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Deep-learning-derived input
function in dynamic [18F]FDG PET
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Dynamic positron emission tomography and kinetic modeling play a critical role
in tracer development research using small animals. Kinetic modeling from
dynamic PET imaging requires accurate knowledge of an input function,
ideally determined through arterial blood sampling. Arterial cannulation in
mice, however, requires complex, time-consuming and terminal surgery,
meaning that longitudinal studies are impossible. The aim of the current work
was to develop and evaluate a non-invasive, deep-learning-based prediction
model (DLIF) that directly takes the PET data as input to predict a usable input
function. We first trained and evaluated the DLIF model on 68 [18F]
Fluorodeoxyglucose mouse scans with image-derived targets using cross
validation. Subsequently, we evaluated the performance of a trained DLIF
model on an external dataset consisting of 8 mouse scans where the input
function was measured by continuous arterial blood sampling. The results
showed that the predicted DLIF and image-derived targets were similar, and
the net influx rate constants following from Patlak modeling using DLIF as
input function were strongly correlated to the corresponding values obtained
using the image-derived input function. There were somewhat larger
discrepancies when evaluating the model on the external dataset, which could
be attributed to systematic differences in the experimental setup between the
two datasets. In conclusion, our non-invasive DLIF prediction method may be
a viable alternative to arterial blood sampling in small animal [18F]FDG imaging.
With further validation, DLIF could overcome the need for arterial cannulation
and allow fully quantitative and longitudinal experiments in PET imaging
studies of mice.
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1 Introduction

Small animal positron emission tomography (PET) is a non-invasive medical imaging

tool that is essential in the development of new molecular imaging tracers, drugs,

diagnostic procedures and disease therapies (1–3) In particular, dynamic PET imaging

plays a critical role in the imaging of small animals, as it can visualize the time-
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TABLE 1 Overview of the datasets in the UiT and UdS cohorts.

UiT UdS
Number of animals

Balb/c 17 3

NZBWF1 51 –

C57/BL/6 – 2

CD-1 – 3

Total number of animals 68 8

Age [weeks] 24 + 8 n/a

Weight [g] 33+ 8 31+ 3

Fasting time 3 h 50 min +20 min No fasting

Time in anaesthesia prior to PET 1 h 17 min +19 min 45 min +13 min

Blood glucose [mmol/L] 6:9+ 1:6 9:0+ 3:5

Injected dose [MBq] 10.5+ 1:8 10:0+ 3:3

Input function IDIF AIF
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dependent tracer uptake in vivo, and by the application of tracer

kinetic modeling, it allows quantification of biochemical processes,

such as glucose metaolism (4). Specifically for irreversible tracers,

Patlak analysis can be applied to compute the influx rate constant,

Ki, which, for [18F]Fluorodeoxyglucose ([18F]FDG), is proportional

to the metabolic rate of glucose (5, 6). The advantage of the Patlak

model is that it may provide faster and more accurate calculations

on voxel-wise, parametric images of Ki, compared to full tracer

kinetic modeling (7, 8). A prerequisite for both tracer kinetic

modeling and Patlak analysis is that both the tissue uptake curve

and the time-activity curve of the tracer in the blood, known as

the arterial inut function (AIF), are known (9).

In preclinical PET imaging of rodents, arterial blood sampling

is considered the gold-standard method to sample the input

function. However, it requires complex and time-consuming

surgery to insert an arterial catheter and allows only a limited

blood volume to be withdrawn, without altering the animal

physiology (10). Longitudinal experiments with arterial blood

sampling from the superficial branch of the femoral artery has

been described in the literature for rats (11–13). For mice,

however, the most common approach is to cannulate the carotid

artery (14). This usually requires terminal surgery because the

animals cannot be awakened after the experiments, meaning that

longitudinal studies with arterial blood sampling in mice are

impossible. To overcome these shortcomings, several alternative

methods have been proposed, including the use of a population-

based AIF template (15), image-derived input function (IDIF)

(16), and simultaneous estimation (17, 18). Although these

methods overcome the need for arterial blood sampling, they still

have limited practical usability. For instance, the population-

based approach neglects individual physiological differences and

scan-dependent variations, and requires at least one blood

sample for curve scaling. The IDIF approach must be corrected

for the limited spatial and temporal resolution of the PET

imaging system, image noise, and cardiac and respiratory motion

(10, 19–21). Simultaneous estimation could estimate both the

AIF and kinetic parameters, but it assumes a known

mathematical AIF model and requires at least one late blood

sample for parameter estimation (17, 18, 22, 23).

