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Background: Visual interpretation of PET and CMR may fail to identify cardiac
sarcoidosis (CS) with high specificity. This study aimed to evaluate the role of
[18F]FDG PET and late gadolinium enhancement (LGE)-CMR radiomic features
in differentiating CS from another cause of myocardial inflammation, in this
case patients with cardiac-related clinical symptoms following COVID-19.
Methods: [18F]FDG PET and LGE-CMR were treated separately in this work. There
were 35 post-COVID-19 (PC) and 40 CS datasets. Regions of interest were
delineated manually around the entire left ventricle for the PET and LGE-CMR
datasets. Radiomic features were then extracted. The ability of individual
features to correctly identify image data as CS or PC was tested to predict the
clinical classification of CS vs. PC using Mann–Whitney U-tests and logistic
regression. Features were retained if the P-value was <0.00053, the AUC was
>0.5, and the accuracy was >0.7. After applying the correlation test,
uncorrelated features were used as a signature ( joint features) to train machine
learning classifiers. For LGE-CMR analysis, to further improve the results,
different classifiers were used for individual features besides logistic regression,
and the results of individual features of each classifier were screened to create
a signature that included all features that followed the previously mentioned
criteria and used it them as input for machine learning classifiers.
Results: The Mann–Whitney U-tests and logistic regression were trained on
individual features to build a collection of features. For [18F]FDG PET analysis,
the maximum target-to-background ratio (TBRmax) showed a high area under
the curve (AUC) and accuracy with small P-values (<0.00053), but the
signature performed better (AUC 0.98 and accuracy 0.91). For LGE-CMR
analysis, the Gray Level Dependence Matrix (gldm)-Dependence Non-
Uniformity showed good results with small error bars (accuracy 0.75 and AUC
0.87). However, by applying a Support Vector Machine classifier to individual
LGE-CMR features and creating a signature, a Random Forest classifier
displayed better AUC and accuracy (0.91 and 0.84, respectively).
Conclusion: Using radiomic features may prove useful in identifying individuals
with CS. Some features showed promising results in differentiating between PC
and CS. By automating the analysis, the patient management process can be
accelerated and improved.
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1 Introduction

Cardiac sarcoidosis (CS) is a granulomatous inflammatory

disease that can be diagnosed with [18F]-fluorodeoxyglucose

positron emission tomography ([18F]FDG PET). [18F]FDG PET

is performed in suspected CS due to the avid uptake of glucose

by the active inflammation cells in sarcoid granulomas. It is

recommended that a low-carbohydrate, high-fat diet followed by

fasting be used to inhibit the physiologic glucose metabolism of

the heart to enable diagnostic imaging. Moreover, a cardiac PET

with abnormal [18F]FDG uptake on suppressed myocardial

uptake is crucial to CS diagnosis (1). A PET image can also be

used to quantify inflammation in addition to a visual review.

Several metrics exist to describe the intensity and heterogeneity

of [18F]FDG uptake. PET is less specific for CS when there is no

extracardiac uptake (2). In addition, it is critical to note that

approximately 25% of cardiac PET studies fail due to the

inadequate suppression of physiologic glucose uptake (3).

Conversely, cardiovascular magnetic resonance (CMR) is a

non-invasive imaging technique that plays a significant role in

diagnosing or screening patients with CS. It can detect scar tissue

that may indicate inactive CS (4). Myocardial scarring can be

evaluated using late gadolinium enhancement (LGE) imaging.

Gadolinium is an extracellular contrast agent that exhibits a slow

washout in fibrotic regions compared to the normal

myocardium. Although LGE is helpful in identifying CS, based

on the distribution and pattern of LGE (5, 6), it is a non-specific

tool. In addition, LGE-CMR has limited sensitivity prior to the

development of myocardial scar (7).

Moreover, [18F]FDG PET can detect the inflammation related

to CS, which theoretically leads to its early diagnosis (8). On the

other hand, CMR with LGE is capable of identifying myocardial

scarring even in small areas, owing to its high spatial resolution.

