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Background: The characterization of solitary pulmonary nodules (SPNs) as
malignant or benign remains a diagnostic challenge using conventional
imaging parameters. The literature suggests using combined Positron Emission
Tomography (PET) and Computed Tomography (CT) to characterise a SPN.
Radiomics and machine learning are other promising technologies which can
be utilised to characterise the SPN.
Purpose: This study explores the potential of PET radiomics signatures and
machine learning algorithms to characterise the SPN.
Methods: This retrospective study aimed to characterize solitary pulmonary
nodules (SPNs) using PET radiomics. A total of 163 patients who underwent
PET/CT imaging were included in this study. A total of 1,098 features were
extracted from PET images using PyRadiomics. To optimize model
performance two strategies i.e., (a) feature selection and (b) feature reduction
techniques were employed, including hierarchical clustering, RFE in feature
selection, and PCA in feature reduction. To address outcome class imbalance,
the dataset was statistically resampled (SMOTE). A random forest models was
developed using original training set (RF-Model-O & RF-PCA-Model-O) and
balanced training dataset (RF-Model-B & RF-PCA-Model-B) and validated on
the test datasets. Additionally, 5-fold cross-validation and bootstrap validation
was also performed. The model’s performance was assessed using various
metrics, such as accuracy, AUC, precision, recall, and F1-score.
Results: Of the 163 patients (aged 36–76 years, mean age 58 ± 7), 117 had
malignant disease and 46 had granulomatous or benign conditions. In
Strategy (a), five radiomic features were identified as optimal using hierarchical
clustering and RFE. In Strategy (b), five principal components were deemed
optimal using PCA. The model accuracy of RF-Model-O and RF-Model-B in
the train-test validation, 5-fold cross-validation and bootstrap validation were
found to be 0.8, 0.80 ± 0.07, 0.84 ± 1.11 and 0.8, 0.83 ± 0.10, 0.80 ± 0.07 in
Strategy (a). Similarly, the model accuracy of RF-PCA-Model-O and RF-PCA-
Model-B in the train-test validation, 5-fold cross-validation and bootstrap
validation were found to be 0.84, 0.80 ± 0.07, 0.84 ± 07 and 0.74, 0.80 ± 0.08,
0.75 ± 0.08 in Strategy (b).
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Conclusion: The PET radiomics demonstrated excellent performance in
characterizing SPNs as benign or malignant.

KEYWORDS

lung cancer, SPN, pet scan, radiomics, random forest algorithm, SMOTE, cross-validation,

bootstrap

1 Introduction

The detection and malignancy characterization of solitary

pulmonary nodules (SPNs) represent a significant challenge in

the realm of modern healthcare, particularly within the field of

radiology (1). An SPN is defined as a rounded or oval lesion that

measures up to 3 cm in diameter, entirely surrounded by lung

parenchyma, and lacks any associated lymphadenopathy or

atelectasis (1). SPNs can be either benign or malignant, and

distinguishing between these two categories is critical for

appropriate patient management (2, 3). With lung cancer being

one of the leading causes of cancer-related deaths worldwide,

early and accurate identification of SPNs becomes paramount in

improving patient outcomes and reducing mortality rates (4, 5).

In earlier days chest radiographs were used to detect SPN

(6–8). In recent years, the landscape of SPN detection has

undergone a transformative shift, largely attributed to the

advancements in radiological imaging techniques. Imaging

modalities such as chest radiography, computed tomography

(CT), positron emission tomography (PET), and magnetic

resonance imaging (MRI) have demonstrated remarkable

capabilities in enhancing the accuracy and efficiency of SPN

detection (9–17). The integration of these imaging technologies

has revolutionized the approach to identifying SPNs, enabling

clinicians to make well-informed decisions about patient

management and treatment strategies (9–17).

Traditional chest radiography serves as the initial screening

tool for detecting SPNs (6, 7). However, its limited sensitivity

often results in a substantial number of SPNs remaining

undetected (6, 7). While chest radiography may identify larger

nodules, its efficacy diminishes with smaller lesions, emphasizing

the need for more advanced imaging techniques (6, 7).

Computed Tomography (CT) has emerged as a cornerstone

in SPN detection and characterization due to its exceptional

spatial resolution. High-resolution CT (HRCT) plays a pivotal

role in distinguishing between benign and malignant SPNs,

allowing radiologists to analyze nodule morphology, texture,

and enhancement patterns (9–13). The introduction of

multidetector-row CT (MDCT) further enhances image quality

and facilitates three-dimensional reconstructions, enabling

precise measurements of nodule size and volume. CT is

particularly advantageous for assessing nodules in difficult-to-

reach anatomical locations or those obscured by surrounding

structures (9–14).

