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Introduction: In Positron Emission Tomography (PET) imaging, the use of tracers
increases radioactive exposure for longitudinal evaluations and in radiosensitive
populations such as pediatrics. However, reducing injected PET activity
potentially leads to an unfavorable compromise between radiation exposure
and image quality, causing lower signal-to-noise ratios and degraded images.
Deep learning-based denoising approaches can be employed to recover low
count PET image signals: nonetheless, most of these methods rely on
structural or anatomic guidance from magnetic resonance imaging (MRI) and
fails to effectively preserve global spatial features in denoised PET images,
without impacting signal-to-noise ratios.
Methods: In this study, we developed a novel PET only deep learning framework,
the Self-SiMilARiTy-Aware Generative Adversarial Framework (SMART), which
leverages Generative Adversarial Networks (GANs) and a self-similarity-aware
attention mechanism for denoising [18F]-fluorodeoxyglucose (18F-FDG) PET
images. This study employs a combination of prospective and retrospective
datasets in its design. In total, 114 subjects were included in the study,
comprising 34 patients who underwent 18F-Fluorodeoxyglucose PET (FDG) PET
imaging for drug-resistant epilepsy, 10 patients for frontotemporal dementia
indications, and 70 healthy volunteers. To effectively denoise PET images
without anatomical details from MRI, a self-similarity attention mechanism
(SSAB) was devised. which learned the distinctive structural and pathological
features. These SSAB-enhanced features were subsequently applied to the
SMART GAN algorithm and trained to denoise the low-count PET images using
the standard dose PET image acquired from each individual participant as
reference. The trained GAN algorithm was evaluated using image quality
measures including structural similarity index measure (SSIM), peak signal-to-
noise ratio (PSNR), normalized root mean square (NRMSE), Fréchet inception
distance (FID), signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR).
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Results: In comparison to the standard-dose, SMART-PET had on average a SSIM
of 0.984 ± 0.007, PSNR of 38.126 ± 2.631 dB, NRMSE of 0.091 ± 0.028, FID of
0.455 ± 0.065, SNR of 0.002 ± 0.001, and CNR of 0.011 ± 0.011. Regions of
interest measurements obtained with datasets decimated down to 10% of the
original counts, showed a deviation of less than 1.4% when compared to the
ground-truth values.
Discussion: In general, SMART-PET shows promise in reducing noise in PET
images and can synthesize diagnostic quality images with a 90% reduction in
standard of care injected activity. These results make it a potential candidate for
clinical applications in radiosensitive populations and for longitudinal
neurological studies.

KEYWORDS

SMART-PET, positron emission tomography (PET), frontotemporal dementia (FTD),
drug-resistant epilepsy (DRE), generative adversarial networks (GANs), denoising,
low-dose, deep learning
1 Introduction

Positron emission tomography (PET) technology and the use

of radiolabeled molecules (such as [18F]-fluorodeoxyglucose (18F-

FDG)) for PET imaging is one of the most sensitive and clinically

established in vivo approach for detecting and monitoring

functional changes within the brain at the molecular level. The

administration of radiolabeled pharmaceuticals (tracers) enables

the quantification of biological processes from high-quality PET

images for clinical diagnosis. Inherently, exposure to radiation

unfavorably accumulates with repeat scans throughout therapy

monitoring and follow up studies. Minimizing radiation

exposure following the ALARA principle [as low as reasonably

achievable (1)] reflects standard of care and is imperative for

radiosensitive patient populations such as pediatrics.

Improvements in PET detector technology offers the

opportunity to lower the injected activity in PET (2, 3).

However, reduction of activity often results in a trade-off

between radiation exposure and image quality. Reducing

radiation exposure leads to lower signal-to-noise-ratio (SNR)

and the degradation of the reconstructed PET image by the

dominance of noise. PET image quality can be improved by

enhancing the sensitivity of PET scanner detectors (4), axial

coverage, time-of-flight performance and/or PET image

denoising. PET image denoising approaches are either

implemented during reconstruction (sinogram space), post

reconstruction (image space) (5, 6) or with structural or

anatomical details from magnetic resonance imaging (MRI) (7).

Several post-reconstruction denoising techniques have been

introduced (7–9) with recent emphasis on image synthesis using

deep learning (DL) due to their intrinsic ability to learn complex

nonlinear systems applicable to image-to-image translations. A
esonance imaging; SMART, S
chanism; SSIM, structural sim
ignal-to-noise ratio; CNR, co
image; SD-PET, standard-o

I, standardized asymmetry in
ffSUVr, absolute percentage d

02
summary of deep learning-based denoising methods for brain

imaging are outlined in Supplementary Table S1.

