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Bayesian modeling with locally
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Medical images are hampered by noise and relatively low resolution, which
create a bottleneck in obtaining accurate and precise measurements of living
organisms. Noise suppression and resolution enhancement are two examples
of inverse problems. The aim of this study is to develop novel and robust
estimation approaches rooted in fundamental statistical concepts that could
be utilized in solving several inverse problems in image processing and
potentially in image reconstruction. In this study, we have implemented
Bayesian methods that have been identified to be particularly useful when
there is only limited data but a large number of unknowns. Specifically, we
implemented a locally adaptive Markov chain Monte Carlo algorithm and
analyzed its robustness by varying its parameters and exposing it to different
experimental setups. As an application area, we selected radionuclide imaging
using a prototype gamma camera. The results using simulated data compare
estimates using the proposed method over the current non-locally adaptive
approach in terms of edge recovery, uncertainty, and bias. The locally adaptive
Markov chain Monte Carlo algorithm is more flexible, which allows better
edge recovery while reducing estimation uncertainty and bias. This results in
more robust and reliable outputs for medical imaging applications, leading to
improved interpretation and quantification. We have shown that the use of
locally adaptive smoothing improves estimation accuracy compared to the
homogeneous Bayesian model.
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1 Introduction

As a non-invasive method, medical imaging is extensively used for diagnosing and

monitoring various medical conditions (1). However, the loss of information during the

scanning and image acquisition processes often creates an observed image that is

blurred and contains noise (2). The systematic relationship between the observed and

true image is often modeled linearly using a transformation matrix. However, this

transformation matrix is typically large and ill-posed, so directly solving a system of

linear equations to obtain the exact image is infeasible.

In medical image processing, Bayesian modeling transforms an ill-posed problem into

a well-posed problem by introducing a prior distribution as a form of penalization or

regularization. Moreover, this method holds potential for application in biomedical

image reconstruction (3, 4). Most approaches, however, have the tendency to not only
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smooth out noise but also to smooth out the signal. This raises

the question of how to determine a prior distribution for

smoothness in order to avoid both under- and over-smoothing.

Homogeneous prior distributions have been found to be less

effective in scenarios with rapid changes, such as medical images

(5, 6). Inhomogeneous Bayesian modeling aims to fully utilize

the distribution’s properties. Instead of employing different prior

distributions, one could consider using a prior distribution

with hyper-prior parameters (7). Therefore, we integrate

inhomogeneous factors into the modeling by updating our prior

distribution, introducing locally adaptive hyper-prior parameters,

with high dimensions, instead of a single global hyper-parameter.
2 Materials

Given the absence of real images in practical scenarios, certain

statistical measurements such as mean squared error (MSE)

evaluating the efficiency of statistical modeling by minimizing

the difference between real and estimated values are limited in

application. Hence, creating simulated data to mimic the real

image is required to bridge this gap.
2.1 Designed simulation with high contrast

The process for creating simulated data is as follows: we aim to

generate simulated data X that closely approaches the true image

represented as “real data.” We then apply random noise to create

the degraded observed data Y . In this case, instead of using the

projection data P in the posterior, we can obtain estimations by

sampling from the posterior conditional distribution given Y .
This approach also allows for a comparison between estimations

and the corresponding real data X. The simulation is based on

the function minimum residual sum of squares (RSS), where we

can adjust the parameters to achieve simulations with different

levels of noise. The general expression of the function is

min
u
kY � A dð ÞX r, c, z, Tð Þ � ek2,

where r is the collection of four objects’ radius: r ¼ ðr1, r2, r3, r4ÞT ;
c ¼ ðc1, c2, c3, c4ÞT and z ¼ ðz1, z2, z3, z4ÞT represent the

parameter vectors of the objects’ central position of x-axis and

y-axis, respectively. e represents random errors introduced during

observation. Given the prior information, the density for each

cylinder is identical, denoted as T .

The elements within A represent the probabilities that pixels in

X can be transformed into corresponding information in Y . In our

application, aij follows a bivariate-normal distribution with zero

covariance:

aij � N m, Sð Þ,

where m ¼ ð0, 0Þ and S ¼ d2 I2�2 (I is an identity matrix). The
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standard deviation d is highly dependent on the distance

between the scanner and the scanner object. The transformed

information from X to Y decreases with increasing distance.

Ideally, when there is no distance between the scanner and the

object, A is an identity matrix, allowing for complete

information transformation. In medical imaging, despite the

scanner’s position being fixed during an examination, the

distance may vary slightly depending on the size of the object.

Hence, when there is a considerable distance between the

scanner and scanned objects, information is missing due to

the reception of limited signals. Conversely, increasing the

distance introduces more blurring. Overall, it is crucial to

strike a balance between maintaining information and

reducing blurring simultaneously; in other words, deciding

how to set d becomes vital.
2.2 Designed simulation with high contrast

To generate simulations, we set values for parameters.

Afterward, random noise is applied to create the degraded

observation Y . In this case, we can obtain estimations by

sampling from the posterior conditional distribution given X (8).

This approach also allows for a comparison between estimations

and the corresponding real data X. The simulations are stored in

pixel matrices of the size 29� 58.