Positron Emission Tomography (PET) imaging, often

combined with CT (PET/CT), offers metabolic and

anatomical information simultaneously (15–19). By using

radiopharmaceuticals labelled with positron-emitting isotopes,

such as Fluorine-18 fluorodeoxyglucose (F-18 FDG), PET detects

areas of increased glucose metabolism, which is characteristic of

many malignant tumours. PET/CT can aid in differentiating

benign from malignant SPNs by assessing their metabolic activity

(15–19). For instance, increased FDG uptake suggests

malignancy, whereas reduced uptake is indicative of benignity.

This modality contributes significantly to staging, guiding biopsy,

and monitoring treatment response.

Magnetic Resonance Imaging (MRI) although less frequently

employed for SPN detection due to its relatively lower resolution

and longer acquisition times, MRI offers unique advantages,

especially in assessing nodules in specific clinical scenarios

(20–22). MRI provides excellent soft tissue contrast, which can

aid in differentiating between various tissue types. Diffusion-

weighted imaging (DWI) is particularly promising, as it captures

variations in the diffusion of water molecules, highlighting

differences in tissue cellularity and microstructure (20–22).

The integration of these radiological imaging modalities into

clinical practice has considerably enhanced the accuracy of SPN

detection and characterization. However, challenges persist in

distinguishing between benign and malignant SPNs, particularly

in cases where imaging features are inconclusive (23–25). To

address this, various quantitative imaging techniques and

computer-aided diagnostic (CAD) systems have been developed,

aiming to provide more objective and reproducible assessments

of SPNs. These approaches involve the extraction of quantitative

features from imaging data, such as nodule size, shape, texture,

and enhancement patterns, which are then used to develop

predictive models to aid radiologists in their decision-making

process (26–31).

The detection and characterization of solitary pulmonary

nodules have seen remarkable advancements through the

integration of various radiological imaging modalities and

artificial intelligence (27–31). From the initial screening with

chest radiography to the high-resolution capabilities of CT,

the metabolic insights of PET/CT, and the unique tissue

contrast of MRI, radiology-based radiomics and artificial

intelligence may have an indispensable role in improving the

accuracy and efficacy of SPN diagnosis (27–32). These

technologies have transformed the clinical landscape, facilitating

early detection, accurate characterization, and appropriate

management of SPNs. Continued research and innovation in this

field hold the promise of further refining our understanding and

approach to SPN detection, ultimately leading to improved

patient outcomes and reduced mortality rates (24, 25). In this

study, we utilized AI and PET radiomics to differentiate

between malignant and benign etiologies of solitary pulmonary

nodules (SPNs).
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2 Material and methods

This retrospective study was approved by the Institutional Ethics

Committee (IEC), with a waiver of informed consent granted in

accordance with the Declaration of Helsinki. This study adheres

TRIPOD Checklist for prediction model development (Supplementary

TRIPOD Checklist). The study included 196 patients who underwent

PET/CT imaging for characterization of solitary pulmonary nodules

(SPNs) between 2016 and 2020. Patients in this study were selected

based on the following inclusion and exclusion criteria:

Inclusion criteria:

Patients enrolled between 2000 and 2016.

Patients who underwent PET/CT scans.

Patients with a histopathology-proven diagnosis.

Exclusion criteria:

PET/CT scans of suboptimal quality.

Non-conclusive histopathology reports.

Finally, 163 patients were found suitable to include in this study

(Figure 1). PET/CT scans of these patients were downloaded from

the Picture Archive and Communication System (PACS) to EBW

workstation, Phillips Medical system, Eindhoven, Netherlands and

the nodules were delineated by an expert radiologist using the SUV

threshold method (threshold = 42%) followed by manual

corrections if required. Manual corrections were required for

tumor with an SUVmax less than 3 g/ml. such correction was

performed by an expert radiologist with more than 20 years of

experience. The delineation was stored as RTSTRUCT by the

name of GTV in Digital Image Communication in Medicine

(DICOM) format. The maximum Standardized Uptake Value

(SUVmax) in the delineation was also captured and stored in the

datasheet. Subsequently, PET scan images and GTV were

transferred to the AI workstation for further processing.

All the patients havingmalignant SPNwere treatedwith surgery as

first-line treatment. Patients diagnosed with granulomatous disease

were referred to the general hospital for further treatment.

2.1 PET/CT acquisition

The contrast-enhanced CT scan followed by PET scans

were performed one hour after the intravenous administration of

FIGURE 1

Patient selection flowchart is shown in the figure.
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18F-FDG (5 MBq/kg bodyweight) onGemini TF16 orGemini TF 64

PET/CT scanner, Phillips Medical system, Eindhoven, Netherlands.

