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Deep learned triple-tracer
multiplexed PET myocardial
image separation
Bolin Pan*, Paul K. Marsden and Andrew J. Reader

School of Biomedical Engineering and Imaging Sciences, King’s College London, London,
United Kingdom
Introduction: In multiplexed positron emission tomography (mPET) imaging,
physiological and pathological information from different radiotracers can be
observed simultaneously in a single dynamic PET scan. The separation of mPET
signals within a single PET scan is challenging due to the fact that the PET scanner
measures the sum of the PET signals of all the tracers. The conventional multi-
tracer compartment modeling (MTCM) method requires staggered injections and
assumes that the arterial input functions (AIFs) of each tracer are known.
Methods: In this work, we propose a deep learning-based method to separate
triple-tracer PET images without explicitly knowing the AIFs. A dynamic triple-
tracer noisy MLEM reconstruction was used as the network input, and
dynamic single-tracer noisy MLEM reconstructions were used as training labels.
Results: A simulation study was performed to evaluate the performance of the
proposed framework on triple-tracer ([18F]FDG+82Rb+[94mTc]sestamibi) PET
myocardial imaging. The results show that the proposed methodology substantially
reduced the noise level compared to the results obtained from single-tracer
imaging. Additionally, it achieved lower bias and standard deviation in the separated
single-tracer images compared to the MTCM-based method at both the voxel and
region of interest (ROI) levels.
Discussion: As compared to MTCM separation, the proposed method uses
spatiotemporal information for separation, which improves the separation
performance at both the voxel and ROI levels. The simulation study also
demonstrates the feasibility and potential of the proposed DL-based method
for the application to pre-clinical and clinical studies.
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1 Introduction

Positron emission tomography (PET) is clinically recognized as a powerful modality to

visualise and investigate functional activity in the brain (1), heart (2), and whole body (3). In

cardiology, dynamic PET imaging has been widely used to measure myocardial perfusion

and to connect cardiac efficiency with the metabolism of myocardial substrates (4). PET has

been largely conducted using only one radiotracer per imaging session, meaning that images

of different processes can only be acquired separately through multiple scans. To obtain

information on, for example, glucose metabolism with [18F]FDG (5), myocardial perfusion

and potentially also the Naþ/Kþ pump with 82Rb (6), and to measure the mitochondrial

membrane potentials with [94mTc]sestamibi (7), three cardiac PET scans may be conducted

separately to allow for the decay of one of the tracers. This prolongs the scanning time for

the patient and therefore increases the radiation exposure due tomultiple CT scans in PET-CT.
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1Note that the decay correction cannot be performed in the multi-tracer

TACs before separation because the proportion of each tracer (and thus its

decay correction factor) is unknown prior to separation. Although we do

model decay in the Equation 1, we do not seek to include decay

correction in the present work.
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Multiplexed PET (mPET) offers the opportunity of observing

multiple targets of interest with different tracers simultaneously in a

single scan, providing more relevant or complementary information

for clinical decision making, reducing the total examination time,

and allowing perfect co-registration of the images for each tracer.

In mPET imaging, multiple tracers are injected sequentially with an

offset of several minutes in between the administrations, followed by

a dynamic PET scan. The dynamic/static imaging measurements of

each individual tracer are then separated and recovered from the

obtained dynamic mPET images.

The main challenge in mPET imaging is that each tracer produces

to indistinguishable 511 keV photon pairs, and thus no unique energy

information to differentiate the source of each photon pair, meaning

that the PET scanner measures the sum of the PET signals of all

tracers (8). Several methods with dynamic PET scans and staggered

injection protocols have been proposed for mPET signal separation

based on differences in biodistribution kinetics and radioactive

decay (9–11). Another widely studied method for mPET separation

is based on multi-tracer compartment modeling (MTCM). Koeppe

et al. introduced a dual-tracer compartment model to estimate the

kinetic parameters of two 11C-labeled tracers (12, 13). This method

was further investigated with different dual-tracer combinations

using simulation data (14–16), large animal data (17), and tumour

imaging data (18). Black et al. subsequently explored the feasibility

of using this method for the triple-tracer time-activity curve (TAC)

separation of [18F]FDG, [62Cu]ATSM, and [62Cu]PTSM (19).

