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Mixture prior distributions and
Bayesian models for robust
radionuclide image processing
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2Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen,
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The diagnosis of medical conditions and subsequent treatment often involves
radionuclide imaging techniques. To refine localisation accuracy and improve
diagnostic confidence, compared with the use of a single scanning technique,
a combination of two (or more) techniques can be used but with a higher risk
of misalignment. For this to be reliable and accurate, recorded data undergo
processing to suppress noise and enhance resolution. A step in image
processing techniques for such inverse problems is the inclusion of smoothing.
Standard approaches, however, are usually limited to applying identical models
globally. In this study, we propose a novel Laplace and Gaussian mixture prior
distribution that incorporates different smoothing strategies with the automatic
model-based estimation of mixture component weightings creating a locally
adaptive model. A fully Bayesian approach is presented using multi-level
hierarchical modelling and Markov chain Monte Carlo (MCMC) estimation
methods to sample from the posterior distribution and hence perform
estimation. The proposed methods are assessed using simulated g-eyeTM

camera images and demonstrate greater noise reduction than existing
methods but without compromising resolution. As well as image estimates, the
MCMC methods also provide posterior variance estimates and hence
uncertainty quantification takes into consideration any potential sources of
variability. The use of mixture prior models, part Laplace random field and part
Gaussian random field, within a Bayesian modelling approach is not limited to
medical imaging applications but provides a more general framework for
analysing other spatial inverse problems. Locally adaptive prior distributions
provide a more realistic model, which leads to robust results and hence more
reliable decision-making, especially in nuclear medicine. They can become a
standard part of the toolkit of everyone working in image processing applications.

KEYWORDS

medical imaging, Bayesian methods, machine learning, inhomogeneous models,

Markov chain Monte Carlo

1 Introduction

Radionuclide imaging is widely used for the diagnosis of several diseases and monitoring

their treatment (1–4). However, the images inherently suffer from relatively limited resolution

due to motion, collimator size, and scatter, as well as noise due to limited statistics (5, 6). The

true biological image can be approximated by incorporating a transformation matrix.

However, this matrix is too large and ill-posed to obtain the exact image by directly

solving a system of linear equations.
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Image processing methods are commonly used to solve such

ill-posed inverse problems. In medical imaging, one can derive a

new image of the unknown emitter activity X from the measured

data P by solving the inverse problem. The measured data are

related to “the actual activity” with form E[P] ¼ f (X) being

identified as suitable for many different image applications (7, 8).

However, depending on the transformation we are looking into,

f (X) can turn to a linear function with a projection matrix or

known non-linear transformation function, especially when time

and multi-layers factor, including spread functions (9–11), Kernel

functions (12, 13), and wavelet and Fourier functions (9, 14).

The aim of this project was to improve image quality, having

obtained prior information regarding the underlying image (e.g.,

the method of image acquisition and the type of noise). We

propose making use of posterior distributions with knowledge-

based prior distributions, which are designed under a Bayesian

framework. Our approach will be demonstrated in synthetic data

derived from actual acquired radionuclide imaging data.
2 Methods of image processing

2.1 Bayesian modelling

We consider solving the linear inverse problem of calculating X
from Y , having m and n elements, respectively, with

transformation matrix A, of size n�m, consisting of elements

aij. These are related by

E[Y] ¼ AX, (1)

with image data noise, for example, Gaussian or Poisson,

depending on the type of scanning system being used.

2.1.1 Likelihood function
Assuming the image data from g-eyeTM follows a Poisson

distribution, then the conditional distribution for observation Y
given the unknown true image X is given by

fY jX y1, y2, . . . :yn j xð Þ ¼
Yn
i¼1

l
yi
i
exp �lið Þ

Yi!
, (2)

where E[Yi] ¼ li ¼
Pm

j¼1 aijxj, j ¼ 1, 2, . . . , m. In other words,

each projection data value yi has an according interaction with

the whole vector X (8).

2.1.2 Prior distribution
The prior distribution in our Bayesian application for image

processing follows the Gibbs form defining a Markov random

field (MRF). The variables in an MRF are only related to their

adjacent neighbours while being conditionally independent of the

others (15).The corresponding prior density is given by

pX x j Bð Þ ¼ Z�1 exp �Bk xð Þð Þ, Z ¼
ð
x
exp �Bk xð Þð Þdx,

X [ Rm, B . 0,
(3)
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where Z is the normalisation for the Gibbs distribution; the energy

function is k (15), representing the energy of the configuration of

pixels, and B is a non-negative smoothing parameter (16–18).