The details of imaging parameters are shown in Table 1.

2.2 Prediction model development

The complete prediction modelling strategy is pictorially

depicted in Figure 2. As the first step of the radiomics-based

prediction model development, 1,098 features were extracted

from the PET images and GTV by using the in-house developed

radiomic workflow software PyRadGUI (33). A description of the

extracted radiomic feature types is presented in this table

(Table 2). To improve the model’s predictive performance, we

implemented two feature engineering strategies: (a) feature

selection and (b) feature reduction.

2.2.1 Feature selection

A two-step feature selection process was adopted to select the

most relevant features for the prediction model development.

TABLE 1 Imaging protocols used to perform PET/CT scan.

PET Acquisition mode List mode

Matrix size 200 × 200

Bed position (sec) 90

Attenuation correction CT based

Reconstruction RAMLA

CT kVp 120

mAs 200

Slice thickness (mm) 5

Tube rotation time (sec) 0.5

Matrix size 512 × 512

Reconstruction ASiR

FIGURE 2

Schematic representation of the study’s methodology, outlining data preprocessing, hyperparameter tuning, model development, and validation.
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2.2.1.1 Unsupervised learning technique

K-means Clustering was performed to reduce the redundancy

in features based on their similarity. By identifying clusters of

correlated features, we could potentially mitigate redundancy and

select representative features from each cluster.

2.2.1.2 Recursive feature elimination (RFE)

RFE is a backward feature elimination method that iteratively

removes features that have the least impact on the model’s

performance. This helps to identify the most informative features

for the prediction task. Using the Random forest algorithm in

the RFE algorithm the most significant features were selected to

develop a prediction model.

2.2.2 Feature reduction
2.2.2.1 Principal component analysis (PCA)

The PCA is a dimensionality reduction technique which,

transforms the original features into a new set of uncorrelated

features, known as principal components. By retaining only the

most important principal components, we can significantly

reduce the dimensionality of the data while preserving the most

relevant information. The PCA was performed to select the

most significant principal components for the prediction

model development.

The outliers in the radiomics features may influence the

performance of radiomic-based prediction model.

2.2.3 Outlier treatment
The interquartile range method was employed to identify and

treat the outliers in the selected features. The values falling

outside the 1.5 times the interquartile range were considered

outliers. The outliers were replaced with the median or mean

value randomly to prevent them from unduly influencing the

model’s performance. Outliers treatment was performed

accordingly for 10 radiomic feature selected by using k-mean

clustering and SUV max value (Supplementary Figures S1–S10).

2.2.4 Train-test data split

The stratified train-test dataset split was performed in a 7:3

ratio. 70% of data were used to train the model and 30% were

used to validate the model subsequently. The training dataset

underwent feature selection via recursive feature elimination

(RFE), data balancing, and hyperparameter tuning. In contrast,

the test dataset was reserved solely for model validation in train-

test validation and bootstrap validation, ensuring an unbiased

evaluation of the model’s performance and data leakage.

2.2.5 Data balancing
Given the class imbalance in the dataset, with a higher prevalence

of malignancies compared to benign SPNs, we implemented

data balancing techniques. The SMOTE (Synthetic Minority

Oversampling Technique) technique was used to address the class

imbalance by generating synthetic data points for the minority

class in the training dataset (33). By creating new samples similar

to existing minority classes, SMOTE helps to balance the

representation of different classes in the training dataset.

2.2.6 Prediction algorithm

RandomForest Algorithm:The random forest (RF) algorithmwas

employed to develop the prediction model. RF is a popular ensemble

machine learning algorithm that combines multiple decision trees to

make predictions. Random forests are known for their robustness

and ability to handle complex relationships in data.

2.2.7 Hyperparameter tuning

A grid search method was employed for exhaustively searching

through a predefined grid of hyperparameter values to find the

optimal combination of these hyperparameters by fine-tuning

TABLE 2 The table outlines the various types of radiomic features extracted from the images.

Type of
Feature

Feature descriptions No. of
Features

Shape based

Features

Independent of the gray level intensity distribution, shape features characterize the three-dimensional size and shape of the ROI.

Their calculation relies solely on the original image and mask.

13

First Order

statistics

First-order statistics describe the distribution of voxel intensities within the ROI. 17

GLRLM The Gray Level Run Length Matrix (GLRLM) assesses the distribution of run lengths for discretized grey levels in an image or a

stack of images.