However, the MTCM method is susceptible to noise and prone to

falling into local minima, even when the noise level is low, because

of the non-linearity of the fitting problem. To improve the

separation performance of the MTCM method, Zhang et al.

reformulated the conventional MTCM using fewer parameters by

separating the linear part from the nonlinear part (20). Cheng et al.

further incorporated the dual-tracer separation using the

reformulated model into the image reconstruction process to reduce

the influence of noise (21). However, each of the aforementioned

methods assumes that the arterial input function (AIF) of each

tracer is known, which limits their practical viability. Verhaeghe

and Reader (22) proposed using a set of basic exponential decay

functions convolved with the estimated tracer-specific generating

functions to fit the dual-tracer TACs for separating [18F]FDG and

multiple [15O]H2O signals. Although this method does not require

the AIF of each tracer, the solution to the fitting problem is non-

unique because of the alternative estimation of the generating

functions and the decay coefficients. In addition, principal

component analysis (PCA) (14), generalised factor analysis (23),

reference region models (24), basis pursuit (25), and spectral

analysis with image-derived input functions (26) have been studied

for mPET separation. The mPET signals can also be separated by

assuming an additional high-energy g photon emitted with

positrons of one of the two tracers, therefore discriminating the

different isotopes (27–30). However, these methods are only

valid for some tracer combinations, i.e., a pure positron-emitting

isotope and a positron-g emitting isotope, limiting the selection of

tracers (30).

In recent years, deep learning (DL) has received much

attention in the area of mPET imaging. In comparison to the
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MTCM method, the supervised DL-based methods (i) separate

the mPET signals without explicitly knowing the AIF of each

tracer; (ii) have the ability to separate mPET signals using

staggered or even simultaneous injection protocols; and (iii)

sufficiently reduce the influence of noise in the separation

process. DL-based methods for mPET imaging mainly fall into

one of two categories: (i) learned post-separation of an mPET

reconstruction, such as filtered back projection (FBP) (31, 32),

maximum likelihood expectation maximisation (MLEM) (32–35),

and alternating direction method of multipliers (ADMM)

(32, 34, 36, 37), (ii) direct-learned mPET image separation from

sinogram (38, 39). The direct-learned method has also been

extended to the separation of simultaneous triple-tracers ([11C]

FMZ+[11C]MET+[18F]FDG) PET imaging based on simulated

data (40). Wan et al. proposed an unsupervised DL-based method

for joint mPET image separation and segmentation (41). Apart

from the use of DL techniques, a machine learning method based

on a recurrent extreme gradient boosting algorithm has also been

shown to outperform the MTCM method for dual-tracer TAC

separation for a region of interest (ROI) (42).

In this work, we characterise the feasibility of separating dynamic

triple-tracer myocardial PET images in the learned post-separation

framework, which has not thus far been reported elsewhere in the

literature. In particular, we propose a customised convolutional

encoder-decoder (CED) to separate triple-tracer ([18F]FDG+82Rb

+[94mTc]sestamibi) activity images of the myocardium into activity

images of each tracer and compare its separation performance with

dual-tracer ([18F]FDG+82Rb) separation and MTCM-based

separation in a simulation study.
2 Methods

2.1 Model of mPET imaging

A dynamic mPET scan records the spatiotemporal distribution of

a mixed uptake ofN tracers within a living organism. The multi-tracer

activity concentrations (i.e., multi-tracer TAC1) of an image voxel (or

in a ROI) at time t can be modeled as the linear superposition of the

pharmacokinetic model of each tracer (16, 17, 19)

CMulti(t; k) ¼ VBS(t)

þ (1� VB)
XN
n¼1

A(n)(t)� R(n)(t; k(n))
� �

e�l(n)t ,
(1)

where k is a vector that contains all tracer kinetic parameters, R(n)(t) is

the impulse response function of the nth tracer, l(n) denotes the rate of
frontiersin.org
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radioactive decay, A(n)(t) is the tracer concentration in plasma (i.e.,

AIF), S(t) is the total activity concentration in whole blood,

VB [ (0, 1] is the fractional volume of blood in the tissue, and �
denotes the convolution operator. The mPET image intensity at

voxel j in time frame k is then given by Equation 2:

xMulti
k (kj) ¼

ðtk,e
tk,s

CMulti(t; kj)dt, (2)

where tk,s and tk,e represent the start and end points of frame k. The

expectation of the projection mPET data yk(k) in time frame k with

respect to the dynamic mPET image xk(k) can be expressed by

Equation 3:

yMulti
k (k) ¼ PxMulti

k (k)þ rk , (3)

where the (i, j)th element of the system matrix P [ RI�J is the

probability of detecting an event originating in voxel j by detector

pair i, I and J are the total number of detector pairs and image

voxels, respectively, and rk is the expectation of scattered and

random events in the kth frame.
2https://www.ub.edu/mnms/
3The kinetic parameters used for the [94mTc]sestamibi TAC simulations are

the same as those used in the literature (44), but for the isotope 99mTc.
2.2 Deep learned triple-tracer PET image
separation

The overview of the proposed deep learned post-separation

framework for triple-tracer PET image separation is illustrated in

Figure 1. In our proposed DL-based method, the triple-tracer

activity images (voxel-wise TACs) were used as the network input

and the single-tracer activity images were used as the training labels.