The specificity of CMR in diagnosing CS might be higher than

[18F]FDG PET; however, both have high sensitivity (9). There is

controversy among studies regarding the identification of the

appropriate technique for diagnosing CS (10–13). Similarly, the

feasibility of combining the findings of both [18F]FDG PET and

LGE-CMR has not been adequately explored; this could enhance

the accuracy of the assessment by identifying different pathologic

features.

Additionally, it may be possible to gain additional information

by employing quantitative measurements that may provide

complementary information greater than that provided by non-

invasive methods (14). A method of analyzing imaging data uses

radiomics to automatically extract high-dimensional features.

Subsequently, researchers can mine and analyze these features to

support decision-making (15, 16). First-order statistical features

comprise properties based on histograms (HISTO). Regardless of

the spatial relationship between the voxels, these features are

based on the shape of the histogram and statistical values of the

voxel intensities (17, 18). Statistical inter-relationships between

neighboring voxels are calculated using second-order statistical

features, which can be derived from the gray-level cooccurrence

matrix (GLCM) (17). In addition, areas with coarser textures can
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be extracted using higher-order statistical features (19). These are

derived from the gray level run length matrix (GLRLM), the gray

level dependence matrix (GLDM), the gray level size zone matrix

(GLSZM), and the neighboring gray tone difference matrix

(NGTDM).

Correspondingly, this work investigates the precision of PET

and CMR radiomic features in differentiating CS from another

cause of myocardial inflammation, in this case, patients with

cardiac-related symptoms following COVID-19, or post-COVID-

19 (PC) patients. Myocardial inflammation can be a symptom

observed in some PC patients. The severity and prevalence of

myocardial inflammation may vary among individuals, and it is

one of the potential complications associated with COVID-19. It

is important to note that not all PC patients will experience

myocardial inflammation, and the manifestation of symptoms

can vary widely (20).
2 Materials and methods

2.1 Ethical approval

This study was conducted with the approval of the Institutional

Review Board at Mount Sinai Hospital (GCO # 01-1032). All the

subjects supplied their written, informed consent.
2.2 Subject selection

Both PET and CMR imaging were performed at Mount Sinai

Hospital in New York on two types of patients: patients

suspected of having cardiac sarcoidosis due to extracardiac

disease and cardiac symptoms, and PC patients. The majority of

the CS cohort predates the COVID-19 era, ensuring that these

patients did not exhibit post-COVID-19 symptoms. The CS

diagnosis is consistent with the Heart Rhythm Society (HRS)

expert consensus statement (10). PC patients had either chest

pain, palpitations, or shortness of breath following COVID-19

that could not be attributed to another cause. This retrospective

study encompassed CS and PC patients exhibiting abnormal

FDG uptake in the myocardium who were evaluated by a

cardiologist who is an expert in the use of PET/MR for the

diagnosis of cardiomyopathies. Exclusions were made for

individuals with renal dysfunction, insulin-dependent diabetes,

blood glucose levels exceeding 200 mg/dl, pregnant or lactating

individuals, and those with cardiac pacemakers or automatic

implantable cardioverter-defibrillators. In preparation for the

scan, the patient was required to abstain from carbohydrate

consumption for 24 h and fast for 12 h. Initially, there were 90

suspected PC patients and 69 patients with CS. However, for the

purpose of this study, only cases with myocarditis were included.

Therefore, the study included 35 datasets from PC patients and

40 datasets from patients with CS, as summarized in Figure 1.

The demographic information of the patients is provided

in Table 1.
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FIGURE 1

A flowchart of dataset selection.

TABLE 1 Demographic information of the study population.