Furthermore, the energy function can be rewritten as the sum of

local energy functions F(�):

k xð Þ ¼
Xm
j¼1

Fj xð Þ, (4)

where F j(�) represents the local energy function corresponding to

Xj ¼ xj. Here, the first order of an MRF, which consists of four

closest neighbours (up, down, left, and right), is taken into

consideration.The linear combination of the candidate and its

closest neighbours is denoted as

F j xð Þ ¼
X

t[@ jð Þ
wjtf xj � xt

� �
, (5)

where wjt ¼ 0:5 in the first-order MRF. The set of nodes @(j) forms

a finite graph X with edges j � t (15). Finally, after employing an

MRF for pixel difference, the prior distribution is now written as

pX x j Bð Þ ¼ Z�1 exp �B
Xm
j¼1

X
t[N@ jð Þ

wjtf xj � xt
� �0

@
1
A: (6)

Mathematical forms within the potential functions can assign

priors with different properties. For instance, the two most common

cases are the absolute value and quadratic functions: f(m) ¼ jmj
and f(m) ¼ m2, respectively. Thereby, the corresponding priors

are an MRF with an absolute function [corresponding to a

Laplace MRF (LMRF)] and a quadratic potential function

[corresponding to a Gaussian MRF (GMRF)], respectively:

pXjt x j tð Þ ¼
1

2tð Þm exp �
Pm

j¼1

P
t[@ jð Þ jxj�xt j
t

� �
, xj � 0, t . 0;

1ffiffiffiffi
2p

p
tð Þm exp �

Pm

j¼1

P
t[@ jð Þ xj�xtð Þ2
2t2

� �
, xj � 0, t . 0:

8>><
>>:

(7)

This representation assumes that there is a high similarity

between a pixel and its neighbouring pixels. The prior mean is

expected to be zero, and the prior conditional variance is

t ¼ 1=B. Here, as t is a global prior variance parameter, the

potential function including t also retains the consistent

principal for an MRF: f(xj � xt) ¼ f(xt � xj). The constant

terms are k ¼ 1=2m and k ¼ 1=(2p)m=2 in each case, respectively.
2.1.3 Introduction of hyperprior distribution
It is common to introduce an uninformative or weakly informative

prior for prior parameters, such as t, like the uniform distribution and

other flat priors, especially when there is a lack of information in

advance. Nonetheless, a flat prior permits outcomes with equal

possibilities; this type of prior may lead to a posterior distribution
frontiersin.org
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with many equally likely outcomes that is an improper distribution,

and the estimation would fail to realise convergence.

As there is no supportive information about these variances

beforehand, we introduce a weakly informative hyperprior

distribution p(t)/ 1=t. This type of prior includes a Jacobian

transformation that was first suggested by DeGroot and Lindstrom

(19). It has since been widely used in many non-informative cases.

In general, the idea is to assign a uniform prior with an even

probability p to a logarithmic transformation of the unknown non-

negative parameter, represented as t ¼ log(t) and f (t)/ p.

Thereby, the probability for t is proportional to the Jacobian

transformation (dt=dt) from t to t: p(t)/ p � (dt=dt)/ 1=t. The

completed posterior description, after employing a hyperprior of

Laplace and Gaussian types, respectively, is given by

fX,tjY x, t j yð Þ/ fYjX y j xð ÞpXjt x j tð Þp tð Þ

/

Qn
i¼1

P
i
ai j xjð Þyi
td

exp �Pm
j¼1

P
i ai j xj

� ��
P

t[N@ jð Þ
jxj�xt j

t

 !
1
t ;

Qn
i¼1

P
i
ai j xjð Þyi
td

exp �Pm
j¼1

P
i ai j xj

� ��
P

t[N@ jð Þ
xj�xtð Þ2

2t2

 !
1
t :

8>>>>><
>>>>>:

(8)

When estimating the parameter t, we can regard X as a known

parameter and then update t from fX,t(x, t)/ p(x j t)p(t) by

MCMC estimation. Hence, we can divide the inference of full joint

distribution p(x, t j y) into two successive steps. Multivariate has a

broader application in comparison with univariate distribution in

reality. The MCMC sampling method can be extended to the

hierarchical case. The main drawback of MCMC is that when the

posteriors’ structure is complex, with an increasing number of

hierarchical levels and observations, the computation of the

estimation process can become prohibitively expensive.

The earlier definition of the likelihood function and the prior

distribution provides a general idea of how image processing can

be realised under Bayesian modelling. In addition, it illustrates

the potential ways of influencing posterior estimations, as prior

distributions offer two options: an LMRF and a GMRF.
2.2 Sensitivity analysis for prior distribution

In simulation applications, certain soft and high-contrast edges

are intentionally designed for further estimation analysis, since the

features of soft and high-contrast edges are essential for medical

diagnosis in real-world clinical experience. In other words,

detecting edges correctly can help identify tumors and other

medical conditions. Hence, we employ two simulation datasets,

as shown in Figure 1. For the first case, the average pixel value

within the hot regions is around 1,099, while the average pixel

value in the background is 0. For the second dataset, the pixels

in the hot regions are 400, while the ones in the background are 75.