Machine learning and deep learning methods have been used

increasingly in recent years for many medical applications,

including segmentation, classification, and regression problems

(24). Specifically, we have proposed the use of Gaussian

Processes and long-short-term-memory (LSTM) models for AIF

estimation (25, 26). These models required time-activity curves

from up to five tissue regions as model input for the prediction

of the AIF. Thus, our earlier approaches were limited by the

need for manual delineation of several regions of interest as

input, which implies domain specific knowledge, and most

importantly, long data processing time. An alternative AIF

estimation method is the multilayer 3D-residual network with a

regression module, proposed in (27). This offers a promising

similarity in shape to the IDIF, though it faced challenges

predicting some parts of the curve. Recently, a combined deep-

learning-based and model-based method was proposed to

estimate the parameters of the input function (28), however this
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model was only evaluated in a phantom study, and it assumes a

specific mathematical AIF model. Nevertheless, there is a need to

overcome the limitations associated with the aforementioned

methods for sampling or estimating the arterial input function,

which would increase practical usability of quantitative PET

imaging and allow for longitudinal studies of mice.

In this work, we propose a deep learning model designed to

take the four-dimensional PET data as input and a deep-

learning-derived input function (DLIF) as output. The approach

avoids the need of tedious and time-consuming manual

segmentation of regions of interest, has no assumptions of a

specific AIF model, and does not require any blood samples for

calibration purposes. We evaluate the model by comparing the

predicted input function to the reference ones, as well as using

both voxel-wise and regional Patlak analysis. Thus, by

overcoming the drawbacks of blood sampling and the limitations

of other AIF estimation techniques, with proper validation, DLIF

would allow for fully quantitative and longitudinal PET imaging

of mice, and as such provide an instrumental step forward for

quantitative small animal imaging research.
2 Methods

2.1 Datasets

The small animal imaging data used to train and evaluate the

DLIF model was collected in retrospect from two independent

cohorts, acquired at UiT The Arctic University of Norway (UiT)

and Université de Sherbrooke (UdS). The same PET imaging

system and radiotracer was used at both centers, however, there

were some systematic differences in the experimental methods

and available animal strains in the datasets (Table 1). The UiT

dataset was used for training and initial evaluation of the model.

Because a ground truth AIF was unavailable in this dataset, an

IDIF was used as training targets. On the other hand, in the UdS

dataset continuous arterial blood sampling was performed

simultaneously with PET acquisition. This dataset was used for

additional evaluation of the DLIF model.
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2.1.1 UiT dataset
Animals and preparations

Preclinical PET/computed tomography (CT) data of 68 mouse

scans were collected in retrospect from an already completed

research study (29). This animal study was approved by the

Competent Authority on Animal Research, the Norwegian Food

Safety Authority; FOTS id 6676/2015. Thirty-six female mice

from two strains [NZBWF1, Jax stock # 10008 (n ¼ 24)] and

[BALB/cAnNCrl (n ¼ 12)], purchased from The Jackson

Laboratory and Charles River Laboratories, respectively, were

included. The mice were fasted for 3 h 50 min +20 min,

weighed, and anesthetized for 1 h 17 min +19 min prior to

tracer injection in an oxygen-isoflurane mixture (4% and 2%

isoflurane for induction and maintenance, respectively), to

reduce animal stress and allow stabilization of breathing and

heart rate (29). Blood glucose was measured in venous blood to

6.9 mmol/L +1:6 mmol/L prior to tracer administration, using a

glucose meter (FreeStyle Lite, Abott Laboratories). A catheter,

made from polyethylene tubing and a 30 gauge needle, was

placed into the caudal vein to allow tracer injection.

Image acquisition

The PET/CT scans were performed using a TriumphTM

LabPET-8TM small animal PET/CT scanner. Each mouse was

scanned between 1–5 times at different ages (range 7–37 weeks),

weighing 33+ 8 g at imaging time. The anesthetized mice were

centered in the field-of-view of the PET/CT scanner, while lying

on a 35 �C heated bed inside an animal imaging cell, with

sensors monitoring heart and breathing rate. Tracer

administration was conducted by the injection of 10:5+ 1:8

MBq [18F]FDG in 100 l sterile saline through a tail-vein catheter

during 30 s. For 56 scans, injections were performed with an

infusion pump, while 12 scans were injected manually followed

by 20 l flush of sterile saline. A 60-min list-mode PET

acquisition was started at injection time, followed by CT imaging

for PET attenuation and scatter correction.