While DL methods in general are promising, their clinical

applications for PET denoising and by extension dose reduction

(or scan time) are constrained by concerns over how well they

can generalize to different conditions and their robustness in

clinical settings. There is equally the known trade-off between

improving PET visual quality and ensuring that quasi structural

similarities and pathological contrast are retained for accurate

clinical interpretation. Besides, the issues of parameter

optimization, the overly smoothed images often produced by

post-reconstruction denoising methods could potentially lead to a

loss of spatial resolution of the reconstructed PET image. This

apparent down sampled resolution caused by averaging of nearby

voxels, can blur neighboring anatomical structures (10). This can

further impact quantification or lesion detectability. To overcome

these challenges, DL methods have been proposed for image-to-

image translation in PET denoising. These methods are capable

of effectively learning complicated patterns, such as PET noise

characteristics, from a distribution of structured data, and then

map these patterns to another data distribution while retaining

local spatial properties. DL methods can be broadly categorized

into two variants: UNet-based models and generative adversarial

network (GAN)-based (11) models (Supplementary Table S1).

While UNet-based models can achieve high accuracy even with

limited training data, they are sometimes prone to producing

blurred medical images. This blurring effect often results from

the model’s averaging during the upsampling process, which can

smooth out critical features. GANs, on the other hand are

limited by their inability to learn sufficient global information’s

from small receptive fields (12), and to capture relevant global

details in the spatial domain (13). As a result, the application of
elf-SiMilARiTy-Aware Generative Adversarial Framework; 18F-FDG, FDG, 18F-
ilarity index measure; PSNR, peak signal-to-noise ratio; NRMSE, normalized root
ntrast-to-noise ratio; ALARA, as low as reasonably achievable; GAN, generative
f-care PET image; LD-PET, low-count PET; SSSIM, self-structural similarity
dex; GPU, Graphics processing unit; MSE, mean square error; BCE, Binary
eviation in SUVr; ROI, Region of interest.
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attention mechanisms to GANs have been employed to focus the

network on learning relevant global information in the images,

through implementing weighted interconnected circuits into the

model (14). Based on our systematic search (Supplementary

Table S1), only two studies employed both spatial-channel and

modified frequency attention mechanism in Brain PET image

denoising. These mechanisms were specifically designed to map

noise and improve image feature enhancement.

In this work we introduce and evaluate a deep learning

framework based on GAN and self-similarity-attention

mechanism for denoising 18F-FDG-PET images. The framework

selects and learns relevant global features through a self-

similarity aware approach with the aim to mitigate blurriness in

GANs UNet-based discriminator and to preserve relevant

information’s. Our approach, the Self-SiMilARiTy-Aware

Generative Adversarial Framework (SMART) denoises low count

(90% reduction of activity) PET images to synthesize standard of

care activity PET images.
2 Material and methods

2.1 SMART-PET architecture

The SMART-PET generator and discriminator (G & D) were

inspired by the pix2pix image-to-image translation model (15)

and Hi-Net (16) (See Figure 1). The objective function of the

generator and discriminator can be expressed as:

LG ¼ ELD–PET�Pdata[log (1�D(LD–PET , (G(LD–PET))))]

þ ELD–PET , SD�PET [jjSD–PET � G(LD–PET)jj1] (1)

The generator (G) learns to generate denoised PET images

(DN-PET) similar to the standard-of-care full dose (SD-PET)

images while trying to delude its adversary the SMART-PET

discriminator (D) as represented by the first half of Equation 1.

The second half was employed to minimize image blurring and

estimate the difference between the generator output (DN-PET)

and acquired SD-PET using L1 norm (LR) as a regularizer. On

the other hand, the discriminator network identifies if a given

image of interest is from the input data (SD-PET) or synthesized

by the generator (DN-PET). The objective formula of the

discriminator D can be defined as:

LD ¼ �ESD–PET�Pdata[logD(SD–PET)]

� ELD–PET�Pdata[log (1�D(G(LD–PET)))] (2)

Consequently, the final objective function of SMART-PET is

formulated as:

LSMART�PET ¼ LG þ LD þ l2LR (3)

where λ2 is a positive trade-off parameter.
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Overall, the generator network processes low-count PET (LD-

PET) images, denoising them to create SD-PET images

by synthesizing DN-PET. Meanwhile, the discriminator receives

both SD-PET and DN-PET images, computing classification loss.

The generator and discriminator losses are backpropagated to

train the model. Additionally, the attention block operates on

intermediate feature maps, learning self-similarities through

multiple attention units.
2.1.1 Self-similarity-aware attention block (SSAB)
In GAN engineering, the recent discovery of attention

mechanisms has rapidly improved performance of GAN (17).

The attention mechanisms were inspired by the human visuals

system, wherein the iris filters redundant light radiation to form

images effectively (18). Similarly, in image synthesis, a large pool

of features are typically generated from the input image (feature

extraction) to synthesize output images. However, this pool

includes informative as well as redundant features not required

for the generalization and subsequent prediction of its target.

Hence, there is a need for appropriate feature selection and

representation. We, therefore, proposed a feature learning and

selection method SSAB for GAN application.