16

GLCM The Gray Level Co-Occurrence Matrix (GLCM) characterizes how often specific combinations of discretized intensities occur for

neighboring voxels within a 3D volume, distributing this information along various image directions.

22

GLSZM The Gray Level Size Zone Matrix (GLSZM) measures the distribution of different-sized zones, where each zone consists of

connected voxels with the same discretized grey level.

16

NGTDM The Neighboring Gray Tone Difference Matrix (NGTDM) represents a sum derived from comparing each voxel’s discretized gray

level to the average discretized gray level of its neighbors, considering voxels within a Chebyshev distance δ.

5

GLDM The Gray Level Dependence Matrix (GLDM) assesses the relationships between a central voxel and its neighboring voxels by

counting how many connected neighbors, within a distance δ, share a similar or “dependent” gray level.

14

LoG Features Application of a Laplacian of Gaussian (LoG) filter to the original image yields a set of derived images for each designated sigma

value. While 1–5 sigma values are commonly employed, our analysis utilized three sigma values (1, 2, and 3), resulting in three

corresponding sets of derived images. Radiomic features are then extracted from these resultant image sets.

270

Wavelet Features Wavelet transformation is applied to the original image set using three-dimensional wavelet decomposition, generating eight derived

image sets. Radiomic features are then extracted from these transformed sets.

720
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them, which maximizes the prediction model performance of the

prediction model by in the model. By systematically evaluating

different parameter settings, grid search helps to fine-tune the

model’s behaviour and improve its predictive accuracy

(Supplementary Table S3).

In strategy one two random forest prediction models i.e., RF-

Model-O and RF-Model-B were developed using original and

balanced train datasets. In strategy two, two models i.e., RF-

PCA-Model-O and RF-PCA-Model-B were developed using

original and balanced train datasets. These models were validated

using the test dataset. To assess the prediction model’s

performance and generalization capabilities, we employed five-

fold cross-validation and bootstrap validation in addition to the

standard train-test split.

2.3 Prediction metrics

The performance of the prediction models was evaluated using

various metrics, including accuracy, AU-ROC (Area Under the

Receiver Operating Characteristic Curve), precision, recall, and

F1-score. These metrics provide insights into the model’s ability

to correctly classify instances, avoid false positives and negatives,

and achieve a balance between precision and recall.

2.4 Software used

All statistical analyses and prediction model development were

performed using various packages of Python version 3.10. For

feature selection and prediction model development scikit-learn

1.6.0 package of python was used.

3 Results

A total of 163 patients had a mean age of 59.5 ± 12.5 (Range:

36–76) years were included in this study. Of 163 patients, 117

had malignancy and 46 had granulomatous or benign disease.

The mean lesion size was 3 ± 1.6 cubic centimetres. The mean

SUVmax was found to be 10.2 ± 6.1 g/ml. the details of the

demography data are provided in Table 3.

In strategy (a), Spearman correlation-based K-mean Clustering

yielded 10 features (Figure 3) (Supplementary Tables S1, S2). The

heatmap of the Spearman correlation plot of 10 features is

shown in Figure 4. Finally, 5 optimal features were selected using

recursive feature elimination which was used for the prediction

model development using a random forest algorithm

(Supplementary Table S3). In strategy (b), 5 principal

components were found to be optimal for prediction model

development using random forest algorithm (Figure 5 &

Supplementary Table S4).

In strategy a), the accuracy of the RF-Model-O (random forest

model) was found to be 0.8, 0.80 ± 0.07, and 0.84 ± 1.11 on the test

set, 5-fold cross-validation and bootstrap validation respectively on

the original dataset. Similarly, the RF-Model-B model accuracy was

found to be 0.8, 0.83 ± 1.10, and 0.80 ± 0.07 on the test set, 5-fold

cross-validation and bootstrap validation respectively on balancing

the test dataset. The RF-PCA-Model-O model accuracy using the

PCA feature selection method was found to be 0.84, 0.80 ± 0.07

and 0.84 ± 0.07 on the test set, cross-validation and bootstrap

validation on test set. Similarly, the RF-PCA-Model-B model

accuracy using the PCA feature selection method was found to

be 0.74, 0.80 ± 0.00 and 0.75 ± 0.08 on the test set, cross-

validation and bootstrap validation on test set. The detailed

prediction matrices of the random forest model are shown in

Table 4 (Supplementary Figures S11, 12 and Supplementary

Tables S5, S6). The AUC of ROC curves of all the prediction

models in validation are shown in Figure 6.