We employed an architecture based on the CED, which has been

widely used in the DL-based mPET image separation (31, 33, 38–40).

In the proposed network, the encoder branches consist of the

repeated application of two 3� 3 2D convolution layers, each

followed by a batch normalisation (BN) and a parametric rectified

linear unit (PReLU), in addition to a max-pooling layer for

downsampling, followed by the BN and the PReLU. Each of the

decoder branches consists of a 3� 3 2D transposed convolution

layer for upsampling and two 3� 3 2D convolution layers, each

followed by the BN and the PReLU, and a 1� 1 2D convolution

layer at the end of each decoder branch. In addition, we activated

the output layer using a ReLU to enforce the non-negativity

constraint on the separated single-tracer activity images. The

number of trainable parameters for the proposed CED 2D is

approximately 2:1� 106. The mean squared error (MSE) loss is

applied to the activity images of each tracer, and their sum Ltotal
is used as the loss function for network training, which is given by

Equation 4:

Ltotal ¼
X3
n¼1

XS
s¼1

1
S
k�C(n)

s � Ĉ
(n)
s k22, (4)

where �C(n) denotes the activity images of the nth tracer in the

network output, Ĉ(n) is the activity images of the label single-

tracer, and S is the total number of training pairs.
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3 Simulation and validation

3.1 Data simulation

We have focused on the simulation study of the triple-tracer

myocardium PET image separation based on the combination of

[18F]FDG, 82Rb, and [94mTc]sestamibi with decay constants

l
18F½ � ¼ log (2)=109:7min�1, l

82Rb½ � ¼ log (2)=1:26min�1 and

l
94mTc½ � ¼ log (2)=52min�1. A simulation was performed to

assess the performance of the proposed DL-based triple-tracer

separation method. A myocardium dataset was obtained from

the 3D MRI cardiac scans provided in the M&Ms challenge2

(43). Myocardium segments were extracted from two non-

continuous slices (short-axis view), which were selected from one

of the frames of each 3D dynamic MRI image. A total of 140

myocardium segment images were obtained. Each myocardium

segment image was resized to 128� 128 with a voxel size of

2:602� 2:602 mm2, and further randomly divided into 4 to 14

sub-regions with well-defined boundaries. The ground-truth

kinetic parameter for a given sub-region was sampled from a

Gaussian distribution with mean values derived from the

literature (44–46) (see Table 1)3 and coefficient of variation equal

to 0.1 to simulate heterogeneous variation within the whole

myocardium region (absolute values were taken after sampling).

A simulated ground-truth K1 parametric map of FDG is shown

in Figure 2A (for plotting only, we restricted the voxel values to

[0.4, 0.7] to demonstrate the sub-region segments), along with

the pre-defined myocardium ROI. The AIFs of each tracer were

generated along the shape of the AIFs from the literature (44–46)

using Feng’s input function model (47). To further simulate the

population variation in the myocardium dataset, the parameters

of Feng’s input function model were also modelled as a Gaussian

variable with a coefficient of variation equal to 0.1 (39), and the

absolute values were taken after sampling.

The ground-truth single-tracer voxel-wise TACs were generated

from the simulated parametric maps using the irreversible two-tissue

compartment model for FDG and Rb, and the reversible two-tissue

compartment model for sestamibi. The single-tracer voxel-wise

TACs were then summed up together to form the ground-truth

triple-tracer voxel-wise TACs. In this study, we propose a realistic

protocol for the dynamic triple-tracer PET scan, which was

conducted for 60min after the [18F]FDG injection (with an initial

60 min off-bed time). 82Rb was injected 5min after the start of the

dynamic PET scan, followed by the injection of [94mTc]sestamibi

with a 10min delay. An example of the simulated AIFs and the

ROI TACs without decay correction based on the proposed scan

protocol is shown in Figure 3.
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FIGURE 1

The proposed CED 2D structure. The input is the triple-tracer activity images (voxel-wise TACs with L time frames). The information shown in the plot
is based on the simulation study described in Section 3.
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For the reconstruction of the simulated data, we modelled a GE

Discovery ST PET-CT scanner with a system sensitivity of �2 cps/

kBq in 2D mode (48). Noise-free sinogram data were generated by

forward-projecting the dynamic ground-truth images (for both

triple-tracer and single-tracer) using a pre-calculated system

matrix. A 20% uniform background was included as a simple

model for the mean of the random and scatter background events.