Observed data Y , viewed as a degraded version of the actual

distributions X with blur and noise, is comparable to the

projection dataset in reality. As shown in Figure 1a, the true

distribution consists of four sharp regions with sharp

boundaries. The red lines indicate the regions of interest,

namely, the 20th row and the 36th column, which are applied

in the following pixel estimations. Figure 1b depicts observed

data with low contrast resolution; blur is evident around the

edge of each region.

The hot region and background pixels are constant, around

1,100 and 0, respectively. In the three simulations, the noise

presents in different ways. The first simulated dataset has the

lowest noise compared to the other two datasets since there is a

distinguished value gap between the background, where the

pixels are close to zero, and the hot region, where the pixels are

close to 1,100. In the second simulated dataset in Figure 2, it

creates an environment where the hot regions are soft tissues

with smooth edges; the average value of pixels in the background

is higher than in other experiences, while the peak values are

smaller than others. The red dots indicate the positions of pixels

applied in the following pixel estimation comparison. Finally, the

ones in Figure 3 describe the situation when there is a reduction

in scanning time. There is a higher noise level than the first

simulation. These simulations with artificial noise are regarded as

degraded images. The proposed methods are assessed using

simulated examples designed specifically to mimic real

experimental data collected as part of system

calibration experiments.
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FIGURE 1

Simulation datasets: true information X and its correspondingly observation data Y . (a) Simulated image X. (b) Observation Y . (c) 3D simulated image
X. (d) 3D observation Y .
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2.3 Designed simulation with smoothing
edge

Supposing the objects within the circle have a soft edge instead

of a hard one. In reality, the edges are likely to be considerably

softer. Therefore, a smoothing pattern is obtained by applying a

Gaussian kernel filter to the datasets presented in Figure 2a. If G
is a Gaussian kernel, we say that X1 ¼ G� X. The high blurring

around the high-contrast edge between the hot regions and the

background makes it difficult to detect the original edge.
2.4 Simulated experiment with lower
detected counts

Image quality improves with a reasonable extension of

scanning duration. Again, supposing the scanning time is
Frontiers in Nuclear Medicine 03
reduced, the observation image contains blurring. Another

degraded simulated image is created, as shown in Figure 3. The

high-contrast edge between the hot regions and the background

blurring and the observation image is expected to contain more

noise than the first observation image Y .
Ultimately, these simulated Y , Y1, and Y2 serve as our “observed

dataset” for the application sections in this paper, while the simulated

X remains an unknown parameter that needs to be estimated.

However, as the values of simulated X are obtained in advance, it

allows for a comparison between simulated X and its estimations

from our defined posterior distribution in the following step.
3 Methods

In the case of medical imaging, the aim is to estimate a discrete

version of the unknown continuous emitter activity distribution X
frontiersin.org
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FIGURE 2

Simulation datasets with a reduction in scanning time: true image X1 (left) and observed image Y1 (right). (a) Simulated image X1. (b) Observation Y1.

FIGURE 3

Simulation datasets with scanning time reduction: observed image Y2 and its corresponding actual image X. (a) Simulated image X. (b) Observation
image Y2.
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from the single projection data Y . Suppose the unknown object X
is expressed as a set of m volume pixels, X ¼ ðXj : j ¼ 1, 2, mÞ,
where Xj represents the constant value of emitter activity in the

jth pixel. The data Y ¼ ðYi : i ¼ 1, 2, nÞ is related to the actual

activity through the deterministic equation EðYÞ ¼ f ðXÞ and

depending on the application being studied, f ðXÞ can become a

linear function, or remain a non-linear function, especially when

scanning time and multilayer factors are considered (9–11).
3.1 Likelihood function

A Poisson form, identified as suitable for various image

processing with quantum noise, is particularly appropriate for

the -eyeTM camera projection data considered in our application

(12–14). The first -eyeTM scintillation camera developed by
Frontiers in Nuclear Medicine 04
BIOEMTECH (Athens, Greece) was used to generate two-

dimensional medical images (15).

The conditional distribution for observation Y given the

unknown true radionuclide distribution X is as follows:

fY jX y1, y2, , yn j xð Þ ¼
Yn
i¼1

l
yi
i
exp �lið Þ

yi!
, (1)

where E[Yi] ¼ li ¼
Pm

j¼1 aijxj, j ¼ 1, 2, , m. In other words, each

projection data value has an interaction with the whole vector X;
a known transformation matrix is denoted A ¼ [aij]n�m. The

element aij is the probability that a gamma particle emitted from

pixel location i is recorded at pixel location j. The error e can be

expressed as an n� 1 vector with elements ðei : i ¼ 1, 2, , nÞ,
which may come from various types of unavoidable

measurement errors.
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If the transformation matrix A is square and non-singular,

image X can be easily realized by the least squares estimator

X  argminX kY � AXk2, when the squared error function is

minimized:

X̂ ¼ AT A
� ��1

AT Y ,

where X̂ is the least square estimate of X. However, in image

processing, the transformation matrix A typically has a complex

structure with high dimensions and is rectangular with

unavailable pseudo-inverse. This results in ill-posed and ill-

conditioned issues (16).