The simulated data is stored in a pixel matrix of size 29 × 58 and

has been created as a potential truth for modelling outcomes

assessment. One characterized by a high-contrast hot region,
Frontiers in Nuclear Medicine 03
represented as X, and the other exhibiting smooth changes,

denoted as X1. Observation Y, viewed as a degraded version of the

actual image X with blur and noise, is the observation dataset

comparable to the projection dataset in reality. As shown in

Figure 1a, the actual image consists of four sharp regions with

sharp boundaries. The largest is circular and located towards the

right of the scan. The smallest is an irregular shape located at the

bottom right of the circular. At the same time, the two other

regions are both rectangular and located towards the left of the

scanned image. Figure 1c depicts the observation image data with

low contrast resolution; blur is evident around the edge of each region.

Supposing the objects have a soft edge instead of the hard one. In

reality, a hard edge shown in Figure 1a would be challenging to

detect. Instead, the edges are likely to be considerably more softer.

Therefore, by applying a Gaussian kernel filter to the datasets

presented in Figure 1b, we obtain a more smoothing set of data.

If is the a Gaussian kernel, we say that. Similarly, the

relationship between and is based on the Poisson likelihood

function, as depicted in Figure 1d. The high blurring around the

high-contrast edge between hot regions and the background makes

it difficult to detect the original edge. The less helpful information

could be used during the following reconstruction modelling.

2.2.1 Regions of interest
Apart from the complete image as a globally estimated object,

regions of interest (RoIs) within the image are distinguished by the

corresponding location and the contrast in neighbouring values.

ROIs in each simulation dataset are highlighted, as shown in

Figures 1a,b accordingly.

The principle of identifying RoIs is based on the properties of

pixel density. In our case, the smoothing area refers to small pixel

variations, specifically those below 50. In high-contrast areas, the

variation is much higher, for instance, above 500. Hence, the

RoIs are labelled accordingly in Figure 1a. Furthermore, to

investigate the estimation effects within the dataset with high

smoothing levels, the same labels are applied in Figure 1b.

Regions 1 and 2 represent the high-contrast edges of the hot

regions, where the density gradient is most pronounced. Examples

of smoothed hot regions are denoted as Regions 3 and 4, indicating

areas where the activity has evened out, whereas Regions 5 and 6

represent smoothing areas within the background, showing regions

where the background density has been homogenised. Finally,

instances of high-contrast edges in the background are highlighted

in Regions 7 and 8, illustrating boundaries where there is a stark

density difference in the cooler areas of the simulation.

2.2.2 Homogeneous hyperprior parameter
estimation

For the two simulation examples, the homogeneous estimation for

parameter t after the introduction of hyperprior distribution

p(t) ¼ 1=t is shown in the following convergent Monte Carlo

chains in Figure 2. The trace plots demonstrate the convergence of

the parameter estimation after a short burning period. As in, the first

100 samples are discarded as the chain reaches its stationary regime.

Based on the Goldilocks principle, one school believes that the

acceptance rate should be in a range that is neither too high nor too
frontiersin.org
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FIGURE 1

RoIs within different scanning experiences. (a) RoIs within the first simulation experience X, where there is a high contrast between the hot region and
background. (b) RoIs within the second simulation experience X1, where high-contrast edges are smoothing. (c) The observation of degraded image
Y based on the simulation X. (d) The observation of degraded image Y1 based on the simulation X1.

FIGURE 2

Estimation trace plots (top) and posterior distributions of hyperparameter t for the first (left) and second (right) simulations under different priors.
(a) Estimation trace plot of t. (b) Estimation trace plot of t. (c) Posterior distribution of t. (d) Posterior distribution of t.
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low (20). Suppose the acceptance rate is high, indicating that the

variance of the proposed value is small, almost every step can be

accepted. In this case, obtaining a sample from every sample

space using MCMC is computationally expensive as it requires a

large number of iterations. However, if the acceptance rate is low,

which results from using a large variance, almost every sample

step will be rejected and the chain path will stick on a fixed

figure. In addition, proposal jump sizes can be decreased as the

low acceptance rate. Similarly, the size will increase as a high

acceptance rate. The “0.234 rule” has been considered practically;

proposing 0.234 is an asymptotically optimal acceptance rate

(21). In other words, the sampling variance strongly depends on

the comparison between 0.234 and the updated accept rate r in

the current algorithm: for every 10 iterations, estimation

t(kþ10) ¼ 0:5� t(k)(1þ r � (1=0:234))). In our case, we continue

to adopt this rule by scaling the proposal variance into the

MCMC application to improve the efficiency of the algorithm.

In the case of the first simulation dataset, the estimated global

hyperprior parameter t is approximately 185 in the posterior

distribution with a Laplace-type prior LMRF and a higher prior

variance of t ¼ 325 in the posterior distribution with a

Gaussian-type prior GMRF, as illustrated in Figure 2a. For the

second simulation application, the estimated value of t in the

LMRF is greater than the corresponding outcome in the GMRF,
FIGURE 3

Image processing of two image simulation datasets under different prior dis
denoted as I and II. Estimated images from a posterior distribution with G
(a) Estimated image from the model with GMRF I. (b) Estimated image fr
GMRF II. (d) Estimated image from the model with LMRF II.