Image reconstruction and processing

The PET images were reconstructed into 44 time frames

(24� 5, 9� 20, and 11� 300 s) using a 3-dimensional

maximum-likelihood estimator algorithm with 50 iterations.

Corrections for detector efficiency, radioactive decay, random

coincidences, dead time, attenuation and scatter were applied.

The voxels were normalized into standardized uptake value

(SUV) [g/ml] (30). Each time frame had an image matrix size of

128� 92� 92 voxels. In the current study, only time points up

to 45 min were included to match the external UdS dataset, so

the last three time frames from the reconstruction were discarded

in all following analysis. Furthermore, in order to reduce the

memory load during model training, the image dimensions were

cropped to 64� 48� 48, which still encompassed the most vital

regions of the mouse.

Volume of interest delineation

Volumes of interest were delineated using PMOD 3.8 (PMOD

Technologies Ltd.) in either dynamic PET or static PET space, the

latter which was formed by averaging the last 20 min of the

dynamic PET acquisition. Delineations of vena cava, myocardium,
Frontiers in Nuclear Medicine 03
left ventricle and brain were performed in a standardized and

reproducible way, as described in (25). In short, vena cava was

defined in a 0.6 mm radius sphere centered on a peak voxel in an

early time step of the dynamic PET sequence; myocardium was

delineated as voxels above 40–60% of the max voxel value above

background in the whole heart in static PET space; left ventricle

was defined as the region encompassed by the myocardium

uptake; and brain was delineated as a 2 mm radius sphere in the

dorsal region of the skull, visually identified in static PET space.

All VOIs were applied to the dynamic PET images, and the mean

time-activity curve was extracted from each VOI.

IDIF calculation

The IDIF targets for each mouse scan was formed from a

parameterized model fit to image-derived data points derived

from vena cava and left ventricle volume-of-interest, as described

in (25).

2.1.2 UdS dataset
Animals and preparations

The UdS dataset consisted of eight female mice from three

different strains (C57/BL/6 (n ¼ 2), CD-1 (n ¼ 3), and BALB/c

(n ¼ 3)). Four mice were purchased from Charles River

Laboratories, while four were donations from the central animal

facility with unknown origin. Animal experiments were

performed following the recommendations of the Canadian

Council on Animal Care and were approved by the Université de

Sherbrooke in-house Ethics Committee for Animal Experiments

under Protocol 2022–3463. Animals had free access to food and

water before the experiments. Animals were anesthetized with

isoflurane (2% þ1:5 L/min O2) for 45 min +13 min prior to

tracer injection, while being cannulated in the caudal vein for

tracer injection (prefilled with heparinized saline, 0.9%, 50 U/ml),

and in the carotid artery for blood withdrawal, as described in

(14). The animal temperature was regulated, and the heartbeat and

breathing were monitored to ensure that physiological conditions

were maintained as stable during the scan. Animal weight was

31+ 3 g at imaging time. Blood glucose was measured in venous

blood to 9.0 mmol/L +3:5 mmol/L prior to tracer administration.

Image acquisition and arterial blood sampling

The anesthetized mice were placed in a TriumphTM LabPET-8TM

small animal PET/CT scanner with the heart centered in the field of

view. An ultrahigh sensitivity blood counter (UHS-BC) was placed

on a table in front of the scanner (detector to animal distance 60

cm). The mice were injected with 10:0+ 3:3 MBq of [18F]FDG in

100–200 l sterile saline during 30 s through a 20 cm long PE10

catheter. The withdrawal pump speed was set to 15 l=min up to

5 min, then 7 l=min for 36 min, corresponding to a total of 327 l

(15%) blood loss during the imaging experiment. This is within

the maximum recommended blood loss from a single blood

sample study (31). A 45-min list-mode PET acquisition was

started at injection time. For the UdS data, CT imaging for PET

attenuation and scatter correction was not performed.

Image reconstruction and processing and analysis

The PET images were reconstructed into 41 time frames, using

the same framing, reconstruction algorithm and image corrections
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FIGURE 1

The architecture of the DLIF prediction model. First, four three-dimensional convolutional layers followed by two fully connected layers reduce the
size of the volumes associated to each time frame. Then, one-dimensional convolutional filters capture the temporal correlations between
neighboring time frames, and finally a fully connected layer outputs the DLIF. Single numbers indicate the corresponding time frames, while
numbers in square brackets indicate the data size.
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as described for the UiT dataset. However, because CT imaging was

not available for the UdS data, attenuation and scatter correction

was not performed. The measured blood curve was corrected for

decay, delay, dead time and dispersion, as described in (14).