By imposing additional constraints in terms of prior

knowledge, a Bayesian approach transforms an ill-posed inverse

problem into one that is well-posed (17). During the modeling

process, a prior distribution is constructed to capture the

statistical properties of the image, and then estimation uses a

posterior distribution derived by the combination of prior and

likelihood. The uncertainty between X and Y is captured by

likelihood function fY jXðy j xÞ and the posterior density

fXjY ðx j yÞ is used for inference after incorporating prior

knowledge pXðxÞ.
3.2 Prior distribution

Discrete images comprise elements of finite product spaces,

and the probability distributions on such sets of images as prior

information are a critical part of image processing. The

efficiency of prior distributions depends on the available first-

hand information. Regarding informative priors, it is generally

expressed as the Gibbs measure, which was borrowed from

statistical physics (18). The primary goal of introducing this

type of probability is to describe the features relative to

“macroscopic” physical samples, such as an “infinite system”

(19, 20).

The Gibbs probability distribution has gradually found

applications in various fields, including “Gibbs Sampling” in
FIGURE 4

Two-dimensional rectangular grid G. The blue and yellow nodes in the latti
order and second-order neighborhoods, respectively.
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Bayesian modeling. The Gibbs distribution is defined as

pX x j Bð Þ ¼ Z�1 exp �Bk xð Þð Þ, Z ¼
ð
x
exp �Bk xð Þð Þdx,

X [ Rm, B . 0,
(2)

where Z is the normalization for the Gibbs distribution; the energy

function is k, representing the energy of the configuration of pixels;

and B is a non-negative smoothing parameter. Furthermore, the

energy function can be rewritten as the sum of local energy

functions Fð�Þ:

k xð Þ ¼
Xm
j¼1

Fj xð Þ, (3)

where F jð�Þ represents the local energy function to corresponding

Xj ¼ xj.
3.2.1 Markov random field for pixel differences
Briefly, the primary assumption for Markov random field

(MRF) models is that a variable is only related to its adjacent

variables while being conditionally independent of the others

(21, 22). Specifically, the clique-based structure makes MRF

models well-suited for capturing local pixel relations in

images. It proposes a lattice system, denoted as G ¼ ðV , EÞ, to
represent the connections between pixels (as illustrated in

Figure 4). For instance, assuming the yellow node represents

the object under analysis in the first-order system, its four

closest neighbors are located to its left, right, bottom, and top

sides, as indicated by the black solid lines. In the second-order

system, an additional four neighborhoods are considered,

located at the top-left, top-right, bottom-left, and bottom-right

corners around the yellow node, as indicated by the dashed

lines. In this system, pixels are represented as nodes (V), and

edges (E) connect all the nodes. While the shape of the grid is

not required to be rectangular, it is the most common

in applications.
ce represent pixels, while the solid lines and dashed lines describe first-
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FIGURE 5

Markov random field in three-dimensional space. Left image: Markov
random field in two-dimensional space. Right image: Markov
random field in three-dimensional space. The nodes with different
colors in the lattice represent pixels, while the dashed lines
describe the connection between the objective pixel (orange
node) and its neighbors.
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Once we define the MRF prior, the local function in Equations

2, 3 is rewrite a linear combination of differences between the pixel

and its neighborhoods:

F j xð Þ ¼
X

t[@ jð Þ
wjtf xj � xt

� �
, (4)

where wjt represents the weight for each paired comparison, as the

increased order in MRF, and wjt may change according to the

interaction within the neighborhood. For example, for the first-

order MRF, wjt ¼ 0:5 if there is only four neighbors to consider.

The set of nodes @ðjÞ in a finite graph X with edges j � t.

Finally, after employing the Markov random field for pixel

difference, the updated prior distribution is

pX x j Bð Þ ¼ Z�1 exp �B
Xm
j¼1

X
t[N@ jð Þ

wjtf xj � xt
� �0

@
1
A: (5)

Here, only local characteristics are considered when it comes to

estimating the individual pixel, which can be briefly divided into

two properties. First, in comparison to the global character which

includes all the pixels, we only study the smaller number of pixel’s

neighbors; for instance, the first-order neighborhood is adopted in

the prior distribution. Second, given the local property of the prior

distribution, we assume that the posterior is sensitive to the local

property of the prior distribution. If we define the potential

functions as absolute value function, then fðmÞ ¼ jmj respectively.
Thereby, the corresponding priors are quantified Markov random

fields with absolute function (LMRF) combined with Equations 4, 5:

pXjt x j tð Þ ¼
Ym
j¼1

1

2tj
� � exp �

P
t[@ jð Þ jxj � xt j

tj

� �
,

xj � 0, tj . 0,

(6)

where X ¼ {xj, j ¼ 1, 2, , m} and xj is conditional based on the

neighbor’s values and t ¼ {tj, j ¼ 1, 2, , m} is the local conditional

variance in the prior distribution, which accounts for the value

variances among individual pixels and its four neighbors. As a

comparison to Equation 6, we define a homogeneous prior variance

t to capture the global variance between the pixel differences:

pXjt x j tð Þ ¼
Ym
j¼1

1
2tð Þ exp �

P
t[@ jð Þ jxj � xt j

t

� �
,

xj � 0, t . 0:

The inhomogeneous prior relies on the contrast levels in the image’s

segmentation, making it locally adaptive to various image densities.