2.1.1.1 SSAB attention layout
As visually described in Figure 1C, the self-attention unit (19) in SSAB

retrieves only relevant structural information from the network feature

maps, thereby preventing the transfer of noise-filled features down the

network (Supplementary Figure S1). The similarity attention unit

learns global self-similarity features. The convolutional block

attention module (20) (channel attention unit → spatial attention

unit)—focus the network attention on the most important channel

features and emphasizes the spatial location of these features

(Supplementary Figure S2). The output of the self-attention unit,

similarity attention unit and convolutional block attention module

are summed and convolved to output the final features of the

attention block. The output of SSAB emphasizes important global

and local features and discards irrelevant and noisy features.

2.1.1.2 Similarity attention unit
The human visual system naturally employs similarity measures to

process and retain acquired knowledge. Inspired by this, our study

introduces a computationally efficient similarity attention unit for

GAN. Specifically, this unit operates at the pixel level, identifying

and learning self-similarities within input images. By generating

a self-similarity matrix across all pixels (global) based on intra-

image similarity scores, we enhance the robustness of image

deconstruction in the encoder section of GAN. In the self-

similarity matrix, columns with similar feature values are

weighted to receive higher similarity scores, while columns with

dissimilar feature values receive lower scores. By doing so, the

matrix provides a rich visual information for improved image

reconstruction. The similarity score, defined as

SSSIM(F ) ¼ [2(ConvF )þ c2]

[2(ConvF )2 þ c2]
(4)
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FIGURE 1

The overview of the SMART-PET framework, consisting of (a) the generator, (b) the discriminator, and (c) self-similarity-aware attention block (SSAB).
Within the SSAB, there are three modules: the convolutional block attention module (blue rectangle) with channel attention unit → spatial attention
unit, the similarity attention unit (green rectangle), and the self-attention block (grey rectangle).
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is perceptually assessed by evaluating the pixel-wise self-structural

similarity index measure (SSSIM) of each image Equation 4

derived from the structural similarity index measure (SSIM) (21).

Where, F is the feature map; ConvF convolution operation with

the weight of a sliding window whose size is determined

by the input feature map size, and c2 = (k2l)
2 a variable to

stabilize the division with weak denominator; L the dynamic

range of the pixel-values (typically this is 2#bits per pixel-1}); and

k2 = 0.03 by default. The sliding window procedure extracts

relevant input portions, contributing to the overall effectiveness

of SMART-PET.

To generate the similarity attention map (light green box), a

convolutional operation is applied to convolve the self-similarity

matrix (purple box) with a kernel size of 7 × 7 (navy blue box).

The result of this convolutional operation is subsequently

combined with the convolution of the input feature, yielding an

intermediate similarity descriptor as defined by Equation 5.

Subsequently, this intermediate similarity descriptor undergoes

an activation process and is concatenated to the input feature to

generate the attention map. The choice of a 7 × 7 kernel size is

deliberate, aiming to facilitate the learning of global features with

a large receptive field, even as the network depth increases.

The computation for similarity attention, as depicted in

Figure 2, can be defined as follows:

ASSSIM(F ) ¼ s(Conv7�7([SSSIM(F )])þ Conv7�7(F ))� F (5)
Frontiers in Nuclear Medicine 04
where, ASSSIM is the attention structural similarity index measure,

F the feature map; Conv7�7 the standard 7 × 7 filter size

convolution operation the feature maps; s the sigmoid function.
2.2 Experimental design

2.2.1 Data acquisition
A total of 114 human brain datasets collected from 6 PET/MRI

studies were used in the implementation of SMART-PET. This

study includes an ongoing pediatric epilepsy study (details provided

in Supplementary Note S1), retrospective adult epilepsy cases (22,

23), healthy volunteers and patient data from a retrospective

frontotemporal dementia study (24, 25), as well as healthy controls

from three prior studies (25–27). All participants signed a written

informed consent form, and all scans were conducted using study

protocols approved by the Western University Research Ethics

Board or the Monash University Human Research Ethics

Committee. All scans were acquired on a hybrid 3 T PET/MRI

scanner (Biograph mMR, Siemens Healthineers, Erlangen,

Germany) using a 12-channel PET-compatible head coil to

simultaneously obtain PET and serial MRI data. The T1-weighted

anatomical MRI scans were used for PET attenuation correction

(Table 1) and PET image analysis for group-level performance

assessments. All other MRI scans were not used in this study. Each

patient received an intravenous bolus injection or bolus and

constant infusion of [18F] FDG after fasting for a minimum of five
frontiersin.org
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FIGURE 2

The proposed similarity attention unit.

TABLE 1 Demographic and reconstruction details for each patient cohort.