Volumes of interest and an IDIF was also generated for this

dataset, in a similar manner as for the UiT data.
2.2 Model architecture

The proposed DLIF model architecture is shown in Figure 1.

First, the spatial dimensions of each of the 41 volumes associated

to each of the time frames of a single sample are reduced, while

at the same time relevant spatial information is extracted and

noise filtered out. The main expedient consists of feeding the

volumes in parallel to four layers of 3D convolutional filters

coupled with batch normalization, rectified linear unit (ReLU)

activation functions and finally, 3D maxpooling layers. Choices

of the different components are well described in the literature

(32), but for instance, batch normalization has been shown to

speed up the training process and act as a regularizer to avoid

overfitting (33), while ReLU seems the most reasonable choice

for activation function when the input and output data are non-

negative quantities (34). Also, halving the spatial dimensions

with maxpooling while doubling the number of filters for each

layer is a well-known approach for obtaining a rich yet compact

representation of the input, and many well-known architectures

adopt this strategy (35, 36). Once the smallest spatial dimensions

are reached (4� 3� 3), these 41 volumes of 16 features are

flattened, so that each time frame is represented by a vector of

576 features. These vectors are reduced to a length of 32 by two

cascaded multilayer perceptrons. Subsequently, 16 filters of 1D

convolution are applied along the time axis, to capture the

temporal correlations among the neighboring time frames.

Finally, a multilayer perceptron takes the 16� 41 extracted
Frontiers in Nuclear Medicine 04
features and outputs a 41 long vector as output, representing the

predicted DLIF.
2.3 Training regimes

Two different training regimes were used. First, the DLIF model

was trained and evaluated with the UiT dataset, using 17-fold cross

validation. Cross validation is commonly applied for model

performance evaluation in settings with limited available training

data (37). By iteratively splitting the dataset to use 64 samples for

training and 4 samples for testing in each of the 17 folds, this

allowed to have all 68 available samples in the test set once. Next,

a new DLIF model was trained using all samples from the UiT

dataset, and subsequently tested on the UdS dataset. In this

setting, 50 runs with different random initializations were

performed to obtain statistics over the DLIF predictions.

In both training regimes the Adam optimizer (38) with

standard hyperparameters was selected to perform the

minimization of a mean square error loss between the ground

truth and the DLIF. Training was performed for 200 epochs with

a learning rate of 2 � 10�4.

The DLIF models were implemented in Python 3.11.5, using

PyTorch 2.1.0.
2.4 Model evaluation and statistical analyses

For both training regimes, the DLIF-predicted curves were first

compared point by point to the respective reference input function

using orthogonal regression. Orthogonal regression was chosen when

comparing the measured and the predicted input function during

regression analysis, because it assumes measurement error in both

variable pairs, as opposed to standard linear regression, which

assumes measurement error in only the independent variable (39).
frontiersin.org
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Patlak modeling (5, 6) was implemented in an in-house developed

script (Python 3.11.5) and used to calculate the influx rate

constant, Ki, for each voxel, as well as for brain and myocardium

tissues, using both the predicted DLIF and each reference input

function. For the UdS dataset, the regional influx rate constants for

brain and myocardium tissues were also calculated using the IDIF

and compared to those obtained with the AIF.

DLIF- and IDIF-based influx estimates were compared to those

obtained from respective reference input function using paired

t-test (a ¼ 0:05) and orthogonal regression. Normality was

assessed using quantile-quantile plots. All statistical analyses were

implemented in an in-house developed script (Python 3.11.5).
3 Results

Two datasets were used in these experiments. The UiT dataset,

consisting of 68 mouse PET scans and an IDIF as reference input

function, was used to train and evaluate the model through 17-fold

cross validation. Next, the UiT dataset was used as a whole for

training while the UdS dataset, consisting of 8 mouse PET scans

with corresponding AIF from arterial blood sampling, was used

as an external test set.
3.1 Cross-validation

The overall input function curve shape, with an early peak and

a vanishing tail, is captured by the DLIF model, as shown for the

three mouse scan examples in Figure 2. Investigating the data

points from all samples, there is a strong overall linear

relationship (slope: 0.84) and strong correlation (correlation

coefficient: 0.91) between DLIF and IDIF (Figure 3A). The DLIF

model slightly underestimates the IDIF peak, shown as a

deviation from the linear model for data points with high SUV

value in Figure 3A.