In order to cover all scenarios among pixel neighborhoods, the

modeling with inhomogeneous hyper-parameter t can tolerate a

large value fluctuation and detect a small variation within the

smoothing areas.
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3.2.2 High-dimensional Markov random field
The image dataset presents a two-dimensional image in our

application. Hence, we only consider the first-order system in

Markov random field priors, where the pixel and its four closest

neighbors are on the same planet. However, if the application

dataset from the projection data to the tomography image, where

pixels within two-dimensional space transfer into voxels within

three-dimensional space, we can introduce another two

neighbors of pixels based on the first-order system. As seen in

Figure 5, the left side, as a comparison to the right side, displays

the Markov random field within two-dimensional space. There

are two additional red nodes applied based on the first-

order system.

The Markov random field prior distribution can still be written

as a general form of Gibbs distribution:

pX x j Bð Þ ¼ kBm exp �B
Xm
j¼1

X
t[N@ jð Þ

wjtf xj � xt
� �0

@
1
A,

xj � 0, t . 0,

where the number of neighbors in N@ðjÞ increases from four to six

neighbors in three-dimensional space.
3.2.3 Hyper-prior distribution
In the inhomogeneous model, t is a vector of unknown local

parameters which can either be defined by allocating a series of

artificial values or by introducing another level of modeling that

correctly incorporates the additional uncertainty. The first

solution requires advanced information for the assignment which

is not usually available. Alternatively, the second action employs

a hyper-prior distribution, ptðtÞ, which is diffuse unless there is
frontiersin.org
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FIGURE 6

Factor graph for hierarchical Bayesian model.

Zhang et al. 10.3389/fnume.2025.1508816
more informative information available. Here, an exponential

distribution is used for each tj independently but with a common

rate parameter, g, that is, tjjg � ExpðgÞ. The value of g is chosen

to produce a long-tailed distribution to cover varied scenarios. As

well as promoting smaller values of tj compared to a non-

informative uniform distribution, it also avoids the need to impose

an arbitrary upper range limit. The distribution for ptjgðtjgÞ:

ptjg tjgð Þ ¼
Ym
j¼1

g exp �g tj
� �

, g . 0: (7)

The elements in t ¼ {t j; j ¼ 1, 2, , m} are the collection of local

prior variances and g refers to the rate parameter in the hyper-

prior distribution, a smaller value for the rate parameter indicates

the more flat hyper-prior distribution.

3.2.4 Rate parameter in the hyper-prior
distribution

The fundamental strategy for establishing a hierarchical

Bayesian multilevel model is specifying prior distributions for

each unknown parameter, which enables estimation for each

parameter based on the other prior distributions from different

levels. Therefore, it can incorporate more prior knowledge and

hence improve estimation accuracy. However, once additional

prior levels are involved in the model, it can result in a

prolonged computation time and a high demand for supportive

information. Figure 6 explains the multilevel structure in our

hierarchical Bayesian model.

Now that an additional hyper-parameter, g, has been

introduced, further modeling must be considered. Due to a lack

of supportive prior knowledge, it is common to utilize a uniform

distribution or a Jacobian transformation of a uniform

distribution. Another option is to introduce a conjugate prior
Frontiers in Nuclear Medicine 07
distribution which here would be the Gamma distribution with

shape and scale parameters.

For the first method, the uniform prior allocates the same

probability to each value within its defined range; it is subjective

but hard to estimate values when the value is extremely small (23,

24). However, overly complex models have a high risk of poor

performance (25). The use of a Gamma distribution unavoidably

expands the number of unknown parameters. We expect, however,

that the density peak of the Gamma distribution to be a small value

and therefore, an exponential distribution with a small value for the

rate parameter, u, should be adequate: ρ exp(Θ).

The result of these multilevel models, combining likelihood

function in Equation 1, prior distribution in Equation 6, and

hyper-prior distribution in Equation 7, produces the following

posterior distribution:

fX,t,gjY x, t, g j yð Þ
¼ fY jX y j xð ÞpXjt xjtð Þptjg tjgð Þpg gð Þ

/
Yn
i¼1

l
pi
i
exp �lið Þ

pi!

Ym
j¼1

1

2tj
� � exp �

P
t[@ jð Þ jxj � xt j

tj

� �
� g exp �g t j

� �" #

� exp �u gð Þ,
(8)

where X ¼ {Xj, j ¼ 1, 2, , m} represents the unknown radionuclide

distribution, t ¼ {tj, j ¼ 1, 2, , m} are the locally adaptive prior

variance parameters, g is the hyper-parameter modeling t, and

Y : {Yi, i ¼ 1, 2, , n} is the observed data.

There is a concern about the potentially unreliable posterior

estimations from the hierarchical model, especially for estimating

small values. Hence, instead of estimating the hyper-prior

parameter g, we consider a calibration experiment where a series

of values for g, from 10�4 to 103, are used to investigate the

trend in the mean squared error under different g. In other

words, instead of bringing another level of hyper-prior
frontiersin.org
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FIGURE 7

MSE of posterior estimation with fixed hyper prior parameter g. Applications refer to the employment of simulation datasets (Y , Y1, and
Y2), respectively.
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distribution, g is fixed, but based on the calibration experiments

rather than requiring prior knowledge.