Frontiers in Nuclear Medicine 05
with values of approximately 110 and 130, respectively, as shown

in Figure 2b. In addition, the posterior distributions of the

hyperprior parameter in Figures 2c,d exhibit a symmetric

Gaussian pattern, indicating the robustness of the estimations.
2.2.3 Homogeneous prior parameter estimation
Here, we display the image estimate from the posterior

estimation with an LMRF and a GMRF prior, accompanied by the

globally optimum t, as shown in Figure 3. There is more variation

in the hot region from the left side compared with the right one in

the first simulation application. For the second simulation dataset,

the outcomes from both posterior distributions approach closely

to the true value. The estimations indicate that both models can

capture the underlying smoothing image patterns.

Figure 4 shows the posterior estimation of pixels in the 20th row

and the 36th column within the pixel matrix. The 20th row crosses

two small hot regions and the 36th column crosses the largest

circular hot region. Here, true pixel values are shown in red and

pixel estimations from the different posterior distributions GMRF

(left) and LMRF (right) are shown in grey and blue, respectively,

accompanied by their associated confidence intervals. Both

estimators from different priors approach the true pixel value.

Although the confidence intervals for the two priors do cover the
tributions and optimum hypervariance t. The two simulation datasets are
aussian and Laplace random field priors denoted as GMRF and LMRF.
om the model with LMRF I. (c) Estimated image from the model with

frontiersin.org
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FIGURE 4

Posterior distributions of pixels under GMRF (left) and LMRF (right) prior distributions for the optimum homogeneous hyperprior variance parameter,
employing the first simulation dataset. Here, the posterior estimations for the 20th row are shown at the top, whereas those for the 36th column are
shown at the bottom. (a) Posterior estimation from the GMRF. (b) Posterior estimation from the LMRF. (c) Posterior estimation from the GMRF.
(d) Posterior estimation from the LMRF.
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true values, the pixel posteriors for the LMRFover the hot regions are

more uniform than those of the GMRF.

Again, the posterior estimations of pixels within the 20th row and

36th column in the second simulation dataset are shown in Figure 5.

The outcomes from both posterior distributions approach closely to

the true value. The estimations indicate that both models can

capture the underlying smoothing image patterns.

In general, the GMRF and LMRF posterior estimations are

similar for the second simulation dataset, in terms of the pixel

estimation xj and the homogeneous hyperprior parameter t. It is

opposed to the estimation conclusions from the first experience,

in which the estimated homogeneous t in the LMRF is smaller

than those of the GMRF, and the variation within the estimation

xj in the GMRF is higher than those of the LMRF.

2.2.4 Estimation comparison within regions of
interest

For the first estimation examples of the simulation dataset, the

optimal t obtained from the GMRF is larger than the one estimated
Frontiers in Nuclear Medicine 06
from the LMRF, approximately 330 and 150, respectively. Similarly,

the optimum t from the GMRF for each RoI is also greater than the

ones from the LMRF. Once t exceeds the optimum value, the mean

squared error (MSE) is experiencing a climb. It is noticeable that

the MSE from the separate models overlap at the beginning and

the end when t is extremely small or large. In other words,

improper t may invalidate the effect of estimation from priors.

When t is large, say O(104), the LRMR and GRMR become non-

informative priors, e.g., a uniform prior.

In the case of the LMRF, different optimum values of t are

obtained amongst the various RoIs when using the GMRF. Based

on the MSE, the measurement compares the difference between the

true value and the estimated value, providing the principle for our

estimation comparisons. Figure 6 shows that the LMRF performs

better both locally and globally compared with the GMRF.

However, when referring to the second simulation dataset, the

positions of the RoIs remain the same and the neighbouring pixels

are smoother upon the application of a blur kernel. Figure 7,

which compares the MSE of the two prior distributions while
frontiersin.org
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FIGURE 5

Posterior distributions of pixels under the GMRF (left) and LMRF (right) prior distributions for the optimum homogeneous hyperprior variance
parameter, employing the second simulation dataset. Here, the posterior estimations for the 20th row are shown at the top and those for the
36th column are shown at the bottom. (a) Posterior estimation from the GMRF. (b) Posterior estimation from the LMRF. (c) Posterior estimation
from the GMRF. (d) Posterior estimation from the LMRF.
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varying hyperparameter t in different RoIs, shows that the LMRF

prior performs better than that of the GMRF in RoIs 1 and

2. Although it shows that the global minimum MSE from the

LMRF is slightly smaller than the one from the GMRF, the GMRF

performs relatively better than the estimation from the LMRF in

several RoIs, for instance, Regions 1 and 2. Based on the MSE

performance, estimations from the GMRF are prior to the ones

from the LMRF in terms of global estimation or the estimation

within RoIs. Suppose there is another simulation dataset with a

higher smoothing level than the first two, we can assume that

GMRF can be an alternative solution for improving estimation

accuracy when the neighbourhood is smooth.
3 Bayesian modelling with a mixture
prior distribution