Group Sex Mean age Standard deviation
PC F = 19 44.2 12.27

M = 16

CS F = 16 61.35 9.41

M = 24

PC, post-COVID-19 patients; CS, cardiac sarcoidosis patients.
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2.3 Imaging protocol

An integrated PET/MR system was used to perform

simultaneous CMR and [18F]FDG PET (BiographTM mMR,

Siemens Healthcare, Erlangen, Germany). An intravenous

injection of [18F]FDG containing 5 MBq/kg was given to the

patients. Acquisition of thoracic PET (one-bed position centered

on the heart) takes approximately 90 min to scan the patients in

two phases (blood and tissue phases). However, for the purpose

of this study, only the last 60 min of the time window were

chosen because the focus of this study specifically centers on the

tissue phase. Iterative ordinary Poisson ordered subset

expectation maximization (OP-OSEM) was used to reconstruct

PET images over a 344 × 344 × 129 image matrix with 3

iterations, 21 subsets, and 2 mm isotropic voxels, followed by

post-filtering using a Gaussian kernel of 4 mm. The PET study

was neither respiratory-gated nor electrocardiogram (ECG)-gated,

and no motion correction was carried out. Attenuation

correction was performed using a 3D breath-hold Dixon-based

MR image. Parallel to the PET scan, CMR was performed with

ECG triggering covering the whole left ventricle. Inversion-

recovery gradient-echo LGE sequences were acquired across the

entire myocardium approximately 15 min after injection of a

0.2 mmol/kg gadolinium-based contrast agent (MultiHance,

Bracco, NJ) with 8 mm slice thickness and 10 mm spacing

between slices. Bias correction was not performed on CMR images.
2.4 Segmentation

3D slicer software (Version 4.11.2; https://www.slicer.org) was

used for the segmentation (21, 22). Regions of interest (ROI) were

drawn manually in the entire left ventricular myocardium for both

[18F]FDG PET and LGE-CMR images by a junior radiographer and

reviewed by a Biomedical Engineering expert with 10 years of

experience in Medical Imaging. This approach is less likely to be

influenced by the intensity and experience of observers compared

to the hot regions-only segmentation. The hot regions-only
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segmentation may exhibit bias and result in unreliable outcomes

during testing in our prior study (23). Figure 2 provides an

illustrative example of the segmentation on the PET/CMR

images. Subsequently, radiomic features were extracted.

To calculate the maximum target-to-background ratio

(TBRmax) in PET images, the standardized uptake value

(SUVmax) was extracted, and another ROI was drawn in the

blood pool to extract the (SUVmean) of the background and then

follow the following equation (1):

TBRmax ¼ SUVmax (target)
SUVmean (background)

(1)
2.5 Feature extraction

PyRadiomics (Version 3.0.1) was used to extract six feature

classes (totaling 94 features) from the PET/CMR images (24).

A list of all radiomic features is shown in Supplementary

Material S1. PyRadiomics adheres to most of the image

biomarker standardization initiative’s (IBSI) feature definitions.

In the case of PET images, a fixed bin size of 0.075 was utilized,

which gave a good number of bins and a good representation of

the data. However, for LGE-CMR images, the default fixed bin

size of 25 was used. The impact of gray-level discretization on

extracted feature values from PET images has been well

documented (25). Nevertheless, there is limited research

exploring the effect of gray-level discretization on clinical MR
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FIGURE 2

An example of the segmentation on a PET/CMR image.
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images. According to Duron et al.’s (26) experimental study, aimed

at examining the impact of gray-level discretization on the

reproducibility of texture features from MR images, utilizing

different fixed bin sizes had a minimal effect on the variability of

these features. The PET images were subjected to SUV

normalization. Since the datasets were obtained from a single

scanner, pre-processing (except post-filtering using a Gaussian

kernel in the reconstruction process in PET images) and

harmonization were not performed. The feature extraction was

conducted in 3D, as it provides more informative results

compared to 2D analysis. In addition, to mitigate the risk of

overfitting caused by limited data, the models were not optimized.
2.6 Statistical analysis