As shown in Figure 7, a similar increased pattern of MSE

occurs among the three data applications with different levels of

noise and blurring. The applications are the three designed

examples. The estimation using small g, smaller than 0:1 say, is

robust and based on mean squared error performance.

Combining the posterior estimation for g with the hierarchical

Bayesian model, we can conclude that a rate parameter g around

10�2 is a robust hyper-prior parameter value for our current

application and hence in what follows g ¼ 10�2.
4 Results

4.1 Estimation strategy

Once the posterior distribution involving likelihood, prior, and

hyper prior distribution is defined, as seen in Equation 8. A

metropolis Hasting algorithm is used for the estimation. This is

an example of the general Markov chain Monte Carlo (MCMC)

approach that is able to handle complex distributions where

other estimation methods fail. Details of the estimation process

of our application can be found in Estimation algorithm of

Markov chain Monte Carlo, Appendix Table A1. Apart from

interest in the posterior estimation of the unknown radionuclide

distribution, X, the locally-adaptive hyper-prior parameters τ

must be estimated simultaneously. In general, the single global

prior variance τ should capture the global variance between

pixels. However, in the locally-adaptive model the hyper-prior
Frontiers in Nuclear Medicine 08
variances τ measure each pixel’s variation within the

corresponding neighbourhood, and hence we expect the elements

{τ = τj, j = 1, 2, . . . ,m} to be non-identical.
4.2 Posterior estimation

Figure 8 shows the posterior estimates for the three scenarios,

with X, X1, and X2. For comparison, posterior estimates using the

homogeneous model (left) are shown along with the estimates

using the inhomogeneous, locally adaptive prior model (right).

After incorporating prior flexibility, estimation improvements are

apparent for deblurring and denoising, particularly in the second

and third applications of simulation datasets with high-level blurring.

In the first application, where more accurate and sufficient

first-hand information Y is available, the results from both

models (the homogeneous and inhomogeneous models,

respectively) are similar. However, in the third application,

despite the foundational truth being the same as in the first

example, the first-hand information Y2 contains high levels of

noise and blurring. In this case, the hierarchical Bayesian

modeling successfully produces an image based on Y2 that is

closer to the truth compared to the outcomes from the

homogeneous modeling.

In addition to posterior estimates of X, standard deviation and

bias values are shown in Figures 9, 10.

For standard deviation, the results from the homogeneous

models (left) show higher values than the inhomogeneous

models (right), especially for the hot regions and smoothing

background. The variation can still be found in high-contrast
frontiersin.org
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FIGURE 8

Comparisons of image processing for three simulations, X, X1 and X2, respectively. From the right side, (a,c,e) present the image processing with a
global hyper-prior variance from the homogeneous Bayesian modeling. While (b,d,f) show the image processing under hierarchical Bayesian
modeling with local hyper-prior variances.
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edges while there is a reduction within the hot regions and smooth

backgrounds where the pixel differences are assumed to be small.

The bias in Figure 10 provides clear additional evidence that

the estimation accuracy of the locally adaptive model is improved

compared to that of the homogeneous model. For instance, in

Figure 10f, the bias around the high-contrast edge and
Frontiers in Nuclear Medicine 09
smoothing hot regions is hardly detected in the right image as

compared to the image on the left side. Generally, the image

patterns of standard deviation and bias on the right side have

less information observed compared to the left side. In other

words, the adjusted model captures the variation and bias within

the posterior estimations.
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FIGURE 9

Standard deviation of posterior estimations for true X, X1 and X2 in image pattern. (a,c,e) present the image patterns of standard deviation that come
from the homogeneous Bayesian model with a global hyper-prior variance. (b,d,f) show the image patterns of standard deviation originate from
hierarchical Bayesian modeling with local hyper-prior variances.
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4.3 Comparisons of posterior pixel
estimation

Figures 11a,b show box plots of three pixels from the

background and three from the hot regions, respectively. The

distribution in the blue box plots (left of each pair) is close to

the red dashed line, representing the truth. In contrast, the ones
Frontiers in Nuclear Medicine 10
in the orange box plots (right of each pair) have significant bias.

Overall, the Bayesian model with locally adaptive hyper-prior

variance introduces estimation flexibility to realize a more

accurate outcome in each application.

Figures 12–14 present comparisons of estimation pixels

between the posterior containing homogeneous and

inhomogeneous hyper-prior parameters in each simulation
frontiersin.org
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FIGURE 10

Bias of posterior estimations for truth X, X1, and X2 in image pattern. (a,c,e) present the image patterns of bias that come from the homogeneous
Bayesian model with a global hyper-prior variance. (b,d,f) show the image patterns of standard deviation originating from hierarchical Bayesian
modeling with local hyper-prior variances.
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application (X, X1, and X2, respectively). In general, the

estimations with a global hyper-parameter (left side) tend to have

higher variations and broader credible intervals than those with

locally adaptive hyper-parameters (right side), especially for the

hot regions. Although the wider credible interval is more capable

of covering variation in the values in comparison to the narrow

credible interval, we noticed that there are some severe

estimation fluctuations, especially within the smoothing pixel

region, for example, in Figures 12, 13.
Frontiers in Nuclear Medicine 11
Furthermore, the value difference between the estimations

from the locally adaptive model and the truth is smaller than

the homogeneous ones. For instance, without sufficient first-

hand information in the third simulation experience, as shown

in Figure 14, the modeling with local hyper-prior variance

produces a more accurate estimation as opposed to the one

with global hyper-prior variance. Table 1 shows the

corresponding estimation measurements of eight selected

pixels in the 20th row in the third simulation application.
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FIGURE 11