A scaling factor was applied to this projected data in order to

generate the mean count levels in the sinogram, prior to the

introduction of Poisson noise into each sinogram bin. This scaling

factor was chosen to obtain datasets containing mean total counts

in each 2D sinogram, where the mean total counts were modelled

based on the system sensitivity of the scanner (Figure 2B).

The dynamic PET scan (60min for triple-tracer and single-tracer)

was divided into 28 time frames: 1� 5 min, 4� 0:25 min, 2� 0:5

min, 3� 1 min, 1� 2 min, 1� 3 min, 4� 0:25 min, 2� 0:5 min,

3� 1 min, 1� 2 min, 1� 3 min, 3� 5 min, 2� 10 min. Dynamic

images were reconstructed using the MLEM algorithm (initialised

by uniform images) with 128 iterations without post-smoothing.

The reconstructed images were frame-length corrected and thus

equivalent to reconstructed tracer activity images (voxel-wise TACs).
TABLE 1 Mean values of ground-truth kinetic parameters of the
myocardium tissue.

K1 k2 k3 k4 VB

FDG 0.6 1.2 0.1 – 0.38

Rb 1.4822 0.3159 0.004 – 0.38

sestamibi 0.4 0.094 0.02 0.007 0.38

Units: K1: cc/min/g; k2–k4: min�1; VB: unit-less.

Frontiers in Nuclear Medicine 04
3.2 Implementation details and reference
methods

For the proposed DL-based method, the dynamic triple-tracer

noisy MLEM reconstruction was used as the network input, and

the dynamic single-tracer noisy MLEM reconstructions were used

as the training labels. We compared the separation performance

of the triple-tracer (TT) with the dual-tracer (DT) and the

single-tracer (ST) using the proposed DL-based method. For the

dual-tracer separation, dynamic dual-tracer ([18F]FDG and 82Rb)

noisy MLEM reconstructions were used as the network input and

the loss function Ltotal (with n ¼ 2) was applied to [18F]FDG and
82Rb only, and dynamic noisy single-tracer MLEM reconstructions

were used as training labels. For the single-tracer case, the dynamic

noisy single-tracer MLEM reconstruction was used as the network

input. To have a fair comparison, the dynamic noisy single-tracer

MLEM reconstructions were also used as training labels (with

n ¼ 1 in Ltotal). All network training was performed in the same

manner. In total, 120 simulated data examples were used for

training, 10 for validation and 10 for testing. The network

parameters were initialised using the Xavier initialisation. The

Adam algorithm (49) was used with a learning rate of 5� 10�4

and a batch size equal to 8 for network training. To prevent

overfitting, all networks were trained for 1,500 epochs with early

stropping if there was no improvement in the validation metrics.

The network training and evaluation steps were implemented in

PyTorch, on a PC with an NVIDIA GeForce RTX 3,090 GPU.

We also compared the DL-based method with the voxel-wise

MTCM-based method (v-MTCM) (14, 16). The v-MTCM

method estimates the single-tracer TACs by fitting the

triple-tracer kinetic model as shown in Equation 1 (with
frontiersin.org
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FIGURE 2

A simulated example of (A) ground-truth K1 parametric map of FDG (with 7 local regions) along with the pre-defined myocardium ROI (the ring shape
indicates the whole myocardium region), and (B) total number of counts in a dynamic triple-tracer scan and dynamic single-tracer scans.

FIGURE 3

The simulated AIFs (dashed lines), single-tracer TACs (red, blue and
magenta) and triple-tracer TACs (black).
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known AIFs of each tracer4) to the measured triple-tracer TACs,

i.e., the dynamic triple-tracer noisy MLEM, using voxel-wise

weighted least squares (VWLS). Note that the fitting was only

performed on the frames starting at 60 min after FDG

injection, i.e., on the dynamic triple-tracer images obtained

within the 60 min triple-tracer PET scan. The time frame

durations were used as weighting factors to compensate for

non-uniform temporal sampling (16). The trust-region-

reflective algorithm was used to perform the VWLS fitting.
4In the simulation study, we focused on the validation of the algorithm and

thus the AIFs are assumed to be known.

Frontiers in Nuclear Medicine 05
The stopping criteria were set such that the optimisation

procedure was stopped when the relative termination tolerance

of the objective function was less than 1� 10�8 or the

maximum number of iterations (1,600 iterates) was achieved

(21). The initial values of the kinetic parameters k were set to

be 0.01 for all voxels and the values of the lower bounds for

each parameter were set to be 1� 10�5, while the values of the

upper bounds for VB, K1 and k2 � k4 were set to be

[1, 5, 2, 1, 1, 1], respectively.