Statistical analyses were undertaken using the Scikit-learn

software (Version 0.23.2) (27). The individual radiomic features

of the study groups were compared using the Mann-Whitney U

test to assess their ability to separate CS from PC. In addition,

the Bonferroni correction was used to adjust the P-value for

multiple tests. According to the significance level of 0.05, with 94

features, the corrected P-value was <0.00053. The radiomic

features were then trained and tested using logistic regression

classifiers. This analysis used stratified five-fold cross-validation

to obtain the mean area under the curve (AUC), mean accuracy,

and 95% confidence intervals (CIs). An AUC >0.5 and an

accuracy >0.7 were considered acceptable for the retention of

features with a P-value of less than 0.00053. When 0.5 < AUC <

1, there is a high chance that the feature will be able to

distinguish the positive class values from the negative ones. In

addition, accuracy >0.7 can be considered a decent score.

Subsequently, Spearman correlation was used to detect the

correlated features with a 0.70 correlation coefficient. This

threshold was selected because higher thresholds indicate a

strong similarity between the two features, with at least half of

their variance being shared. Of these correlated features, the

feature with the highest AUC was retained. Following that, the

uncorrelated features were then used as input for the machine
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learning classifiers to create a signature (joint features). In LGE-

CMR features, to find a classifier that can provide high values of

AUC and accuracy, other classifiers besides logistic regression

were explored. The retained features were then used as input for

machine learning classifiers. The selection of the top-performing

machine learning classifier was based on the highest mean AUC

and mean accuracy values from stratified five-fold cross-

validation. Due to the small sample size in this study, only the

training cross-validation outcomes were documented. This

approach has been recommended in situations where the sample

size is insufficient to support an independent validation set (28).

By using cross-validation, the potential overestimation of the

model’s performance was reduced. The workflow of the statistical

analysis is illustrated in Figure 3. In this study, the PET and

CMR datasets were analyzed separately, allowing for a more

focused investigation of the specific features and characteristics

inherent to each modality. This approach yields valuable insights

into the individual contributions of PET and CMR, enhancing

the understanding of the subject under investigation.
3 Results

3.1 Individual feature assessment

The univariate analysis of individual features in each dataset

revealed that the [18F]FDG PET and LGE-CMR dataset had five

and 11 features, respectively, with P-values <0.00053. For all

datasets, Table 2 shows the five best radiomic features based on

the P-values.
3.2 Feature selection

The logistic regression was applied to individual features. [18F]

The PET and LGE-CMR datasets had only three and five

features, respectively, conforming to the inclusion criteria

(P-value <0.00053, AUC >0.5, and accuracy >0.7). Those features

that met the inclusion criteria were again screened based on
frontiersin.org
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FIGURE 3

Statistical analysis workflow.

TABLE 2 Five best radiomic features based on P-values.

PET features P-value LGE-CMR features P-value
TBRmax 1.5 × 10−11 glszm_Small Area Low Gray Level Emphasis 7.2 × 10−7

glszm_Large Area High Gray Level Emphasis 2 × 10−5 gldm_Dependence Non-Uniformity 7.3 × 10−7

glrlm_Gray Level Non-Uniformity 1 × 10−4 gldm_Small Dependence Low Gray Level Emphasis 8.8 × 10−7

gldm_Gray Level Non-Uniformity 1.2 × 10−4 glszm_Low Gray Level Zone Emphasis 1.3 × 10−6

glszm_Zone Variance 1.8 × 10−4 glrlm_Run Length Non-Uniformity 8.8 × 10−6

GLSZM, gray level size zone matrix; GLRLM, gray level run length matrix; GLDM, gray level dependence matrix.
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correlation. To detect the correlated features, a correlation test was

conducted. Features with a higher AUC were retained. The

number of selected features in the PET and LGE-CMR features

decreased to two uncorrelated features for each one. Table 3

presents the AUC and accuracy values, along with their

corresponding 95% CI, for the uncorrelated features in each

dataset. Scrutinizing PET features in greater detail, TBRmax

conveyed high AUC and accuracy with relatively small confidence

intervals while glszm_Zone Variance had acceptable values but

large confidence intervals. Creating a signature using these
TABLE 3 Areas under the curve (AUCs) and accuracies (ACC) of uncorrelated