Box plots of posterior distributions. The box plots in blue show the results of the model with locally adaptive hyper-prior parameters, and the box plots
in orange represent estimations from the homogeneous model. The red dashed line is the true pixel value. (a) Box plots of three background posterior
distributions from the second example. (b) Box plots of three hot-region posterior distributions from the second example.
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Overall, the Bayesian model with locally adaptive hyper-prior

variance introduces estimation flexibility to realize a more

accurate outcome in each application.
5 Modeling application in small animal
imaging

In the previous simulation examples, locally adaptive

Bayesian modeling proves the advantages of estimation accuracy.

We now aim to apply this technique to images obtained

from mouse scanning by using -eyeTM to confirm the

conclusion obtained from the former sections. Figure 15a

shows the image of a mouse injected with a technetium-99m

labeled radiotracer acquired with -eyeTM, and Figure 15b
Frontiers in Nuclear Medicine 12
presents the correspondingly designed dataset for

estimation application.

The results are presented in Figures 16b,c. Here, we assign

the rate parameter g ¼ 10�2 in the hyper-prior distribution.

As in the previous examples, the estimation with the locally

adaptive hyper-prior variance performs better compared to the

homogeneous model in terms of deblurring and denoising; for

instance, the smoothing edge (red circle) between the

background and hot region is clearer in Figure 16c than in

Figure 16b. In Figure 16d, the estimation of hyper-prior t is

displayed, showing the clear non-identical value distribution of t.

The high-dimension t introduces flexibility when estimating

pixel variance.

The locally adaptive Bayesian model with inhomogeneous

hyper-prior parameters can specifically describe the
frontiersin.org
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FIGURE 12

Pixel posterior distributions under homogeneous (left) and locally adaptive (right) models with hyper-prior variance parameters, using the first
simulation dataset. The posterior distributions for the 20th row are shown at the top, while those for the 36th column are shown at the bottom.
(a,b) Pixel estimates under the homogeneous and inhomogeneous modelling for the 20th row; (c,d) Pixel estimates under the homogeneous and
inhomogeneous modelling for the 36th column.
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probabilistic distribution of each unknown pixel xj. Beyond

pixel-wise posterior estimation, these inhomogeneous hyper-

prior variances enabled a more detailed exploration of the

outcomes. For instance, plotting the estimated hyper-

prior variances directly reveals spatial information about

the pixels. In conclusion, the locally adaptive Bayesian

modeling constructs a hierarchical network that encompasses

multiple levels of parameters. This network effectively

integrates information from estimated parameters across

different levels.
6 Tikhonov regularization and real
image application

The application of Bayesian modeling in cylinder simulation

datasets demonstrates advantages in terms of deblurring and

denoising. Therefore, to confirm the applicability of Bayesian

modeling, another real-world data application is required.

Tikhonov regularization has been identified as useful as it

introduces the homogeneous regularization term into ill-

conditioned problems, specifically in the context of inverse

problems (26–28). Therefore, a comparison between the
Frontiers in Nuclear Medicine 13
estimations from Bayesian modeling and Tikhonov regularization

is necessary.
6.1 Tikhonov regularization comparison

Tikhonov regularization for medical image processing, which

holds the linear relationship between observation image and real

image, can be written as

min kY � AXk22 þ lkLAk22
� �

,

where A is the transformation matrix, and Y and X are the

observation dataset and real unknown dataset, respectively. The

regularization parameter l controls the trade-off between the

model fitness and the regularization term. The regularization

matrix L contains the prior information about the solutions.

Here, we employ the identity matrix as the regularization matrix

L because of the lack of supportive prior information.

In the context of the regularization parameter l, the criterion

of cross-validation has been applied in various regularization

algorithms, including Tikhonov regularization. Cross-validation
frontiersin.org
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FIGURE 13

Pixel posterior distributions under homogeneous (left) and locally adaptive (right) models with hyper-prior variance parameters, employing the second
simulation dataset. The posterior distributions for the 20th row are shown at the top, while those for the 36th column are shown at the bottom. (a,b)
Pixel estimates under the homogeneous and inhomogeneous modelling for the 20th row; (c,d) Pixel estimates under the homogeneous and
inhomogeneous modelling for the 36th column.
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selects the optimum regularization parameter l by identifying the

minimum estimation residuals.1 The estimation outcome from

Tikhonov regularization, using observation Y from within the

first simulation dataset, is shown in Figure 17. The left side

displays the observation of the first simulation dataset, while the

right side presents the estimation from Tikhonov regularization.

Compared to the Bayesian application shown in Figure 8, the

blurring in Figure 17b can still be detected around the high-

contrast area between the background and hot region. Hence, the

estimation for real image X is not accurate, since regularization

applies to the whole information not only noise but also pixel

values. In other words, the smoothing effect from regularization

applies globally to pixels within both background and hot

regions simultaneously, regardless of varied pixel densities. The

estimated pixels with a large value of regularization (represented

in green) are smoother than those with small regularization
1The estimation algorithm for regularization parameter “cv.glmnet” and the

application of Tikhonov regularization “glmnet” can be find in R package

“glmnet.”
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(represented in blue). Furthermore, some non-negative pixels

from the background are unavoidably transformed into negatives

after applying regularization.