Following DLIF prediction, Patlak modeling was performed to

investigate the potential usefulness of the DLIF model for glucose

metabolic rate measurements. Figure 3B displays all voxel-wise Ki
FIGURE 2

IDIF and predicted DLIF during cross validation experiments. The DLIF was pr
(A) IDIF and DLIF for the mouse scan with the lowest error. (B) IDIF and DLIF
mouse scan with the largest error.
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data points as scatterplot, using DLIF and IDIF as input

function, respectively, while Table 2 and Supplementary

Figure S2 presents statistics and data from the regional Ki values,

for brain and myocardium tissues, respectively. The voxel-wise

influx rate constants displayed a strong linear relationship (slope:

1.05) and a strong correlation (correlation coefficient: 0.94) for

the majority of the mouse scans. A few outlier cases are obvious

as colored data points deviating from the identity line in

Figure 3B. Nevertheless, visual comparison of the voxel-wise

influx rate constants calculated with IDIF and DLIF, respectively,

for the mouse scan with minimum and maximum errors from

Figure 2, still show promising similarities (Figure 4). The

regional Patlak analysis (Table 2 and Supplementary Figure S2)

indicated good agreement between the population average influx

rate constants for brain and myocardium tissues (average errors:

� 10%) and a strong correlation (correlation coefficient: 0.78–

0.95). The obtained P values, surpassing the significance level,

suggested insufficient evidence to reject the null hypothesis of

significant differences between the groups.
3.2 External evaluation

A DLIF model trained on the full UiT dataset was applied to

the UdS data for the purpose of external evaluation. The general

curve shape is captured by the DLIF model and is in good

agreement for some mouse scans (Figure 5A). However, there are

also examples where the DLIF model fails to predict the tail

(Figure 5B) or the peak (Figure 5C) in this external dataset. The

predictions for all test mouse scans are shown in Supplementary

Figure S1. For most mouse scans, the DLIF model is unable to

predict the AIF peak, while the tail regions are generally in better

agreement with the mean DLIF curve (Supplementary Figure S1).

This is also visible in the comparison of individual data points

(Figure 6A). There is a strong correlation between the data

points (correlation coefficient: 0.70), with a linear tendency

(slope: 0.61), although with discrepancies, especially around the

peak, corresponding to high data point values.
edicted for each mouse scan when it was in the test set during each fold.
for the mouse scan with the 50-percentile error. (C) IDIF and DLIF for the
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FIGURE 3

Comparison of data points between (A) DLIF and IDIF curves and (B) voxelwise Patlak using DLIF and IDIF as input function, respectively. The DLIF was
predicted for each mouse scan when it was in the test set during each fold. Due to a large number of data points in (B), for visualization purposes, only
1,000 randomly sampled data points are shown. The color cycle indicates each mouse scan.
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The influx rate constant from Patlak modeling, obtained using

DLIF and reference AIF as input function, respectively, showed a

strong linear relationship (slope: 1.12) and a strong correlation

(correlation coefficient: 0.90) for the voxel-wise calculations

(Figure 6B). Visual comparison of the voxel-wise influx rate

constants calculated with AIF and DLIF, respectively, for the

mouse scan with minimum and maximum errors from Figure 5,

also show promising similarities (Figure 7). The regional

comparisons for brain and myocardium tissues (Table 2 and
FIGURE 4

Maximum intensity projections of voxel-wise Patlak images of two
mouse scans from the UiT dataset using IDIF and DLIF as input
function, respectively. (A) The mouse scan with the minimum error
(Figure 2A). (B) The mouse scan with the maximum error (Figure 2C).
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Supplementary Figure S3) indicated average errors of 20%

and�3%, respectively, with a strong correlation (correlation

coefficient: 0.91–0.94). The obtained P values for brain and

myocardium tissues, surpassing the significance level, suggested

insufficient evidence to reject the null hypothesis of significant

differences between the groups. Table 2 and Supplementary

Figure S4 also displays the corresponding comparisons between

Ki obtained with the reference AIF and the one obtained using

the IDIF in the UdS dataset. These results indicate similar

agreement for the brain region compared to DLIF (mean error:

�9%, correlation coefficient: 0.84, P value: 0.36), while for

myocardium tissues, larger and significant deviations from the

reference AIF were obtained, compared to DLIF (mean error:

�17%, correlation coefficient: 0.97, P value: 0.09).
4 Discussion

Tracer kinetic modeling from dynamic PET imaging requires

accurate knowledge of the AIF, ideally determined through

arterial blood sampling. The aim of the current study was to

develop and evaluate a deep-learning-based prediction model,

DLIF, that takes directly the four-dimensional PET data as input,

in order to predict a usable input function.