Feature ACC ACC
PET TBRmax 0.89 0.07

glszm_zone variance 0.71 0.15

LGE-CMR gldm_dependence non-uniformity 0.75 0.06

glrlm_long run high gray level emphasis 0.71 0.15

CI, confidence interval; GLSZM, gray level size zone matrix; GLDM, gray level depende
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uncorrelated features as input for machine learning classifiers

improved the performance. Random Forest was the best one (95%

CI AUC 0.95–1.00: accuracy 0.83–0.99). The performance of all

machine learning classifiers is displayed in Table 4.

For LGE-CMR features, gldm_Dependence Non-Uniformity

presented good AUC and accuracy (95% CI AUC 0.82–0.92:

accuracy 0.69–0.81). Examples of PET and CMR images for CS

and PC with related features are shown in Figure 4. However, to

further improve the AUC and accuracy findings of LGE-CMR,

additional measures were taken. After applying many other
features.

CI AUC AUC CI Sensitivity Specificity
0.95 0.09 0.91 0.88

0.69 0.22 0.49 0.90

0.87 0.05 0.69 0.80

0.78 0.21 0.57 0.83

nce matrix; GLRLM, gray level run length matrix.
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TABLE 4 Machine learning classifier performance of PET joint features with 95% confidence intervals (CI).

Machine learning classifier ACC ACC CI AUC AUC CI Sensitivity Specificity
Random forest 0.91 0.08 0.98 0.03 0.94 0.90

Logistic regression 0.87 0.09 0.96 0.07 0.83 0.90

Support vector machine 0.63 0.08 0.56 0.31 0.26 0.95

Decision tree 0.88 0.03 0.88 0.04 0.86 0.93

Gaussian process 0.61 0.10 0.70 0.16 0.40 0.80

Stochastic gradient descent 0.48 0.03 0.71 0.19 0.80 0.20

Perceptron 0.44 0.07 0.69 0.22 0.94 0.00

Passive aggressive 0.63 0.12 0.69 0.31 0.40 1.00

Neural network 0.53 0.17 0.64 0.12 0.97 0.20

K-neighbors 0.69 0.04 0.73 0.11 0.60 0.78

ACC, accuracy; AUC, area under the curve.

FIGURE 4

Two cases of PET/CMR cardiac sarcoidosis (CS) and one case of post-COVID-19 (PC) associated with the best-performance features. PET/CMR CS
(case 1) has significantly lower values than PC values, whereas (case 2) has values in the range of PC patients’ values, potentially leading to a
misdiagnosis. The display intensity of PET images ranges from 0 to 6.
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classifiers besides logistic regression, the Support Vector Machine

showed six features following the criteria (Table 5). The total

number of features was not normalized before applying the

Support Vector Machine because the focus was on the relative

relationships between the data points rather than their absolute

values or scales. Additionally, normalization had the potential to

modify the original distances and influence the underlying

relationships within the data, which are crucial for distance-based

algorithms. The retained features were used as input for machine

learning classifiers, and Random Forest proved to have the
Frontiers in Nuclear Medicine 06
greatest AUC and accuracy values (95% CI AUC 0.82–1.00:

accuracy 0.73–0.95). The machine learning classifiers

performance for joint features is shown in Table 6.
4 Discussion

CS is an inflammatory disease with an unknown cause. To aid

in the diagnostic process, advanced imaging techniques like [18F]

FDG PET and LGE-CMR are recommended. [18F]FDG PET is
frontiersin.org
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TABLE 6 Machine learning classifier performance of LGE-CMR joint features with 95% confidence intervals (CI).