Similarly, the estimations of specific columns and rows within

the pixel matrix from Bayesian modeling and Tikhonov

regularization are presented in Figure 18. Compared to the

Bayesian modeling, Tikhonov regularization is only based on the

pixel point estimation without consideration of the pixels’

environment. Furthermore, unlike estimations from Markov

chain Monte Carlo within the Bayesian framework, the

distribution of estimated pixels and the quantified information,

including the confidence intervals of estimations, are not available.
6.2 Real medical image application

Here, the employed medical image for the mouse kidney was

obtained by using a dimercaptosuccinic acid scan (DMSA).

Compared to the -eyeTM camera, the DMSA scan with

technetium-99 m labeled radiotracer is well-known for its valuable

capability in identifying patients’ kidney shape and location.

The information of the region of interest, where the kidneys are

located, is clearer in the reprocessed image in Figure 19b compared

to the observed image in Figure 19a.
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FIGURE 14

Pixel posterior distributions under homogeneous (left) and locally adaptive (right) models with hyper-prior variance parameters, employing the third
simulation dataset. The posterior distributions for the 20th row are shown at the top, while those for the 36th column are shown at the bottom. (a), (b)
Pixel estimates under the homogeneous and inhomogeneous modelling for the 20th row; (c), (d) Pixel estimates under the homogeneous and
inhomogeneous modelling for the 36th column.

TABLE 1 The list includes estimation measurements.

Position ucl.H ucl.In lci.H lci.In mean.H mean.In
1 45.36 20.60 0.90 18.47 15.80 19.58

4 32.58 20.09 0.48 16.81 11.46 18.67

8 35.69 23.06 0.59 13.86 12.18 18.36

14 1,219.05 1,136.55 1,045.48 1,086.63 1,132.85 1,111.66

18 79.04 30.05 2.13 15.27 29.53 21.53

22 62.27 24.30 1.66 16.50 23.93 20.46

24 48.84 25.52 0.55 16.01 16.94 20.55

26 123.85 43.67 3.40 9.73 44.13 24.86

“H” indicates the posterior estimation from Bayesian modeling with the global LMRF, while “In” indicates the posterior estimation from Bayesian modeling with locally adaptive LMRF. The
outcomes are stored to two decimal places.

FIGURE 15

Scan of a mouse using -eyeTM: (a) real scan and (b) a simulated dataset.
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FIGURE 16

Image processing under the Bayesian modeling. (a) shows the simulation image with noise and blurring. (b) displays image processing under the
Bayesian modeling with homogeneous hyper-prior parameter t. (c) displays image processing under the Bayesian modeling with inhomogeneous
hyper-prior parameter t. (d) shows the posterior estimation of locally adaptive hyper-prior variances in the image pattern.

FIGURE 17

Observation image and the corresponding estimation from Tikhonov regularization with the optimum regulation. (a) Observation Y . (b)
Tikhonov regularization.
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FIGURE 18

Estimation comparison between Bayesian modeling and Tikhonov regularization. The estimation from Bayesian modeling highlighted in the dark color
has a credible interval in gray. The estimations from Tikhonov regularization are presented with two regularization options: the green line represents
the optimum regularization defined by the cross-validation method, while the blue line represents manual regularization with l=0.1 applied. Here, the
pixel estimations for the 20th row are shown at the top, while those for the 36th column are shown at the bottom. (a) Estimation comparison between
Bayesian modeling and Tikhonov regularization I. (b) Estimation comparison between Bayesian modeling and Tikhonov regularization II.
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FIGURE 19

A real application in a medical image using DMSA (left) and the corresponding posterior estimations from Bayesian modeling with LMRF prior
distribution (right). (a) Observed image from DMSA. (b) Estimation from Bayesian modeling.
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7 Conclusions

We extended the hierarchical Bayesian model for image

processing by introducing the locally adaptive hyper-prior

variance t, replacing a single homogeneous hyper-prior variance

t. The locally adaptive model adjusted the hyper-prior variances

based on the different local spatial conditions, effectively allowing

the hyper-prior variances to vary for each location estimation.

This adaptation provided the model with greater flexibility in

estimation, subsequently improving accuracy. In our exploration

of hyper-prior parameter estimation, we found that weakly

informative prior distributions, such as a relatively flat

exponential distribution, performed more efficiently compared to

non-informative priors. This was evidenced by higher

convergence rates and lower estimation correlations.