DLIF offers several other advantages relative to currently

available methods for AIF estimation. Compared to arterial blood

sampling, a trained DLIF model is a non-invasive method,

implying simple and convenient use, without the need for

surgery, thus allowing longitudinal PET experiments in mice.

Compared to our previously published machine learning derived

input function (MLDIF) (25, 26), DLIF reduces the subjective

bias and preprocessing time by avoiding the need for manual

extraction of input time-activity curves. Other common AIF

estimation methods, including IDIF (10, 19–21) or simultaneous

estimation (17, 18, 22, 23), require correction for the partial

volume effect, which is non-trivial, scanner-dependent, and must
frontiersin.org
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FIGURE 5

AIF and predicted DLIF for the external test data set. (A) AIF and mean+1 confidence interval DLIF for the mouse scan with the lowest error. (B) AIF and
mean +1 confidence interval DLIF for the mouse scan with the 50-percentile error. In (A) and (B), the mean DLIF was calculated over the training runs
(n ¼ 50). (C) AIF and mean +1 confidence interval DLIF for the mouse scan with the largest error.

TABLE 2 Comparison of Ki calculated from the reference input function and from the DLIF model for the UiT and UdS datasets. For the UdS dataset, the
comparison of Ki from the reference AIF and from the IDIF is also shown. Further details from these data are shown in Supplementary Figures S2 through
S4. Note that the identified outliers, indicated in Table S1 and S2, were excluded in the calculation of the table.

Dataset Model Statistics of K�
i Brain Myocardium

UiT Reference IDIF Estimate (ml/g/min) 0:0176+ 0:0019 0:123+ 0:020

DLIF Estimate (ml/g/min) 0:0187+ 0:0024 0:129+ 0:021

Average error (%) 10+ 8 5+ 5

Correlation coefficient 0.78 0.95

t test P value 0.15 0.09

UdS Reference AIF Estimate (ml/g/min) 0:0155+ 0:0075 0:141+ 0:063

DLIF Estimate (ml/g/min) 0:0152+ 0:0043 0:125+ 0:039

Average error (%) 20+ 39 �3+ 20

Correlation coefficient 0.94 0.91

t test P value 0.87 0.38

IDIF Estimate (ml/g/min) 0:0132+ 0:0055 0:111+ 0:039

Average error (%) �9+ 22 �17+ 10

Correlation coefficient 0.84 0.97

t test P value 0.36 0.09

�Estimate (ml/g/min) and average error (%) are expressed as mean +1 confidence interval. Average error was calulated as 1
N

PN
i¼1 (

Ki,AIF�Ki,DLIF

Ki,AIF
)� 100. Correlation coefficient,

and P values are calculated from (Ki,DLIF , Ki,Reference) pairs within each dataset.

FIGURE 6

Comparison of data points for UdS data between (A) DLIF and AIF curves and (B) voxelwise Patlak using DLIF and AIF as input function, respectively.
Model training was repeated 50 times and the data points shown are the average over the runs. DLIF was predicted for each mouse scan when it was in
the test set during each fold. Due to large number of data points in (B), for visualization purposes, only 10,000 randomly sampled data points are
shown. The color cycle indicates each mouse scan.
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FIGURE 7

Maximum intensity projections of voxel-wise Patlak images of two
mouse scans from the UdS dataset using AIF and DLIF as input
function, respectively. (A) The mouse scan with the minimum error
(Figure 5A). (B) The mouse scan with the maximum error (Figure 5C).
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be carefully measured, or still require a late blood sample for

calibration purposes. In contrast, our experiments indicate that a

trained DLIF model allows the prediction of both the shape and

the amplitude of an input function, using solely image-derived

input data, thus without the need for a blood sample for AIF

scaling.
4.1 Cross-validation

We first trained and evaluated the DLIF model on 68 mouse

scans with IDIF targets using cross-validation. These experiments

indicated that DLIF could capture the overall input function

curve shape, with an early peak and a vanishing tail, and as

such, could be a useful approach for estimating an IDIF

(Figure 2). Data points between DLIF and IDIF input functions

showed a linear behavior and were highly correlated (Figure 3A).