Machine learning classifier ACC ACC CI AUC AUC CI Sensitivity Specificity
Random forest 0.84 0.11 0.91 0.09 0.77 0.93

Logistic regression 0.77 0.07 0.88 0.07 0.74 0.80

Support vector machine 0.72 0.15 0.79 0.15 0.51 0.90

Decision tree 0.75 0.11 0.75 0.11 0.74 0.75

Gaussian process 0.53 0.09 0.52 0.04 0.20 0.83

Stochastic gradient descent 0.48 0.03 0.62 0.09 0.49 0.53

Perceptron 0.55 0.03 0.24 0.15 0.03 1.00

Passive aggressive 0.49 0.04 0.58 0.34 0.54 0.45

Neural network 0.68 0.19 0.78 0.26 0.71 0.33

K-neighbors 0.68 0.08 0.69 0.09 0.60 0.75

ACC, accuracy; AUC, area under the curve.

TABLE 5 Areas under the curve (AUCs) and accuracies (ACC) of uncorrelated features using the support vector machine (SVM) that used to create a CMR
signature.

Feature ACC ACC CI AUC AUC CI Sensitivity Specificity
SVM classifier glszm_Low Gray Level Zone Emphasis 0.72 0.18 0.83 0.17 0.66 0.78

glrlm_Run Entropy 0.72 0.14 0.80 0.14 0.77 0.68

glszm_Small Area Low Gray Level Emphasis 0.81 0.12 0.79 0.17 0.63 0.98

gldm_Dependence Non-Uniformity 0.73 0.09 0.78 0.11 0.69 0.78

gldm_Small Dependence Low Gray Level Emphasis 0.76 0.12 0.77 0.17 0.60 0.90

glrlm_Gray Level Non-Uniformity 0.71 0.11 0.66 0.16 0.46 0.93

CI, confidence interval; GLSZM, gray level size zone matrix; GLRLM, gray level run length matrix; GLDM, gray level dependence matrix.
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utilized in suspected CS cases due to its ability to detect glucose

uptake by active inflammatory cells in sarcoid granulomas, while

LGE-CMR can identify scar tissue that may indicate inactive CS.

However, both techniques have limitations that contribute to

their lack of specificity for CS. This study focused on

investigating the potential of [18F]FDG PET and LGE-CMR

radiomic features in differentiating CS from other causes of

myocardial inflammation, specifically in patients with post-

COVID-19 symptoms related to the heart.

After applying several steps to filter the radiomic features of

PET images, TBRmax succeeded in being the best-performing

feature. TBRmax was able to discriminate approximately 90% of

CS cases from PC cases. The majority of the CS cases had a

TBRmax range between 1 and 3, while PC cases had higher values.

This result is supported by other studies that revealed similar

range values of TBRmax in CS patients, which were between 1 and

3 (12, 23). To some extent, TBRmax can make fair comparisons

between institutions by looking at the equation for extracting

their values, which essentially means a blood uptake correction

(29). Although TBRmax has successfully discriminated

approximately 90% of cases, there are still approximately 10% of

cases that have been misdiagnosed, such as the TBRmax value of

case 2 in Figure 4, which provided values that were approximately

similar to those of PC patients. glszm_Zone Variance was the

second-best-performing feature but had significant error bars that

made it unreliable. However, the PET feature performance

improved significantly after using joint features as input for

machine learning classifiers, especially the Random Forest classifier.

For the radiomic features of CMR images, gldm_Dependence

Non-Uniformity presented acceptable results, but with some

errors. Approximately 67.5% of CS patients had values less than
Frontiers in Nuclear Medicine 07
88.5% of PC patients (average value in CS = 205.8, average value

in PC = 323.4). This measure determines the degree of similarity

of dependence within an ROI (24). Therefore, the higher values of

gldm_Dependence Non-Uniformity indicate a greater level of

heterogeneity. As an interpretation of the values of each group,

CS appears to have a lower variance than PC. However, it is

recommended that this feature be interpreted cautiously because

it may contain errors, especially for the CS group, as one-third of

CS patients had values similar to those of the majority of PC

patients. In Figure 4, it can be seen that there was a big difference

between the feature values in the first and second cases, and the

second case even gave higher values than the PC patient value.