Study
(reference)

N/Age (Y) Injected
dose
(MBq)

Train/
Val//
Test

(%)
Standard
dose

Condition AC Acquisition
parameter/

PET reconstruction

REMINDa 11/12.8 ± 3 165 ± 31 7/2/2 9.9 ± 0.2 DRE DeepMRAC
(39)

Static scan
immediately after
clinical PET/CT
(within 60 min)

OP-OSEM without PSF: 3
iterations, 21 subsets, 3D
Gaussian filter with FWHM of
2 mm and zoom factor of 2.5

REMI (22, 23) 23/35.2 ± 12.5 190 ± 17 16/3/4 9.9 ± 0.06 DRE

HV-Lawson (25) 25/41.4 ± 14.6 183 ± 41 18/4/3 9.9 ± 0.12 HV Dynamic scan
immediately post
injection

FTD (24, 25) 18/67 ± 6.62 203 ± 30 13/2/3 9.9 ± 0.1 HV and FTD

DaCRA (26)b 10/19 ± 1.2 238 7/2/1 10.6 ± 0.02 HV PseudoCT
(38)

OP-OSEM with PSF: 3
iterations, 21 subsets, 3D
Gaussian post-filter of 5 mmREST PET

(27)b
27/19.2 ± 0.6 233 19/4/4 10.7 ± 0.06 HV PseudoCT

(38)

Val, validation; REMI, refractory epilepsy multimodal imaging; REMIND, refractory epilepsy multimodal imaging in pediatric populations; FTD, frontotemporal dementia; DaCRA, dataset for

comparison of radiotracer administration; HV, healthy volunteers; N, number of participants; AC, attenuation correction; DRE, drug resistance epilepsy; PSF, point spread function; OP-OSEM,

ordinary poisson ordered subsets expectation maximization; DeepMRAC, deep learning-based magnetic resonance attenuation correction; Y, year; MBq, megabecquerel; FWHM, full width at
half maximum.
aProspective ongoing study at Lawson Health Research Institute.
bData was obtained from the OpenNeuro database. All other data were obtained from retrospective studies performed at the Lawson Health Research Institute.

Raymond et al. 10.3389/fnume.2024.1469490
hours. The demographic, scan protocol and reconstruction details of

each study are summarized in Table 1. All participants received an

administered [18F] FDG activity within the recommended dose

(150–370 MBq) for brain imaging.1

2.2.2 PET image pre-processing
In this study, we used two pairs of PET images from the same

patient and scan session (1) standard of care PET images from

reconstruction of a 30 min scan acquired after standard injected

PET dose, image acquisition, and reconstruction using the study

protocol (standard-dose) (22–27) and (2) low count PET simulated

by reconstructing 10% of the list-mode frames of the 30 min scan to

represent 10% of the standard-dose (low-dose). The standard-dose
1Brain [18F]FDG PET Imaging 2.0 Guideline (https://snmmi.org/Web/Clinical-

Practice/Procedure-Standards/Standards/Brain–18F-FDG-PET-Imaging-2-

0-guideline.aspx).

Frontiers in Nuclear Medicine 05
PET was generated by reconstructing the last 30 min of the list-

mode PET acquisition into one image volume. For all images

acquired at the Lawson Health Research Institute, the low dose PET

was simulated by reconstructing the last 30-min scan to one 3-min

volume (10%) from three randomly selected 1 min list-mode frames

from the scan. For the Australian healthy control dataset, the low

dose PET was simulated from the standard-dose scan to one ∼3-
min volume (10%) by randomly selecting eleven 16 s list-mode

frames from the 30-min scan. The dimension of standard-and-low-

dose reconstructed PET data was [x = 344, y = 344, z = 127] with a

voxel size of 2.09 × 2.09 × 2.03mm3. All reconstructed PET data

was preprocessed before training and testing using the following

steps, (1) manual removal of non-brain tissue to eliminate

background redundant voxels; (2) re-sample data into a dimension

of [x = 128, y = 128, z = 128] to suite SMART-PET architecture

which has a fixed input image size to conserve computational

memory; (3) data was intensity normalized to mean and standard

deviation; and (4) voxel intensity rescaled to intensity value between

[–1,1]. The SMART-PET model was trained on images in

the subject space.
frontiersin.org
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2.2.3 PET image analysis
To assess the performance of the proposed method, the SD-, DN-

PET and MRI-T1-weighted (T1w) images of each patient were

spatially normalized to permit group-level analysis by aligning each

subject’s PET SD-PET and DN-PET to a reference template—the

symmetric 1 mm MNI 152 template. This process utilized a three-

step registration method within ANTS (http://stnava.github.io/

ANTs/; Version 2.3.5), which involved both linear and non-linear

warping transformations to achieve a close alignment of brain

structures in the PET image with the template. Subsequently, the

T1w images were segmented to create tissue probability maps for

gray matter (GM), white matter (WM), and cerebrospinsal fluid

(CSF) (24). The voxel-wise standardized uptake value (SUV) map

was computed mathematically as:

SUV ¼ CPET(t)� BW
Dose

(6)

Where CPET(t) represents the concentration of activity within each

voxel of the PET image after spatial normalization, while BW

denotes the patient’s body weight, and Dose corresponds to the net

injected dose of FDG. Before calculating SUV on the DN-PET

images, we performed inverse rescaling. First, we added 1 to each

image and then divided the sum by 2. This step effectively reversed

any negative pixel values. Next, we multiplied the entire image by a

constant value estimated from the average maximum intensity of

each brain study. The derived SUV image were smoothed using a

Gaussian filter with a FWHM of 2mm to account for variances in

patient anatomy. In epilepsy patients, we quantified asymmetric

regions utilizing the standardized asymmetry index (zAI) mapping

approach, described previously (23) to quantify the voxel-wise

difference in cerebral glucose metabolism between brain

hemispheres and identify significant hypometabolism in suspected

epileptic brain region compared to the contralateral brain region.