As pixels appear in different environments, for instance,

smooth regions and high-contrast areas, prior distributions with
Frontiers in Nuclear Medicine 07
different energy functions Fj(x) have accordingly different

estimation effects. Therefore, we introduce a mixture prior

distribution instead of a homogeneous prior into the application.
3.1 Mixture prior distribution

Assume the spatial information identifies a sharp boundary

between hot regions and the background, represented by

u ¼ {uj, j ¼ 1, 2, . . . , m}, which indicates a high-contrast edge

between hot regions and the background. The binary element uj
corresponds to xj. In other words, if uj ¼ 0, the pixel xj is more likely

to be within a smooth environment (labelled by u�). Otherwise, xj
locates on high-contrast areas (labelled by u) when uj ¼ 1:

pXju,tl ,tg xju,tl ,tg
� �¼ 1

Z

Ym
j¼1

�
uj
2tl

exp �
P

t[@ jð Þ jxj�xt j
tl

� �

þ 1�uj
� �
ffiffiffiffiffiffi
2p

p
tg

exp �
P

t[@ jð Þ xj�xt
� �2
2t2g

 !�
,

(9)
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FIGURE 6

Estimation comparison between two models. Estimation comparison of different RoIs while varying hyperparameter t. The blue lines indicate the MSE
in the case of a Gaussian Markov random field prior, and the orange lines indicate the MSE in the case of a Laplace Markov random field prior.
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where X¼ {xj, j¼1,2, ...,m}, u¼ {uj, j¼1,2, ...,m}, and uj is a binary

variable that has two values; either uj¼1 or uj¼0. The hyperprior

variances in the LMRF and GMRF priors are denoted as tl and

tg , respectively.
3.2 Assignment of hyperprior parameters

In medical imaging, the recording signal contrast between

the tissues varies by scanning time, the radioactive tracer, the

type and amount of tissues, and the post-processing technique.

It is difficult to estimate the pixel differences in different

scenarios. Hence, the assignment for hyperparameters tl and tg
within the Bayesian model is required to be capable of capturing

variation within pixels and realise the robust improvement in

estimation accuracy. In addition, the mixture of prior distributions

within the Bayesian model should be distinguished. Otherwise,

the modelling cannot classify the different terms of pixels into

two basic scenarios (small- and high-value variation). It is known

that the Bayesian model with the GMRF prior performs better

regarding smooth areas. For defining distributions for the

smoothing area, we can assign small expected variance t̂g ¼ 10

and the other prior distribution with expected t̂l ¼ 100 in the
Frontiers in Nuclear Medicine 08
Laplace random field prior. Therefore, we introduce Gaussian

hyperprior distributions for tl and tg with their mean parameters

equal to 100 and 10, respectively, and the standard variance

equal to 1:

p tlð Þ ¼ 1ffiffiffiffiffiffi
2p

p exp �jtl � 100j2� �
;

p tg
� � ¼ 1ffiffiffiffiffiffi

2p
p exp �jtg � 10j2� �

:

(10)

The primary hypothesis we hold is that the external spatial

information u is not available, which requires the introduction of

another probability r to decide the most likely hyperprior

distributions for each pixel. Therefore, the spatial location uj for

each pixel would have two results—either the pixel is within the

high-contrast area with a probability r or within the smoothing

area with a probability 1� r. Finally, the spatial factor

u ¼ {u j, j ¼ 1, 2, 3, . . . , m} is the collection for the whole event.

It is a conditional Bernoulli distribution based on the probability

pujr(u j r):

pujr ujrð Þ/
Ym
j¼1

ru j (1� r)1�u j , r . 0: (11)
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FIGURE 7

Estimation comparisons between two posterior distributions I. Estimation comparison of different RoIs while varying hyperparameter t. The blue lines
indicate the MSE in the case of a Gaussian Markov random field prior, and the orange lines indicate the MSE in the case of a Laplace Markov random
field prior.

FIGURE 8

Parallel implementation of a sequential Markov chain in Monte Carlo simulations. The components within this hierarchical Bayesian modelling from
left to right are the likelihood function between observation Y and the true unknown pixels X, mixture prior distribution for X, hyperprior distribution of
variances tg and tl , hyperprior distribution of spatial factor u, and the hyperprior distribution for probability r. Circles represent the unknown
parameters for further estimation, and squares indicate the correspondingly defined distribution. In addition, the corresponding estimation process
of MCMC can be found in Table 1.
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3.3 Hyperprior distribution