Both the DL-based and the MTCM-based methods can be

implemented at the ROI level for triple-tracer ROI-TAC

separation. The triple-tracer ROI TACs were extracted from the

dynamic triple-tracer noisy MLEM followed by a 1D TAC

separation. For the DL-based method, we simply replaced the

2D modules in the proposed network shown in Figure 1 with

their 1D versions (CED 1D). The number of trainable

parameters for the CED 1D is approximately 7:7� 105. The

triple-tracer ROI TACs were used as the network input and the

single-tracer ROI TACs extracted from the dynamic single-

tracer noisy MLEM were used as the training labels. To perform

the MTCM-based method at the ROI level (ROI-MTCM), the

triple-tracer compartment model was fitted to the extracted

triple-tracer ROI TACs to recover the ROI TACs of each tracer

using the single-voxel WLS. Both the CED 1D and the ROI-

MTCM methods were implemented in the same manner as

described for the voxel-level separation.
3.3 Evaluation metrics

3.3.1 Voxel-level bias-variance analysis
The separation performance of the different methods was

evaluated over R ¼ 20 different noise realisations using the

voxel-level normalised root mean square error (NRMSE)

(Equation 5)

NRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bias2 þ SD2

p
, (5)
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with the bias and standard deviation (SD) given by Equation 6:

Bias ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

j[V (�xj � xRefj )2P
j[V (xRefj )2

vuut � 100%,

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
R

PR
r¼1

P
j[V (�xj � xrj )P

j[V (xRefj )2

vuut � 100%,

(6)

where V is the total myocardium region, �xj ¼ 1
R

PR
r¼1 x

r
j is the

mean value for voxel j in the separated image x, obtained by

taking the average of the R noise realisations, and xRef is a

reference image for the error calculation. The single-tracer noise-

free (NF) MLEM reconstructions (initialised by uniform images,

with 128 iterations) were used as the reference image in all cases.

3.3.2 ROI-level bias-variance analysis
The separated single-tracer TACs were extracted from a pre-

defined ROI, as shown on the right-hand side in Figure 2A. The

TAC-NRMSE values were also calculated to evaluate the ROI-

TAC quantification (Equation 7)

NRMSETAC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BiasTAC2 þ SDTAC

2
p

, (7)

with the TAC-bias and TAC-SD given by Equation 8:

BiasTAC ¼ j�c� cRef j
cRef

� 100%,

SDTAC ¼ 1
cRef

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
R

XR
r¼1

ðcr � �cÞ2
vuut � 100%,

(8)

where cRef is the single-tracer ROI TACs extracted from the dynamic

single-tracer noise-free MLEM, and �c ¼ 1
R

PR
r¼1 c

r denotes the mean

of the R noise realisations, and cr is the ROI TACs with the mean

ROI uptake in each time frame in the rth realisation.
5The realisations of noise-free triple-tracer separation using the v-MTCM

method were obtained by performing re-runs of the VWLS using different

random initialisations of the kinetic parameters k.
4 Results

4.1 Separated image quality

Figure 4 shows the single-tracer noise-free MLEM and the

separated single-tracer activity images by different separation

methods for frame 16 (a 15-s frame, at 1 min after the injection

of [94mTc]sestamibi). It can be observed that the triple-tracer

separation using the CED 2D (with 120 training examples) can

substantially reduce the image noise compared to the triple-tracer

v-MTCM separation. Figure 5 shows the quantification results of

the separated single-tracer activity images (all time frames were

considered). The performance of the triple-tracer separations by

using different methods is shown in the top row. For the single-

tracer activity images, lower bias and SD were found by fitting

the compartment model to the single-tracer noisy MLEM voxel

by voxel (v-STCM) for FDG, Rb and sestamibi (moving from the
Frontiers in Nuclear Medicine 06
yellow cluster to the black cluster), which is consistent

with the visual impression of the activity images shown in

Figure 4 (by comparing the second and third columns).

Although the single-tracer CED 2D further reduces the SD

compared to the v-STCM, a higher bias was still obtained due

to the small number of training pairs and the prior of the

proposed network.