2.2.4 Implementation details
The SMART-PETmodel architecturewas designed and engineered

withPytorch. FourNVIDIA[TeslaV100 SXM232GB]GPUswereused

in training and evaluation of the network. An Adam optimizer with

1st and 2nd optimizing parameter (momentum) of 0.5 and 0.999

respectively was used in the training. For the first 100 epochs of the

training the learning rate was set to 0.0001 and then decays linearly to

zero over the remaining epochs. The loss weights λ1 and λ2 were set

to 1 and 100 respectively. The network was set up with a batch size of

1 and trained for 400 epochs with a mean absolute error and

adversarial loss function. Training was conducted using randomly

selected images in the dataset, with 70% allocated for training, 15%

for validation to fine tune the hyperparameters, and the remaining

15% for testing the performance of the model including in the

ablation study and comparison to other approaches as outlined below.
2.3 Experimental settings

2.3.1 Ablation study
In this study, we conducted an extensive ablation analysis to select

the optimal components and configurations for SMART-PET. The
Frontiers in Nuclear Medicine 06
experiments performed includes (i) component-based ablation,

which removed the large 7 × 7 input convolution layer and the GAN

discriminator to evaluate their effectiveness. (ii) configuration-based

ablation compared the performance of different training loss

function (L1 + BCE Adversarial Loss, L1 +MSE Adversarial Loss,

and L1 + BCE Adversarial Loss + FID Loss), attention type, and

attention position in the encoder`s intermediate layers to determine

an optimal loss function, attention configuration, and the best

placement of the attention block that improves the model’s ability to

reduce noise and focus on relevant information.

2.3.2 Model generalizability
To evaluate the generalizability of the SMART-PET model,

experiments were conducted across various datasets split into training

and validation sets, each tailored to specific clinical scenarios

(Supplementary Note S2). The model architecture and training

parameters remained consistent across all evaluations. The experiment

encompassed FTD-PET image denoising, DRE-PET image denoising,

and pediatric PET image denoising. To ensure unbiased performance

evaluation, each disease cohort and scenario was held-out during

training. Additionally, we assessed SMART-PET’s capacity to denoise

Low-dose PET images from diseased patients when the model was

initially trained with healthy volunteers. Furthermore, SMART-PET’s

cross-center generalizability was examined using data from two

centers, and its robustness was evaluated through random dataset

selection for both training and validation.

2.3.3 Comparison with other state-of-the-art
To perform quantitative and visual comparison to state-of-the art

models, the same datasets used to train and evaluate SMART-PET’s

performance were used to train and evaluate five other architectures,

namely CGAN (28), Pix2pix3D (15), 3D U-Net (29), Pyapetnet (30),

Rhtorh (31). The Conditional Generative Adversarial Network

(CGAN) is an extension of the traditional GAN framework. It

introduces conditional information to the generator, allowing it to

produce outputs tailored to specific conditions. This framework is

widely employed in PET image denoising and reconstruction (14, 32–

37). The Pix2pix3D is a three-dimensional extension of the Pix2pix

model (15). Pix2pix3D uses conditional GANs and incorporates

depth information to create realistic translation of medical images.

The 3D U-Net has gained significant popularity in various medical

imaging applications. Its architecture, characterized by an encoder-

decoder structure with skip connections, is adept at retaining intricate

details in image-to-image transformations. As a result, it has become

the preferred CNN network for a wide range of medical tasks (29).

Schramm et al. (30), introduced an anatomically guided PET

reconstruction method, known as Pyapetnet, which utilized an

input T1-weighted MRI during the training as a regularize to

improve a CNN architecture. Pyapetnet was trained on PET/MRI

images using a combination of SSIM and MAE loss functions

and is currently vendor-implemented on the Biograph mMR

(Siemens Healthcare GmbH, Erlangen, Germany). The Rhtorh

method by Daveau et al (31) used a three-dimensional U-Net

model with a modified Frequency Attention Network and

included a noise map as well as a Spatial-Channel-Attention

block after each encoder block to enhance image features (34).
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2.4 Performance evaluation