For the hyperprior distribution of the probability parameter r,

inside the hyperprior distribution p(u j r), the beta distribution

with parameters a and b is considered. As the beta distribution is

a conjugate prior distribution, and the value range of the variable r

is between 0 and 1, it is suitable for representing probabilities. The

expression for the beta hyperprior distribution is as follows:

r � beta a, bð Þ; prja,b r j a, bð Þ/ ra�1 1� rð Þb�1

B a, bð Þ ;

a . 0, b . 0,

(12)

where r [ [0, 1], b, and a are positive parameters within the beta

distribution prja,b(r j a, b).
When the shape parameter a and rate parameter b in the

beta distribution both equal 0:5, there are two peaks in the
FIGURE 9

Posterior estimations of pixels with mixture prior distribution in the first sim
the top, and those for the 36th column are shown on the bottom. (a) a
homogeneous hyperprior variance using an LMRF. (b) and (d) show the
mixture prior distribution. (a) Homogeneous prior distribution. (b) Mixtu
prior distribution.
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density function located at the boundaries of the parameter

space; in other words, the probabilities when r ¼ 0 and r ¼ 1

are higher than other values of r. This U-shaped distribution

can help classify a pixel into two different prior distributions:

the prior distribution with an absolute energy function

(LMRF) and the prior distribution with a squared energy

function (GMRF).

The posterior distribution is obtained after multiplying all the

defined terms:

pX,tl ,t j ju x, tl , tg ju
� � ¼ pXju,tl ,t j xju, tl , tg

� �
p tlð Þp tg

� �
¼
Ym
j¼1

u j

2tl
exp �

P
t[@j j xj � xt j

tl

� �
1ffiffiffiffiffiffi
2p

p exp �jtl � 100j2� ��

þ 1� uj
� �
ffiffiffiffiffiffi
2p

p
tg

exp �
P

t[@j xj � xt
� �2
2tg2

 !
1ffiffiffiffiffiffi
2p

p exp �jtg � 10j2� �!
:

(13)
ulation. Here, the posterior estimations for the 20th row are shown at
nd (c) show the pixel estimations from a posterior distribution with a
pixel estimations from a posterior distribution with a locally adaptive
re prior distribution. (c) Homogeneous prior distribution. (d) Mixture
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FIGURE 10

Posterior estimations of pixels withmixture prior distribution in the second simulation. Here, the posterior estimations for the 20th row are shown at the top,
and those for the 36th column are shownon the bottom. (a) and (c) show the pixel estimations froma posterior distributionwith a homogeneous hyperprior
variance using an LMRF. (b) and (d) show thepixel estimations fromaposterior distributionwith a locally adaptivemixture prior distribution. (a)Homogeneous
prior distribution. (b)Mixture prior distribution. (c) Homogeneous prior distribution. (d) Mixture prior distribution.
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Within a hierarchical Bayesian model, the estimation of unknown

parameters follows a sequential order from the bottom level of

prior parameters to the highest level of hyper parameters. This

sequential process still applies to our MCMC approach, apart

from the parallel estimation for hyperparameters tl and tg . Since

u, as a prior selection factor, allocates estimates into two

hyperprior distributions, the corresponding hypervariance

parameters tl and tg are conditional independent. Both

parameters can be estimated simultaneously before the estimation

process moves to the next stage, as seen in Figure 8.
4 Posterior estimation from the
Bayesian model

The spatial information describes the variation within the

surroundings of a pixel. If spatial information is available

prior to image processing, it can help distinguish the sub-
Frontiers in Nuclear Medicine 11
regions based on particular features, such as high contrast and

blurred. In particular, these features can help determine which

modelling process should be used. The posterior estimation

for classification label u and unknown image X can be

estimated by locally adaptive Bayesian modelling with a

conjugate beta prior distribution. The shape a and rate b

parameters in the beta prior distribution are both equal to 0.5,

and the Bayesian model with the single prior distribution with

an absolute energy function (LMRF) is regarded as the

corresponding comparison.
4.1 Posterior estimation comparison

Here, we present the posterior estimation derived from a

posterior distribution that combines multiple prior distributions. In

addition, we provide posterior estimation results using a posterior

distribution that incorporates the single prior distribution with the

LMRF for comparison. The optimal hyperprior variance with the
frontiersin.org
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FIGURE 11

Scan of a mouse using g-eyeTM. (a–c) The real scan of the mouse, a correspondingly simulated dataset and degraded observation dataset,
respectively; (d) represents the posterior estimations from Bayesian modelling; (e,f) the estimated bivariate spatial factors and classification
outcomes by using k-means. (a) Mouse scan using g-eyeTM. (b) Simulated image derived from the true scan. (c) Degraded observation image.
(d) Estimated image from the application. (e) Estimated classification. (f) Classification from k-means.
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LMRF is obtained in Section 2.2.2. As seen in Figures 9 and 10, the

estimate from the posterior distribution with mixture prior

distribution (right) has less variation than the estimate with the

locally adaptive hyperprior parameter (left). Furthermore, the MSE

is reduced after employing the posterior distribution with the

mixture prior distribution.