As the input function curve itself is not the interesting result in

most dynamic PET studies, we evaluated the influx rate constant,

Ki, from Patlak modeling using the reference IDIF as input

function, and compared it to the corresponding Ki, when using

DLIF as input function. This analysis was done on both voxel-

wise (Figures 3B and 4), and on a regional level for brain and

myocardium tissues (Table 2, Supplementary Figure S2). In the

voxel-wise scatterplot (Figure 3B), each mouse scan is displayed

with a different color. The individual slope coefficients for the

majority of mouse scans were around 1, however, 10 (15%) of

the 68 mouse scans had more severe deviations from the identity
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line, with slope values outside the range of 1+ 0:4

(Supplementary Table S1). One of these was attributed to tracer

injection problems (yellow data points in Figure 3B). Six of the

10 outliers (60%) were BALB/c mice. This strain was represented

by only 17 (25%) of the 68 mouse scans in the training data. It

is well known that tracer kinetics and glucose metabolism can

vary significantly between different mouse strains, especially for

diseased strains (40, 41). Based on the unbalanced number of

samples from the two strains, we hypothesize that the DLIF

model is sensitive to differences in uptake pattern between

different mouse strains, and thus is unable to learn the possible

variations among the samples. Among the remaining 3 outliers, 2

mouse scans were attributed to significantly higher myocardium

uptake, which could partly explain why the DLIF model was less

accurate for these samples. The remaining outlier had an unusual

positioning in the mouse bed with its spine being curled, and

not elongated, as for most other mice, which could affect the

DLIF model output (42). Also note that the small P-values found

in Figure 3 (P , 0:01) are expected for comparisons of large

sample sizes (43).

The regional analysis indicated similar mean values for brain

and myocardium tissues, with mean errors below 10 %, strong

correlation (correlation coefficients: brain: 0.78, myocardium:

0.95), and non-significant differences between the influx rate

constants derived using DLIF and reference IDIF as input

function (Table 2 and Supplementary Figure S3). These findings

were similar to our previously published MLDIF model for brain,

where we reported correlation coefficients of 0.56 for brain, and

0.90 for myocardium, with average errors of 7% and 4%,

respectively [Table 3 in (25)]. The MLDIF model, however, was

based on extracted time-activity curves from 5 manually defined

tissue regions (myocardium, brain, liver, muscle and brown fat)

as model input. Although the results were similar when using

DLIF instead of MLDIF, DLIF undoubtedly overcomes the time-

consuming need for manual tissue region delineation in the

input images. This removes potential bias in the delineation step,

and significantly simplifies the processing pipeline, as well as

shortens the application time required to use the DLIF model.
4.2 External evaluation

The DLIF model, was trained with reference IDIF data targets

due to the limited availability of high quality and high quantity

small animal PET datasets with ground truth arterial blood

sampling. To investigate the potential application of DLIF to

predict a useful blood input function, we performed model

training on the full 68 mouse scan dataset with IDIF targets, and

subsequently evaluated the performance on the external UdS

dataset, which contained continuous arterial blood samples as

ground truth. The predicted DLIF curves were in good

agreement with the ground truth AIF for some mouse scans in

the UdS dataset (Figure 5), while there were larger discrepancies

for others (Supplementary Figure S1). In general, the tail of the

DLIF prediction was in better agreement compared to the peak.

This discrepancy could be explained by a larger variation in the
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peak region for the UdS data (Figure 6A). There were several

systematic differences in the data collection methodology

between the UiT training data and the UdS test data, which

could explain these deviations. Most importantly, the UdS mice

were not fasted before the experiments, which is reflected in the

slightly higher blood glucose values of the UdS data. It is well

known that fasting affects the glucose metabolism in mice, and

contributes to reducing the variability between samples (44–47),

and specifically, myocardium uptake is affected by fasting, a

region that we have shown is important for the prediction of the

input function (25). Another difference between the studies was

that the injection volume in the UdS data was not fixed. Four

mice were injected using 100 l, while four mice were injected

with 200 l. This volume difference could most likely introduce a

variability in the peak of the input function, which was not

accounted for in the training data used for the DLIF model.

Also, for the UdS data, no attenuation or scatter correction was

performed, because an associated CT scan was missing from the

dataset. This could introduce underestimations of the measured

activity concentration depending on tissue position (48),

something which is not accounted for by the DLIF model. Lastly,

the UdS test mice were of three different strains, and four of the

mice could not be traced to a specific animal supplier, which

could introduce additional bias in the data.