2.4.1 PET image quality evaluation metrics
To estimate the quantitative performance of the SMART-PET

model, we compared SD-PET and the DN-PET images using six

image quality metrics, namely, structural similarity index metric

(SSIM), peak signal-to-noise ratio (PSNR), normalized root means

square error (NRMSE), Fréchet inception distance (FID), signal-to-

noise ratio (SNR), and contrast-to-noise ratio (CNR). Theoretically,

higher PSNR and SSIM, as well as lower NRMSE and FID, SNR and

CNR indicate higher PET image quality with better visual resemblance.
2.4.2 PET quantification evaluation metric
To assess the impact of SMART-PET reconstruction on PET

quantification in normal and diseased conditions, the mean SUV,

as well as contrast-to-noise (CNR), and signal-to-noise (SNR)

were calculated across brain states. For 18F-fluorodeoxyglucose

(FDG) uptake evaluation in drug resistance epilepsy, mean activity

with reference to cerebellar gray-matter—a typical reference region

for FDG analysis was used to determine the relative standardized

uptake value (SUVr) of eight regions of interest (ROIs) (23). This

include regions with low FDG uptake, which are usually

hypometabolic in epilepsy (such as the hippocampus, medial

temporal cortex, and inferior temporal cortex), as well as high

uptake regions unaffected by the disease (like the posterior

cingulate and occipital lobe). In the frontotemporal dementia

(FTD) cases, the SUV FDG images were normalized by the mean

SUV value in the occipital lobe to obtain SUVr and minimize

known inter-subject variabilities (25). The FDG uptake was

measured in brain regions implicated in FTD, which include the

insula, superior temporal gyrus (sTP), inferior frontal gyrus (IFG),

gray matter (GM) and white matter (WM) as well as in the

cerebellum (24). The SUV images of the healthy volunteers were

intensity-normalized using the occipital lobe mean activity. In all

cohorts, the average SUVr were extracted in ten cortical brain

regions: caudate, putamen, thalamus, frontal lobe, occipital lobe,

parietal lobe, temporal lobe, insula, hippocampus, and the

cerebellum and the percentage difference in FDG uptake within all

the ROIs relative to the SD-PET values was computed.

Variations in regional SUVr, CNR, SNR, and whole brain SUV

and zAI were compared between SD-PET and denoised DN-PET

for each analysis using the Mann-Whitney U-test. Statistically

significant differences were considered when p < 0.05.
3 Results

3.1 Ablation study

The results of the various ablation experiments performed are

detailed in Supplementary Tables S2–5. These results guided the

selection of the most optimal network architecture, training loss

function, type of attention mechanism, and attention position.
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3.2 Model generalizability

The proposed SMART-PET model maintained equivalent image

quality across all metrics in healthy and diseased brain states and in

cross-center validation generalizability assessments as shown in

Supplementary Table S6 and Figure 3. Training and validation of

SMART-PET with a randomized selection of data resulted in

superior overall performance compared to training with a specific

dataset from the same disease cohort or imaging center.
3.3 Comparison with other state-of-the-art

The denoised PET images from SMART-PET and the five

state-of-the art methods are shown in Figure 3. General visual

comparison of denoised PET images show that all methods

recovered structural and anatomical details from the 10%

standard dose images. The 3D U-Net and Pix2Pix3D methods

exhibited apparent reduced image contrast and produced images

with a higher degree of blurriness compared to other methods.

The denoised PET images generated using Pyapetnet displayed a

distinct visual appearance, likely due to an over-representation of

anatomical structures resulting from the fusion of PET and MRI

features during training. Rhtorch exhibited superior image synthesis

capabilities reinforcing its feasibility for PET denoising.

Furthermore, the CGAN model displayed a limitation in efficiently

reproducing certain fine details in the synthesized PET images.

Nonetheless, the denoised images generated using SMART-PET

demonstrated recovery of structural and anatomical features and

FDG PET distribution comparable to standard dose. These visual

analyses align with the quantitative results summarized in Table 2.

Compared to other methods, SMART-PET achieved better image

quality performance on all metrics. With respect to the baseline

method (Pix2Pix3D), the proposed SMART-PET model increased

the PSNR-SSIM values from 29.55 dB-0.87 to 38.13 dB-0.98 and

decreased FID-SNR from 1.04–0.06 to 0.45–0.002.
3.4 Quantification performance evaluation

In comparison to SD-PET, DN-PET images generated by

SMART-PET (Proposed) did not yield any significant difference

on SUV quantification for the whole brain of the thirty-four test

cases (Figure 3A). While the SNR and regional SUV in the

reference regions—cerebellum or occipital lobe were of no

significant difference (Figure 4B,C). Figure 5A shows the DN-PET

SNR, CNR, and SUVr values in comparison to their measured

relative activity in SD-PET, specifically in all epileptogenic and

frontotemporal brain regions. These values displayed no

significant deviation from the ground truth. However, there was a

slight but statistically significant difference in the SUVr values for

the DN-PET in the frontotemporal regions across all participants

compared to SD-PET.

The SNRand SUVvalueswere compared between the SD-PETand

DN-PET. Across the whole brain, cerebellum and occipital lobe no

statistical differences were observed between the SD-PET andDN-PET.
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FIGURE 3

Visual representation of SMART-PET in comparison to other methods on the same slice. Axial slices of FDG brain PET scan for a pediatric epilepsy
patient (7-year-old female), frontotemporal dementia patient (60-year-old female), healthy volunteer (44-year-old female), and adult epilepsy
patient (32-year-old male), illustrating the visual comparison between 10% of the standard-dose, SMART-PET denoised PET, and the standard-
dose 30 min scan. Intensity and windowing adjusted for the 10% standard dose low-count PET images to show noise details.