In the first simulation application, when estimating pixels from

the posterior distribution with a mixture prior, the credible

intervals for posterior estimates within the hot regions are more

stable than those derived from the posterior distribution with a

homogeneous prior distribution, as seen in Figure 9. For the
Frontiers in Nuclear Medicine 12
second simulation application, as seen in Figure 10, the

estimation performance from both posterior distributions is quite

similar. Both posterior distributions can realise image deblurring

and denoising.
4.2 Real application in small animal
imaging

We now apply the Bayesian model with mixture prior

distributions to medical images obtained from mouse scans using
frontiersin.org
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TABLE 1 MCMC for modelling with locally adaptive hyperprior
parameter r.

Algorithm MCMC for modelling with locally adaptive hyper prior distribution

For iteration k

Input: A list of initial values {X1 ¼ x(0)1 , X2 ¼ x(0)2 , . . . , Xm ¼ x(0)m };

{u1 ¼ u(0)1 , u2 ¼ u(0)2 , . . . , um ¼ u(0)m };

An initial positive constant r0.

For j ¼ {1, 2, . . . , m}

1. Propose a new value x(k)j � N(x(k�1)
j , (s(k))

2
); if and only if xkj � 0

2. Generate m � unif (0, 1)

3. Accept xkj with probability

a ¼ min
�
1,

fXjY ,u,tg ,tl (x
(k�1)
1 , x(k�1)

2 , ..., x(k)j , ..., x(k�1)
m jy, u, r(k�1) )

fXjY ,u,tg ,tl (x
(k�1)
1 , x(k�1)

2 , ..., x(k�1)
j , ..., x(k�1)

m jy, u, r(k�1) )

�
4. Compare the m with the calculated a,

5. if: m � a then

6. Accept the proposal value xj ¼ x(k)j
7. else xj ¼ x(k�1)

j

end updating x

Updating bivariate u follows similar steps between 1 to 7 but with a different
hyperprior distribution.

8. Propose a new candidate value rk � N(rk�1, (s(k)
r )2); if and only if rk � 0

9. Generate mr � unif (0, 1).

10. Accept r(k) with probability:

apr ¼ min
�
1,

frjX,u,tl ,tg (r
(k) jxk , uk )

frjX,u,tl ,tg (r
(k�1) jxk , uk )

�
,

if: mr � ar then

11. Accept the proposal value r ¼ r(k) ,

else r ¼ r(k�1)

12. end if

end updating r

Repeat the above steps until receiving a sufficiently large sampling size.

Zhang et al. 10.3389/fnume.2024.1380518
g-eyeTM to confirm the conclusions obtained from the previous

sections. Figure 11a shows the image of a mouse (22) injected

with 99mTc labelled radiotracer acquired with g-eyeTM, and

Figure 11b presents a correspondingly designed dataset for

assessment of the estimation procedure. Bayesian modelling with

a mixture prior distribution estimates the true image based on

the degraded observation image with additional noise and

blurring, as depicted in Figure 11c. The posterior estimate of the

underlying radiotracer activity in Figure 11d demonstrates a

significant improvement in image quality.

In Bayesian modelling, the binary hyperprior parameter of

the spatial factor u determines the prior distribution of a pixel

based on its corresponding neighbourhoods. Pixels xj are

classified within the hot regions when uj equals 1. However,

when uj equals 0, there is a high probability that the pixel is

within the smoothing region, especially the background. We

present the image pattern of spatial factor u in Figure 11e.

From the image, it is evident that the spatial factor can

effectively classify pixels within different environments, such

as hot regions and the background. In addition, the edge

between the hot regions and the background is easily

detected. Here, the classification outcome from k-means1 is
1The corresponding algorithm for k-means can be found in the Appendix.
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presented as a comparison with the classification from the

hyperprior parameter u, as seen in Figure 11f. The

classification method of k-means successfully identifies the

two clusters of pixels: one containing the high pixel value and

the other containing the low pixel value. However, this

method fails to classify the pixels that have a relatively small

value but are within the hot regions. The edge detection

between hot regions and the background is not as accurate

when compared with the classification results obtained from

Bayesian modelling.
5 Conclusion

The Bayesian approach shows the advantage of estimating

unknown parameters without the need for a big data

environment. In addition, Bayesian estimation can provide

high-quality medical images by deblurring and denoising. For

sensitivity analysis of Bayesian prior distributions,

the estimation object includes not only the completed image

as a single observation but also several pixel segments based

on different pixel neighbourhoods, such as high-contrast edges

and smoothing areas. The latter refers to local sensitivity

analysis, revealing that locally adaptive selection for prior

distributions with dissimilar properties can be one of the

solutions for improving estimation accuracy.