Despite these discrepancies, following Patlak modeling, the

voxel-wise influx rate constants obtained using DLIF and

reference AIF as input function for the UdS data showed an

overall strong linear relationship and strong correlation

(Figure 6B), even though systematic deviations are obvious for

different mice. We found small but systematic underestimations

of the slope coefficient for all BALB/c mice (n ¼ 3, average slope

coefficient: 0.8), while the slope coefficients for C57/BL/6 (n ¼ 2,

average slope coefficient: 1.4) and CD-1 (n ¼ 3, average slope

coefficient: 1.5) were larger and systematically overestimated

(Supplementary Table S2). While 17 (25%) of the 68 mouse

scans used for training of the DLIF model were from the BALB/c

strain, the C57/BL/6 and CD-1 strains were not represented

among the training data. Similar to our discussion around

Figure 3B, this further indicates that the DLIF model is sensitive

to uptake patterns in mouse strains that were not part of the

training data.

As evident from Figure 6A, the lower SUV values originating

from the input function tail are closer to the identity line,

compared to larger SUV values, belonging to the peak. The

linear fit during Patlak graphical analysis is based on the steady

state part following the input function peak (6). Although the

integral of the full input function is present in the equation, the

impact of the peak on the Ki is minimal, and consequently, this

method is robust to noise and bias around the input function

peak. This could explain why the Patlak Ki scatterplot

(Figure 6B) still showed high correlation in the voxelwise

analysis, despite the discrepancy of many of the peak regions

(Supplementary Figure S1). The regional comparison of Ki

calculated using reference AIF and DLIF (Table 2 and

Supplementary Figure S2) indicated mean errors of 20% and

�3% in Ki for brain and myocardium regions, respectively, with
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a strong correlation, and non-significant differences between the

groups. These differences could be expected because of the

mentioned differences between the UiT training data, and the

UdS test data. Still, while DLIF-based calculation of Ki showed

slightly larger errors for brain tissue, compared to IDIF, both

results were non-significantly different from the influx derived

with the AIF. For myocardium tissue, the average error in the

DLIF-based calculation of Ki was similar to the error obtained

during cross-validation experiments, while the corresponding

error for the IDIF-based calculation was larger and significantly

different from the AIF-based influx. Interestingly, although IDIF

is a commonly used method for AIF estimation in the literature

(16, 49), our results indicate that there might still be significant

discrepancies between IDIF and AIF for myocardium tissues,

which could be overcome by using the DLIF method. Again, we

note that the small P-values found in Figure 6 (P , 0:01) are

expected for comparisons of large sample sizes (43). With all

these mentioned limitations and differences between the UiT

training data and the UdS test data, we argue that the DLIF

model trained on IDIF reference targets still shows promising

potential when compared to the external UdS data with reference

AIF targets.
4.3 Limitations

As depicted in Figures 3A and 6A, the DLIF model sometimes

over- or underestimates the reference input function in early time

frames, evident as vertical and horizontal data points around t ¼ 0,

respectively. For these cases, we hypothesize that the DLIF model is

unable to handle slight time-shifts in the input data. This will be

investigated in future research. Our results furthermore indicate

that the DLIF approach is sensitive to the specific mouse strain

that it was trained on. Further prerequisites for the DLIF

approach is that representative training data have been collected

for the specific tracer, imaging system, and imaging protocol.
4.4 Future work

Although our work provided a comparison between DLIF and

an AIF in the UdS test data, these findings must be further

investigated in future research because of the large differences

between the experimental methods in the UiT and UdS datasets.

For instance, future work could include studying the dependency

of the DLIF model to factors such as tracer, mouse strain, and

variations in different experimental conditions and imaging

protocols. Future research must also evaluate a DLIF model

trained on a reference AIF measured in arterial blood.

The DLIF approach was in this work evaluated with [18F]FDG

on a specific small animal PET imaging system. With further

comprehensive validation, we suggest that the DLIF model could

be retrained for other tracers and imaging systems. It is also

conceivable that tracers requiring metabolite-correction may be

modelled. DLIF could also have relevant applications in clinical

human PET imaging (26). The accuracy of the DLIF models for
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a particular PET application will, in the end, depend on the quality,

quantity and relevance of the available training data. Nevertheless,

if properly validated, DLIF could provide a simplified, low-bias

method for performing quantitative and longitudinal PET

imaging studies in mice.
4.5 Conclusion

In conclusion, we demonstrated that our non-invasive DLIF

prediction method may be a viable alternative to arterial blood

sampling in [18F]FDG imaging of mice. The proposed approach

does not require manual segmentation for model input, and it is

not depending on a late calibration blood sample or any partial-

volume correction. The resulting influx rate constants from

Patlak modeling agreed well with image-derived reference values

and promising agreement was obtained when comparing to data

with continuous arterial blood sampling. With further validation,

DLIF could overcome the need for arterial cannulation and allow

fully quantitative and longitudinal experiments in PET imaging

studies of mice.
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