TABLE 2 Comparison of SMART-PET image quality measures with state-of-the-art methods.

Network PSNR SSIM NRMSE FID SNR CNR
Pix2pix3D (baseline) 29.55 ± 5.29 0.87 ± 0.06 0.29 ± 0.21 1.04 ± 0.30 0.06 ± 0.04 0.20 ± 0.27

3D U-Net 30.60 ± 5.71 0.95 ± 0.05 0.26 ± 0.18 0.6 ± 0.09 0.005 ± 0.004 0.15 ± 0.20

Pyapetnet 33.35 ± 5.32 0.91 ± 0.09 0.64 ± 2.21 1.07 ± 0.25 0.02 ± 0.009 0.04 ± 0.12

Rhtorh 35.53 ± 3.09 0.96 ± 0.02 0.14 ± 0.05 0.70 ± 0.09 0.023 ± 0.007 0.03 ± 0.02

CGAN 34.53 ± 1.79 0.97 ± 0.01 0.13 ± 0.03 0.52 ± 0.07 0.004 ± 0.004 0.03 ± 0.02

SMART-PET 38.13 ± 2.63 0.98 ± 0.01 0.09 ± 0.03 0.45 ± 0.06 0.002 ± 0.001 0.01 ± 0.01

DL, deep learning; SSIM, structural similarity index measure; PSNR, peak signal-to-noise ratio; NRMSE, normalized root mean square; FID, Fréchet inception distance; SNR, signal-to-noise
ratio; CNR, contrast-to-noise ratio; L1, mean absolute error; SMART-PET (Proposed), SMART-PET + L1 + ADVMSE loss.
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Lower SNR and CNR were observed in high-uptake regions in

the DN-PET compared to SD-PET, as depicted in Figure 5B.

Nevertheless, no statistically significant differences were noted

between the DN-PET method and SD-PET in the rest of the

regions and associated metrics. The absolute percentage deviation

from SD-PET SUVr values, Figure 6, reveals a mean SUVr

difference of 0.99 ± 0.7 across all patients and 0.99 ± 0.2 across

ROIs. In general, the SUVr difference between SD-PET and DN-

PET range from a minimum of 0.4% to a maximum of 1.4%

across all ROIs. No statistical difference was observed in the

mean and minimum asymmetric regions (zAI) between DN-PET

and SD-PET, as depicted in Supplementary Figure S4.

While both the clinical standard SD-PET and DN-PET

exhibited similar SUV and zAI values in the selected disease-

relevant brain regions, when PET quantification was extended to

assess the extent of brain asymmetry and localize suspected
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abnormalities, particularly epileptic foci (EF), DN-PET generally

resulted in smaller EF size compared to SD-PET. While the EF

was missing in nearly all of the 10% of SD-PET cases that were

not denoised. Figure 7 highlights this finding as illustrated in one

adult epilepsy case with suspected left temporal lobe lesion that

was not readily apparent on anatomical MRI (23).
4 Discussion and conclusion

Balancing the need for PET images with diagnostic quality and

radiation risks has been a desirable achievement in PET imaging.

The preferred solution is to minimize radiation risks while preserving

PET image quality, as this could potentially enlarge the current scope

of PET applications in medical imaging (7). This solution can be

implemented by denoising PET images with low injected activity
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FIGURE 4

(A) The signal-to-noise ratio (SNR) and mean standardized uptake value (SUV) in denoised SMART-PET (DN-PET) compared to SD-PET. The SNR and
mean SUV measured over the whole brain (A) in 33 participants, the cerebellum (B) in 11 of epilepsy cases, and the occipital lobe (C) in 5
frontotemporal dementia are shown (p < 0.05 was considered significant). ns, non-significant statistical difference, *p≤ 0.05, **p≤ 0.01, ***p≤ 0.001.
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(low-dose), synthesized to recover PET image features and resemble the

image quality regularly achieved in standard dose PET images.

In this study, we proposed a novel low-dose PET denoising

approach motivated by the fact that conventional GANs denoises

low PET activity through learning to generate standard-dose PET

image details based on only spatially localized pixels in the low-

dose PET image. We introduced a self-similarity-aware attention

mechanism on high level feature convolutions, to efficiently learn

and retain all global details including channel, spatial and self-

similarity, while removing noise by filtering global and localized

information’s such that only information’s required for the

efficient synthesis of high-quality PET images are allowed down
Frontiers in Nuclear Medicine 09
the convolution blocks. The performance of the proposed model