One of the approaches followed to augment the performance of

the LGE-CMR features is creating a signature (joint features) that

includes all the uncorrelated features with the best AUCs and good

accuracies. This step was applied to the output of the logistic

regression as well as other classifiers. The signature from the

Support Vector Machine illustrated great results and ameliorated

the findings compared to the individual features. The individual

feature of the LGE-CMR dataset from logistic regression,

gldm_Dependence Non-Uniformity, had a lower AUC but smaller

confidence intervals than when using the signature. Employing

the joint features gives only a little advantage in making it the

superior choice for LGE-CMR dataset classification.

In our previous study (23), gldm_Dependence Non-Uniformity

emerged as one of the top features in PET images for

distinguishing between CS patients and controls. However, it

exhibited larger error bars compared to TBRmax, indicating greater

variability in its measurements. In contrast, the evaluation of LGE-

CMR radiomic features to differentiate between active CS and

inactive CS (4) yielded different top features compared to the
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current study. This discrepancy can be attributed to the distinct types

of comparisons conducted in each study and to slight variations in

the methodology employed. These alterations resulted in improved

outcomes from the analysis of LGE-CMR images. Radiomic

analysis is affected by several factors that make comparisons

between studies difficult. Findings across studies are not

consistently replicated; instead, they often exhibit conflicting results

(30, 31). This divergence in outcomes could potentially be

attributed to technical factors. Efforts should be made to minimize

variation up to the reconstruction step to ensure consistency. It is

crucial to avoid introducing variation in factors that occur after

reconstruction whenever possible. This entails making consistent

choices, such as employing the same image segmentation

algorithm and utilizing a uniform discretization scheme for all the

data (32). In addition, the higher the resolution and number of

voxels, the more they can impact certain radiomic features by

inflating their values (33). By mitigating variability at these stages,

the reliability and comparability of the results can be enhanced.

This study has several limitations. First, all studies evaluating

patients with suspected CS have well-known limitations due to the

lack of a standard for diagnosing the condition. However, it is

possible to detect CS more effectively by combining data from

both CMR and PET. Endomyocardial biopsies were not routinely

performed in this cohort of patients. It is, however, difficult to rule

out CS with an endomyocardial biopsy due to its low sensitivity

and high sampling error rate because of its focal distribution (34).

In addition, considering the sample size, further studies are needed

to verify this conclusion to avoid overfitting and type I errors. This

issue was reduced by applying the Bonferroni correction.

Furthermore, validating the AI approach on a larger and more

diverse patient population, as well as normal controls, would

indeed increase the robustness and applicability of the results.

Moreover, no automated segmentation was performed, and

reference segmentation was not provided in this study.

The novel finding of this study is that radiomic analysis can

enhance the objectivity and complementarity of PET and CMR

in identifying CS from PC. PET-based analysis could effectively

differentiate CS from PC. The PET joint features demonstrated

high performance, which can be used alone without resorting to

CMR. However, CMR-based analysis is helpful when PET images

suffer from failed suppression of the physiological uptake of [18F]

FDG in the myocardium (3). Results may vary from one

institution to another due to different scanning procedures and

protocols, and to the characteristics of each scanner. However,

the methodology is straightforward and transferable to PET/CT-

only and MRI-only studies.
5 Conclusion

This work adds to the growing evidence that radiomic analysis

may assist [18F]FDG PET and LGE-CMR in precisely discerning

cardiac sarcoidosis, with a specific focus on TBRmax. These

features hold promise for heightening the accuracy of diagnoses.

Nonetheless, more research is warranted to validate and refine

these results and guarantee their wider clinical applicability.
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