For the considered triple-tracer separation, the situation

worsens. High bias was obtained for each tracer using the v-

MTCM method for the noisy triple-tracer separation compared

to the single-tracer cases. The main reason is that the MTCM-

based method is sensitive to noise and may fall into local

minima even when the noise level is low (21). This can be

verified by comparing the performance of the v-MTCM method

for noise-free triple-tracer separation,5 where the SD is much

lower, but the bias level is still higher than the single-tracer noisy

v-MTCM. The DL-based method, CED 2D, sufficiently reduces

the SD and achieved lower bias compared to the v-MTCM

method for noisy triple-tracer separation even though the

network was trained using noisy labels. The CED 2D uses both

spatial and temporal information for triple-tracer separation,

while the v-MTCM method only uses temporal information and

is highly dependent on prior information, such as the time delay

intervals between tracer injections (33, 42). More importantly,

the CED 2D with MSE loss learns to output the mean of all

plausible noisy explanations when it is trained using noisy labels,

and thus the proposed network implicitly learns to denoise the

output images (33). However, the CED 2D for triple-tracer

separation fails to reach the same level of bias and SD as the

CED 2D for single-tracer using the same number of training

examples, indicating that the triple-tracer separation task is still

challenging for the proposed DL-based method.

Dual-tracer ([18F]FDG and 82Rb) separation was also

investigated. The bias and SD trade-off is shown in the bottom

row of Figure 5. The CED 2D results in lower SD but higher

bias compared to the v-MTCM for noisy dual-tracer separation

for both FDG and Rb. The lower bias level in the v-MTCM

separation is due to several factors: (i) the very short half-life of
82Rb (76-s), (ii) the injection of 82Rb was delayed by 5 min after

the start of the dynamic PET scan, i.e., only the [18F]FDG signal

was measured in the first 5 min, and (iii) the activity

concentration of [18F]FDG tends to become stable (see the rather

flat red line in Figure 3). These factors also make the dual-tracer

signals become much easier to disentangle compared to the

triple-tracer separation task, leading to lower bias and SD in the

dual-tracer separation compared to the triple-tracer case for both

the v-MTCM and the CED 2D. We also noted that the bias and

SD of Rb are higher than those of FDG and sestamibi for the

single-tracer, the dual-tracer, and the triple-tracer cases. This is
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FIGURE 4

A test example of the single-tracer noise-free and noisy MLEM activity images and the separated activity images of each tracer by different methods
for frame 16. The NRMSE values of each separated image are shown at the bottom.

FIGURE 5

Bias and SD trade-off (over 10 test data) for the separated single-tracer activity images (all time frames were considered) by using different methods.
Top-row: performance for triple-tracer separations, bottom-row: performance for dual-tracer separations.
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because the MLEM reconstructions of Rb were extremely noisy due

to the low-count level caused by the short half-life of 82Rb and the

short time frame duration in the early time frames.
4.2 Impact of the number of training
examples

We retrained each CED 2D using different sample sizes to

assess the impact of the number of training examples on triple-

tracer separation. Figure 6 shows that the NRMSE values of the

separated single-tracer activity images decrease as the increasing

number of training examples (from 8 to 120). With 120 training

examples, the CED 2D triple-tracer separation achieved �12%,

�15% and �12% NRMSE values for FDG, Rb and sestamibi,

respectively. However, these errors are still higher than those of

the CED 2D for single-tracer using the same number of training

examples (120 pairs), which again shows the bottleneck of the

proposed DL-based separation method.
4.3 Parametric map separation

Parametric imaging was also performed on the separated

activity images. The v-STCM method was used to estimate the

parametric maps from the separated single-tracer images

obtained from the CED 2D. Note that in the v-MTCM method,

the parametric images of each tracer were separated before

recovering the single-tracer activity images, eliminating the need

for post-estimation. The parametric maps recovered from the

single-tracer noise-free MLEM6 were used as reference images.

Figure 7 shows the parametric images of [18F]FDG for a static

image corresponding to the last 20-min interval obtained by

frame integration, 82Rb delivery rate k3, and [94mTc]sestamibi

delivery rate K1. Compared with the parametric images estimated

from the triple-tracer v-MTCM separated activity images, the

CED 2D results are more similar to the reference images.

Figure 8 shows the corresponding bias and SD trade-off of the

separated parametric images. Without the impact of noise, the

parametric maps obtained from the noise-free v-MTCM

separation achieved much lower bias and SD compared to the

noisy v-MTCM separation for both the triple and dual-tracer

separations. The parametric maps obtained from the CED 2D

separation exhibit a dramatic reduction in SD compared to the

noisy v-MTCM separation. In addition, lower bias and SD of the

parametric maps were achieved in the dual-tracer separations

compared to the triple-tracer separations for both the v-MTCM

and the CED 2D (see Subsection 4.1 for detailed discussion).