SMART-PET (proposed) using a single low-activity input to

train the model demonstrated that it can adeptly synthesize high

quality 18F-FDG-PET images with image quality comparable to

state-of-the-art approaches. The quantitative performance

demonstrated consistent clinically relevant metrics that are within

<1.2% of clinical standard acquisitions (c.f., Section 3.3 and

Figure 6). Visually, PET images generated from SMART-PET

show adequate representation of 18F-FDG metabolism in the

brain in diverse disease conditions, including in pediatrics and

for lesion characterization, although further clinical validation is

required to confirm this finding. The general smaller epilepsy
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FIGURE 5

(A) Quantification of mean SNR, CNR, and SUVr of DN-PET values from SMART-PET relative to measured activity levels in SD-PET, with focus on
epileptogenic (8 ROIs) and frontotemporal brain regions (8 ROIs). (B) Regional mean signal-to-noise (SNR), contrast-to-noise (CNR), and
standardized uptake value (SUV) in nine brain regions of the epilepsy cohort. ns: non-significant statistical difference, *p≤ 0.05, **p≤ 0.01, ***p≤
0.001. The SNR, CNR and SUVr values were compared between the SD-PET and DN-PET. These values were compared across the epileptogenic
regions, frontotemporal regions, high uptake regions and low uptake regions.
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focus observed in the denoised PET images compared to standard

dose images could result from either an underestimation of the size

of the epilepsy focus, or enhanced clarity with reduced noise, which

further delineates the boundaries of the epileptic focus.

Nonetheless, without structural and anatomical information from

MRI or CT, SMART-PET efficiently recovered sufficient

structural and pathological features from the low-dose PET data

at 90% dose reduction with promising application in PET brain

imaging where simultaneously acquired MRI for accurate voxel-

to-voxel alignment for model regularization is not feasible.

Qualitatively, as shown in Figure 3, the synthesized images

from SMART-PET appear to be smoother than the acquired

standard dose, most likely due to post-filtering of reconstructed

PET data with relatively larger filter size (5-mm 3D Gaussian) in
Frontiers in Nuclear Medicine 10
30% of the training dataset (i.e., the REST and DaCRA,

see Table 1). Despite this, the synthesized PET images generated

by SMART-PET had comparable image quality to the standard-

dose images as all the quantitative results of merit implemented

in this work have shown. Comparing SMART-PET to other two
18F-FDG-PET studies (14, 37) that employed GAN models for

PET image synthesis; SMART-PET with its self-similarity

attention block, showed better image quality performance across

all image quality metrics. Additionally, as substantiated by

quantitative metrics and the visual data in Figure 3 and Table 2,

SMART-PET had considerable enhancements in image quality

compared to five other state-of-the-art methods, including a

vendor-implemented model. These findings support the assertion

that the utilization of SMART-PET effectively enhances PET
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FIGURE 6

Absolute percentage deviation in SUVr values between SD-PET and
DN-PET. The SUVr mean percentage difference for each brain
region is represented by orange rectangles while the error bar
presents it standard deviations. The horizontal line shows that
none of the ROI SUVr difference between SD-PET and DN-PET
exceeded 2.5%. This analysis was performed across 33 participants.

FIGURE 7

Visual assessment in an epilepsy case reveals similar (A) PET SUVr map, (B) Z-
PET ROI (yellow) between standard-dose and SMART-PET denoised PET im
drug-resistant epilepsy patient [52-year-old male, patient#3 in (15)].

Raymond et al. 10.3389/fnume.2024.1469490
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denoising performance. Furthermore, the generalizability analysis

highlights its potential across various diseases and multi-center

datasets, although more analysis in pediatric populations and

datasets with other PET brain tracers and acquired from more

imaging centers and scanner types, will confirm its robustness.

While the proposed SMART-PET model is promising with

potential immediate clinical application, the methodology of this

study has several drawbacks. First, this study is limited by the

low-dose simulation process which was based on mathematical

approximations as this might have unmeasurable impacts on the

descriptions of the brain biological processes. Future work will

adopt a frame-by-frame decimation approach, validated to be

clinically equivalent to real low-dose scans (39). Second, the

training and evaluation dataset were from different centers with

different acquisition protocols, reconstruction methods, and

potentially different scanner software versions. Although this

might increase the robustness of the proposed approach, it

should be noted that only one tracer (18F-FDG) was evaluated.

The performance of the current model serves as sufficient proof

of concept for further development of the technique on datasets

acquired across age groups, with different tracers and from

different scanners, as well as evaluation at lower count densities

(e.g., 5% of injected dose). Nevertheless, the relative high

performance of SMART-PET recorded by image quality and

quantification metrics implies that the model could generate
score map generated from AI mapping (ZAI map), and (C) hypometabolic
ages. EF, epilepsy focus. The images are coronal brain slices of an adult
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denoised PET images at reduced injected dose that are within

clinically acceptable ranges.

In general, a deep learning-based GAN method was developed to

accurately denoise low-dose PET images. The SMART-PET method

demonstrated in this preliminary study, together with those

presented before (14, 37), could enhance PET imaging by enabling

repeated scanning even in pediatric populations and in multi-tracer

parametric imaging for mechanistic studies or differential diagnosis.
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