The locally adaptive Bayesian model with inhomogeneous hyper-

prior parameters can specifically describe the probabilistic distribution

of each unknown pixel. Beyond pixel-wise posterior estimation, these

inhomogeneous hyper-prior variances enabled a more detailed

exploration of the outcomes. For instance, plotting the estimated

hyper-prior variances directly revealed spatial information about the

pixels. In conclusion, the locally adaptive Bayesian approach

constructs a hierarchical model that encompasses multiple levels of

parameters. This approach effectively integrates information from

estimated parameters across different levels, leading to improved

image estimation. Consequently, there is the potential for

enhancements in quantification, diagnosis, and treatment

monitoring in medical imaging applications.
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Appendix

Estimation algorithm of Markov chain
Monte Carlo

The hyper-parameter t is a global variable, and we assume

the distribution for a global hyper-parameter t is a uniform

distribution. However, t ¼ {tj, j ¼ 1, 2, , m} becomes a vector

of unknown parameters. Therefore, there are

corresponding changes in terms of distribution ptjgðt j gÞ and
estimation process: MCMC. We initially define the

Gamma hyper-prior distribution with artificial values j ¼ 1

and u ¼ 2: g � Gammaðj ¼ 1, u ¼ 2Þ. If we want to

estimate t for the kth iteration in the Markov chain

Monte Carlo and update unknown parameters, follow the

steps below:

Once the chain has burned in, a process to drop a bunch of

initial iterations whose value probabilities are low, the estimation
TABLE A1 MCMC for modeling with locally adaptive hyper-parameter g.

Algorithm MCMC for modelling with locally adaptive
hyper-prior parameters (iteration k)
Input: A list of initial values {X1 ¼ xð0Þ1 , X2 ¼ xð0Þ2 , , Xm ¼ xð0Þm };

A list of initial values {t1 ¼ t
ð0Þ
1 , t2 ¼ t

ð0Þ
2 , , tm ¼ t

ð0Þ
m };

An updated positive constant sðkÞ , sðkÞt ,sðkÞg .

For j ¼ {1, 2, , m}

1. Propose a new value xðkÞj � Nðxðk�1Þj , ðsðkÞÞ2Þ; if and only if xkj � 0

2. Generate m � unifð0, 1Þ
3. Accept xkj with probability

a ¼ min 1,
fXjY ,tðxðk�1Þ1 , xðk�1Þ2 , , xðkÞj , , xðk�1Þm jY , tðk�1ÞÞ

fXjY ,tðxðk�1Þ1 , xðk�1Þ2 , , xðk�1Þj , , xðk�1Þm jY , tðk�1Þ Þ

� �
4. Compare the m with the calculated a,

5. if: m � a then

6. Accept the proposal value xj ¼ xðkÞj
7. else xj ¼ xðk�1Þj

end update x

8. Propose a new candidate value tkj � Nðtk�1j , ðsðkÞt Þ2Þ; if and only if tkj � 0

9. Generate m1 � unifð0, 1Þ.
10. Accept tðkÞ with probability

a1 ¼ min 1,
ftjX ðtðk�1Þ1 , tðk�1Þ2 , , tðkÞj , , tðk�1Þm jxk , gðk�1Þ Þ

ftjX ðtðk�1Þ1 , tðk�1Þ2 , , tðk�1Þj , , tðk�1Þm jxk , gðk�1ÞÞ

� �
,

11. if: m1 � a1 then

12. Accept the proposal value tj ¼ t
ðkÞ
j ,

13. else t j ¼ t
ðk�1Þ
j

end update t

14. Propose a new candidate value gk � Nðgk�1, ðsðkÞt Þ2Þ; if and only if gk � 0

15. Generate m2 � unifð0, 1Þ.
16. Accept gðkÞ with probability

a2 ¼ min 1,
fgjX,tðgk jxk , tðkÞ Þ

fgjX,tðgk�1 jxk , tðkÞ Þ
� �

,

17. if: m2 � a2 then

18. Accept the proposal value g ¼ gðkÞ ,
19. else g ¼ gðk�1Þ

end update g

20. end if

Repeat the above steps until it receives enough sampling size.
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for each parameter is supposed to be the sampling mean, we

seek, i.e., EðgÞ � ðPk g
ðkÞÞ=k.
Estimation measurement

The estimation Xj can be assessed by averaging the application

outcomes for the last K stationary MCMC iterations. The most

popular and common indexes for accurate measurement are the

MSE, bias, and standard deviation (SD). Furthermore, residual

sum squares (RSS), the modeling fitness measurement, is widely

applied among model comparisons. For the subset of the whole

parameters, the forms of measurement are seen in Table A2.

The entire image is of size m, while any image sub-region is of

size R, i.e., R � m. The average MCMC estimation is EðxjÞ and x̂Kj
refers to the estimation of corresponding pixels in the Kth iteration.

The denominator in each of the expressions varies based on the

number of pixels considered.
TABLE A2 List of statistical measurements.

Measurement Equation
Absolute bias ðPm

j¼1 j x j � Eðx jÞ jÞ=m
Regional absolute bias

P
j[R j x j � E x j

� � j� �
=R

Standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1
Pm

j¼1 j x kð Þ
j � E xj

� � j2q
= K �mð Þ

Regional standard deviation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1
P

j[R j x kð Þ
j � E xj

� � j2q
= K � Rð Þ

Mean square error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1
Pm

j¼1 j x kð Þ
j � E xj

� � j2q
= K �mð Þ

Regional mean square error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1
P

j[R j xðkÞj � EðxjÞ j2
q

=ðK � RÞ
Residual sum of squares

PK
k¼1

Pm
j¼1 y j � y kð Þ

j

� �2
= K �mð Þ

Regional residual sum of squares
PK

k¼1
P

j[R y j � y kð Þ
j

� �2
= K � Rð Þ
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