obviously only true if all other necessary corrections, such as scatter

estimation, can be performed very quickly as well. For PET scanners with a

very long axial field of view (much higher sensitivity), the reconstruction

times could be substantially longer.
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FIGURE 6

(top) Results for the timing of a complete LM OSEM iteration including 34 subset updates for the NEMA image quality phantom acquisition. The image
used in these tests contained (215, 215, 71) voxels with an isotropic voxel size of 2.78mm. The mean and the standard deviation estimated from 6
iterations are represented by the colored bars and the black error bars, respectively. Note the different limits on the y axes and that the x-axis
scale is non-linear. (bottom) Transaxial and coronal slice of a listmode OSEM reconstruction of the NEMA image quality phantom with 40� 106

events after 6 iterations with 34 subsets using a standard Gaussian post filter of 4mm FWHM. Note that for better visibility, the reconstructed
image was cropped to the center portion of the transaxial FOV.
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A somewhat unexpected result was the fact that the gap in

the TOF projection times between hybrid CPU/GPU and pure

GPU mode was much bigger when timing the execution of a

complete listmode OSEM iteration compared to the pure

projection benchmark test when reconstruction 40� 106

counts (approximately a factor of 15 vs. a factor of 1.7,

respectively). After detailed profiling of a listmode OSEM

iteration in hybrid mode, it became obvious that the total time

spent for the 34 subset listmode forward and back projections

(ca. 1.2 s) was short compared to the time needed to calculate

all other operations necessary for the OSEM update. Profiling

revealed that calculating all 68 Gaussian convolutions needed

for image-based resolution modeling - performed on the

CPU in hybrid compute mode - took approximately 2.3 s.

An interesting lesson to be learned is that once very fast

GPU-based projectors are used, it should always be double-

checked whether other computational steps of any algorithm

become new bottlenecks.

A natural prerequisite for running sinogram OSEM

reconstruction is the availability of enough GPU memory to

store the complete image volume, the emission sinogram, the
Frontiers in Nuclear Medicine 10
forward projection and the contamination sinogram. For TOF

PET scanners with an 25 cm axial FOV and 400 ps TOF

resolution, this means that ca. 40–50 GB of GPU memory is

required, which is available on state-of-the art server GPUs but

can be challenging for consumer GPUs. Morever, these

memory requirements increase even further for PET systems

with longer axial FOV and better TOF resolution. Note,

however, that for systems with state-of-the-art TOF resolution,

the memory requirements can be severely reduced

when running OSEM in listmode. Moreover, the hybrid CPU/

GPU mode of parallelproj allows “chunk-wise”

calculations of projections and supports the use of multiple

GPUs to be able to reconstruct sinogram data from long axial

FOV PET systems.

An important limitation of our study is the fact that we only

implemented and benchmarked Joseph’s projection method.

Compared to other methods such as the distance-driven method,

multiray models, or tube-of-response models, Joseph’s method is

inherently faster. Consequently, projection times are expected to

be somewhat slower for more advanced projectors, but a detailed

investigation of more advanced projectors is beyond the scope of
frontiersin.org
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this work and left for future research.6 Note, however, that

according to our experience, combining Joseph’s method with an

image-based and/or sinogram-based resolution model can

produce high-quality PET reconstructions.

Without a doubt, it is possible to further optimize the

implementation of the parallelproj projectors, especially

the CUDA implementation. As an example, we have decided not

to use CUDA’s texture memory, which could substantially

accelerate the image interpolations needed in the Joseph

forward projections, or be used to interpolate TOF kernel

values based on a 1D lookup table which would also allow the

use of non-Gaussian TOF kernels (42). The main reason for not

using texture memory is the fact that it would only accelerate

the forward projections since writing into texture memory is

not possible and because reconstruction times are usually

dominated by the back projections. Another way to further

improve the listmode projection times is to pre-sort the

listmode events to minimize race conditions during back

projection, as e.g., shown in (10, 43).

The design of parallelproj allows it to be integrated into

other reconstruction platforms, as illustrated here for STIR.

However, for optimal performance, a re-design of the

reconstruction platform might be required, as noted in Section

2.5. As shown in this paper, avoiding the overhead of copying

data between CPU and GPU memory can have a substantial

impact. In C++, this could be avoided by using CUDA managed

pointers, for instance via the CuVec library.7 However, best

performance requires implementing most operations such as

numerical algebra and filtering directly in CUDA, as illustrated

in this paper.

It is noteworthy that the current implementation of

parallelproj’s Joseph projectors using arrays of LOR start

and end coordinates is optimized towards (arbitrary) PET

geometries. To calculate projections for reconstructing CT data

acquired with a single moving source and a moving detector

panel, more efficient implementations exploiting the known

geometry between source and detector panel are possible.

Last but not least, it is worth highlighting that the python

interface of parallelproj is compatible with the Python array

API standard, enabling efficient projections and back projections

of various compatible array classes (e.g., numpy CPU arrays,

cupy GPU arrays, pytorch CPU and GPU tensors). This

allows for a seamless integration of parallelproj into deep

learning frameworks such as pytorch (25) for the development of

neural networks including forward and back projection layers such

as unrolled variational networks (44, 45).
6Since parallelproj is an open-source project, contributions of or

discussions on more advanced projectors from the reconstruction

community are more than welcome.
7https://amypad.github.io/CuVec.
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5 Conclusion

parallelproj is an open-source and easy accessible research

framework for efficient calculation of non-TOF and TOF projections

in sinogram or listmode on multiple CPUs or state-of-the-art CUDA

GPUs. Conventional and advanced research reconstructions

(including deep learning) can be substantially accelerated by using

the hybrid and pure GPU compute modes of this framework.
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