However, the bias of the static FDG and sestamibi K1 estimated
6Note that the noise-free MLEM parametric images are still far away from

the ground-truth because of the early termination of the MLEM algorithm

(128 iterations).
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from the triple-tracer and dual-tracer separations using the

v-MTCM method is lower than that of the CED 2D, indicating

the lack of training examples and the weak inductive prior of the

CED 2D. The Rb k3 images generally have higher bias and SD

compared to the FDG static and sestamibi K1 images using the

v-MTCM, demonstrating that the separation and estimation of

Rb k3 is still challenging. However, a clear reduction in bias and

SD for k3 was achieved by using the CED 2D, which is

consistent with the observations in Figure 7.
4.4 ROI-TAC separation via CED 1D

The separated ROI TACs using the MTCM-based and DL-

based methods were also assessed. Figure 9 shows the mean

separation results of a single test example over 20 different noise

realisations. The reference single-tracer ROI TACs extracted from

the single-tracer noise-free MLEM (dashed lines), the separated

ROI TACs using the voxel-level methods (v-MTCM and CED

2D) and the ROI-level methods (ROI-MTCM and CED 1D) are

presented. Both the CED 2D and the CED 1D generally resemble

the reference TACs of each tracer compared to the v-MTCM and

the ROI-MTCM.

The NRMSE of the separated TACs are shown in Figure 10. For

the MTCM-based separation methods, the v-MTCM results in

much lower NRMSE for all tracers compared to the ROI-MTCM,

indicating that the separation performance was enhanced for the

MTCM-based method by considering the voxel-wise separation

in the myocardium ROI. On average, a significant reduction in

NRMSE was achieved by the CED 2D and the CED 1D

compared to the v-MTCM and the ROI-MTCM for all tracers.

The NRMSE of the CED 1D is higher than that of the CED 2D

for FDG, while it is lower for Rb and sestamibi. We observed

that the ROI TAC of FDG became stable (see the rather flat red

dashed lines in Figure 9). The CED 2D implicitly learned to

denoise the output images, which is beneficial for the separation

of the rather flat FDG ROI TAC. However, the Rb and sestamibi

ROI TACs each contain a peak at the very beginning, which is

more difficult to recover in the separation compared to the FDG

ROI TAC. In this case, the CED 1D results in a better separation

performance. The CED 1D learns a direct mapping to separate

single-tracer TACs from triple-tracer TACs in the time domain,

which is more effective, whereas the CED 2D is an indirect

method where single-tracer TACs are extracted from single-tracer

images after the separation in the image domain. However, the

NRMSE of the separated TACs using either CED 1D or CED 2D

in general fails to reach the same level as the single-tracer noisy

MLEM as highlighted by the dashed yellow lines.
5 Discussion

In this paper, we demonstrated the feasibility of deep learned

triple-tracer ([18F]FDG, 82Rb and [94mTc]sestamibi) myocardium

PET image separation using simulated data. We simulated the

myocardium phantoms based on slices extracted from real
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FIGURE 6

NRMSE levels (over 10 test data) of the separated single-tracer activity images (all time frames were considered) by using the triple-tracer CED 2D with
different numbers of training examples. The yellow dashed lines indicate the median of the NRMSE of each tracer using the single-tracer CED 2D.
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patient cardiac MRI images. The ground-truth activity images of

each tracer were generated from the simulated parametric maps

with the AIFs generated based on Feng’s input function model.

The conventional MTCM methods and the proposed DL-based

method were investigated in the simulation study. The v-MTCM

method only uses temporal information for the separation, and

the fitting process was sensitive to noise and may suffer from

local minima, leading to the poor quality of the separated
FIGURE 7

A test example of the single-tracer ground-truth, the single-tracer noise-fr
tracer by different methods.
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images. The proposed DL-based separation (CED 2D) can

dramatically improve the separated image quality by using both

spatial and temporal information for triple-tracer separation.

Considering only the dual-tracer ([18F]FDG and 82Rb), the

v-MTCM method achieves a lower bias compared to the CED

2D for the separated activity images. This is because, in the dual-

tracer case, the very short half-life of 82Rb, the delayed injection

time of 82Rb and the almost constant activity concentration of
ee MLEM parametric maps and the separated parametric maps of each
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FIGURE 8

Bias and SD trade-off (over 10 test data) for the separated parametric maps. Top-row: performance of triple-tracer separations, bottom-row:
performance of dual-tracer separations.
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[18F]FDG as background offers strong prior information for the v-

MTCM separation. However, the performance of the v-MTCM

method still suffers from noise, resulting in a higher SD

compared to the CED 2D separation. The separation of the
FIGURE 9

A test example of the mean separated (non-decay corrected) TACs in the p

Frontiers in Nuclear Medicine 10
parametric maps was also investigated. The CED 2D significantly

reduces the noise in the separated parametric images compared

to the v-MTCM method. Compared to the CED 2D, lower bias

was obtained for FDG static and sestamibi K1 using the v-
re-defined myocardium ROI over 20 noise realisations.
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FIGURE 10