In our application, the mixture prior distribution comprises

two MRF priors with distinct energy functions:

Fj(x) ¼
P

t[@(j) jxj � xt j and Fj(x) ¼
P

t[@(j) (xj � xt)
2. The

spatial factor, denoted as u ¼ {uj, j ¼ 1, 2, . . . , m}, is

embedded within the mixture prior distribution as a bivariate

label, determining the pixels’ prior distribution. Furthermore,

the spatial factor as a hyperprior parameter not only

contributed to the prior distribution of pixels but also

provided the classification information. In other words, our

spatial factor classified the pixel environments into two

clusters, identifying one as smooth areas and the other as

high-contrast areas. This clustering function is analogous to

classification methods in machine learning, predicting the

probability of the occurrence of a binary outcome.

Although the initial application dataset presents a two-

dimensional image, when transforming the dataset from

projection images to tomography images, each pixel in the two-

dimensional space corresponds to a voxel in three-dimensional

space. This transformation allows us to introduce two additional

neighbours for each pixel, based on the first-order system.

Furthermore, considering time as a variable in the model enables

its application to high-dimensional datasets.
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Appendix

List of Notation

X ¼ {X1, X2, . . . , Xm}: the observed object consisting of

unknown elements that cannot be obtained directly.

P ¼ {P1, P2, . . . , Pn}: the projection dataset that contains

information detected about X by different imaging techniques.

Y ¼ {Y1, Y2, . . . , Yn}: the simulated projection dataset based

on some simulated truth after adding artificial noise.

t ¼ {t1, t2, . . . , tm}: the set that contains the local variation

parameters in a hyperprior distribution.

t, tl , tg : the global hyperprior variance according to different

scenarios.

tk: the kth estimation of t in MCMC.

r ¼ {r1, r2, . . . , rm}: the set of hyperprobabilities in a

hyperprior Bernoulli distribution.

u ¼ {uj, j ¼ 1, 2, . . . , m}: the set of locally spatial factors in a

mixture prior distribution.

z ¼ zj, j ¼ 1, 2, . . . , m
� �

: the external dataset containing the

spatial information.

Fj xð Þ ¼Pt[@ jð Þ wjtf xj � xt
� �

: the local energy function

between targeted xj and its four closest neighbours xt,t[@ jð Þ.
f xj � xt
� �

: the potential function of targeted pixel xj.

wjt : the weight for each paired comparison of pixels.

p gjj, uð Þ: a conjugate hyperprior distribution of g-Gamma

distribution with shape parameter j and scale parameter u.

A ¼ Bmatrixa11. . .a1m..
. . .
. ..

.
an1. . .anmBmatrix: the

transformation matrix that comprises probability aij of

information Xj corresponding to the observation dataset.
TABLE A1 Measurement indices for clustering.

Pixel Estimation Up Down Left Right
xj x̂j jx̂j � x̂t1j jx̂j � x̂t2j jx̂j � x̂t3j jx̂j � x̂t4j

TABLE A2 The list includes estimation measurements.

Position lci.M uci.M mean.M
37 1.06eþ03 1,105.94 1,084.85

38 1.07eþ03 1,111.14 1,089.67

39 1.06eþ03 1,106.67 1,085.18

40 1.07eþ03 1,109.43 1,089.67

41 1.07eþ03 1,108.75 1,088.11

42 1.05eþ03 1,104.03 1,080.87

Frontiers in Nuclear Medicine 15
k-means application

Assigning a critical value subjectively poses challenges.

Therefore, an alternative solution involves estimating external

information through supervised classification methods, such as

k-means clustering. In this approach, a measurement matrix is

designed to include pixel indices, individually estimated values,

and the four differences with neighbours in the first system (up,

down, left, and right directions). Subsequently, k-means

clustering is applied to classify pixels based on these indices. The

structure of the index table is as follows:

The estimation value for pixel is denoted as

x j : j ¼ {1, 2, 3, . . . , m} and x̂t[@(j) ¼ {x̂t1, x̂t2, x̂t3, x̂t4} is the

collection of four-direction neighbours. Each pair of differences

can also be calculated as the estimation difference. Assuming

pixels in hot regions and the background are treated as two

clusters, the intersections between the two clusters are considered

high-contrast grids.
Measurement of estimation

Table A2 shows the corresponding estimation measurements of

six selected pixels in the 20th row in the first simulation

application. Overall, the Bayesian model with mixture prior

distribution introduces estimation flexibility to realise a more

accurate outcome in each application.

“H” indicates the posterior estimation from Bayesian modelling

with the global LMRF, and “M” indicates the posterior estimation

from Bayesian modelling with a locally adaptive mixture prior

distribution. The outcomes are stored to two decimal places. “lci”

and “uci” represent the lower credible interval and upper credible

interval, which indicate the range within which a parameter lies

with 95% probability.
lci.H uci.H mean.H
1.03eþ03 1,125.54 1,078.53

1.06eþ03 1,136.83 1,094.03

1.02eþ03 1,119.64 1,078.34

1.04eþ03 1,146.91 1,095.90

1.05eþ03 1,136.12 1,090.97

1.03eþ03 1,111.63 1,071.76
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