NRMSE (over 10 test data) of the separated ROI TACs (non-decay corrected) using the triple-tracer v-MTCM and CED at the voxel (2D) and ROI (1D)
level. The yellow dashed lines indicate the median of the NRMSE of the ROI TACs extracted from the single-tracer noisy MLEM.
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MTCM for both triple and dual-tracer separations, indicating that

the proposed DL-based method still suffers from the lack of

training pairs and the weak inductive prior of the network. The

separation of the triple-tracer ROI TACs was also evaluated,

showing that the v-MTCM separation results in lower NRMSE

values compared to those of the ROI-MTCM separation. The

CED 2D and the CED 1D can further reduce the NRMSE

markedly. In addition, the CED 1D offers a better ROI-TAC

separation compared to the CED 2D for 82Rb and [94mTc]

sestamibi, where their ROI-TACs contained a peak at the

beginning. When the ROI TACs are rather flat, as shown for

[18F]FDG, the CED 2D gives a better separation performance

compared to the CED 1D. The results of the simulation study

show a promising direction and also provide guidance for the

DL-based separation method in future physical phantom

experiments and real patient data studies.

This study has several limitations, five of which are discussed

below. (1) The study only considered the myocardium tissue,

overlooking the fact that the blood pool region is also imaged in

dynamic cardiac PET scans. The AIFs could therefore potentially

be extracted from the blood-pool region in the dynamic PET

images and integrated into the proposed DL-based method as

prior information to facilitate the mPET separation. (2) The

current study exclusively focuses on the triple-tracer separation

of myocardium PET images using the tracer combination of

[18F]FDG, 82Rb and [94mTc]sestamibi. Additional investigations

are required to explore the application of the proposed

framework to other mPET separation tasks, such as the

separation of mPET brain images using different tracer

combinations. (3) The impact of (i) relative and absolute

injection dose on the triple-tracer imaging, (ii) the order of

tracer injection, and (iii) the scanning protocol, were not

investigated in this study. (4) The present work only focuses on

the separation for 2D PET images whereas conventional PET

imaging is typically conducted in 3D. Even when 3D PET

imaging is considered, the low-count levels encountered in short

time frames can lead to extremely noisy MLEM reconstructions,

which makes the task of mPET image separation even more

challenging. With new techniques to improve the quality of
Frontiers in Nuclear Medicine 11
reconstructed PET images (50) and the arrival of new scanners,

e.g., total body PET, the higher-quality image data could be

utilised to further improve the mPET separation. (5) The present

study is based on simulated data. The proposed model would

need to be investigated and validated rigorously on physical

phantoms or synthetic data to assess its feasibility for real

data applications.

The proposed pure data-driven approach usually uses over-

parameterised networks with only a very weak inductive prior

and requires a large amount of training data, while the

availability of mPET data is typically limited. To acquire data for

network training (in a supervised manner), in real practice, each

patient would need to undergo three independent single-tracer

dynamic PET scans (used as training labels) and one triple-tracer

dynamic PET scan (used as network input), resulting in a long

scan duration for a given patient. Additionally, compared to

dynamic PET imaging, short-duration static imaging is by far the

more commonly encountered clinical imaging protocol for

diagnosis and treatment monitoring. Therefore, acquiring a large

number of training datasets is challenging in practice. A potential

future direction to improve DL-based mPET separation with less

training data is to incorporate a stronger inductive prior, such as

kinetic modeling, into the deep network (51).

Although the current study has shown the robustness of using

DL for mPET separation, the ability to generalise to other tracer

combinations or images that may lie outside the training

distribution still remains a concern. A future study will

investigate the use of fine-tuning of a pre-trained network

(trained using phantom and Monte Carlo simulation data) with

unseen data or real patient data in a self-supervised manner (52)

to improve its generalisation ability.
6 Conclusions

We have developed a DL-based method for triple-tracer

myocardium PET image separation and demonstrated the results

of the proof-of-concept study based on simulated data. Unlike

from the conventional MTCM method, the proposed DL-based
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method separates the triple-tracer PET image without explicitly

knowing the AIFs of each tracer. As compared to the MTCM

separation, the proposed method uses spatiotemporal

information for the separation, which improves the separation

performance at both the voxel and ROI level. The simulation

study also demonstrates the feasibility and potential of the

proposed DL-based method for the application in pre-clinical

and clinical studies.
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