4 Discussion

Lung cancer remains one of the most prevalent and deadliest

malignancies worldwide, posing significant challenges for

healthcare providers. The timely and accurate detection of lung

cancer is paramount to improving patient outcomes, particularly

in the case of solitary pulmonary nodules (SPNs) (34). A solitary

pulmonary nodule is defined as a discrete, well-circumscribed

lesion in the lung parenchyma, often detected incidentally in

imaging studies, which raises concerns about potential

malignancy (34). While SPNs can be benign, they also represent

an important clinical dilemma due to the potential for

malignancy (34). Therefore, distinguishing between benign and

malignant SPNs is a critical challenge that necessitates precise

and efficient diagnostic tools.

TABLE 3 Demographic and clinical characteristics of study participants.

Sample size (n) 163

Biological Sex

Male 116

Female 47

Smoker 99

Non-smoker 64

Age (years) 59.5 ± 12.5 (Range: 36–76)

Lesion volume (cc) 3 ± 1.6 cc

Lesion size (largest diameter) 2.15 cm (range: 0.6–3 cm)

Size of 80% lesions was >2 cm

Mean SUVmax (g/ml) 10.2 ± 6.1 g/ml (Range: 1.1–18.7 g/ml)

Pathology n

Malignant 117

Adenocarcinoma 71

Squamous cell carcinoma 25

Adenocarcinoma in situ (BAC) 05

Low-grade neuroendocrine carcinoma 16

Benign 46

Tuberculosis 16

Nonspecific inflammation 24

Fungal 02

Sclerosing hemangioma 02

Chondroid hamartomas 02

Total 163
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This study retrospectively analysed 163 patients with solitary

pulmonary nodules (SPN) upon presentation, 117 of whom had

histologically proven malignant disease. We employed PET

radiomics-based prediction modelling using the well-established

Random Forest algorithm. Our model demonstrated excellent

discriminatory capabilities in identifying malignant and benign

lesions, achieving a validation accuracy of 0.8 and an AUC of 0.9.

The advent of advanced imaging modalities, such as computed

tomography (CT), has revolutionized the early detection and

diagnosis of lung nodules. However, the sheer volume of medical

images generated has made manual interpretation impractical,

leading to the emergence of computer-aided detection (CAD)

and diagnosis (CADx) systems (35–37). These systems integrate

machine learning, deep learning, and artificial intelligence (AI)

algorithms to enhance the diagnostic accuracy and efficiency of

radiologists. By analyzing vast amounts of image data and

identifying subtle patterns indicative of malignancy, these systems

hold the potential to significantly improve SPN detection rates (37).

Despite the promising potential of CAD and CADx systems,

several challenges persist in the accurate detection of SPNs. One

key challenge is the variability in SPN appearances,

encompassing diverse morphologies, sizes, and locations within

the lung. The complexity of distinguishing malignant nodules

from benign ones requires a high level of precision in algorithm

design and training (37–39). Moreover, in the last few years, it

has been reported that the role of functional imaging like PET/

CT is increasing in SPN detection. The function imaging-based

glucose metabolic markers like SUV characterize the SPN better

than morphological parameters on CT or MRI scans (31).

A study performed by Purandere et al. demonstrated the

improved accuracy of SPN detection based on SUVmax obtained

from metabolic imaging of 18F-FDG (17). Another study by

Garcia-Velloso MJ et al. has shown that integrating the metabolic

information from 18F-FDG with the morphological information

from CT improves the accuracy of lung cancer diagnosis (19).

The study by Herder et al. aimed to validate the Swensen clinical

prediction model for indeterminate pulmonary nodules and

assess the added value of FDG-PET scanning (40). Several

studies have suggested that proliferation markers like 18F-FLT

can characterize lung cancer better than those of metabolic

markers like 18F-FDG (20). A study, by Jha AK et al., was able

to predict 2-year overall survival (OS) using the radiomic features

extracted from the CT images (41). Several studies have been

performed on radiomics to predict various outcomes in lung

cancer (33–37, 41, 42). These studies have demonstrated that the

heterogeneity in 18F-FDG uptake in tumours carries vital

information to predict various outcomes in lung cancer (33–45).

In the last few years, many researchers have explored AI-assisted

radiomic features to characterize the SPN (37–40, 43–45). Unlike

our study, which focuses on radiomics based prediction

modelling, Beyer et al. (2007) investigated the practical

application of Computer-Aided Detection (CAD) in improving

pulmonary nodule detection efficiency (43). Similar to our work,

Zhao et al. (2022) described the development of a diagnostic

FIGURE 3

K-Means clustering elbow curve, indicating 10 optimal clusters.
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model for malignant solitary pulmonary nodules, though their

model utilized CT radiomics features (44). In contrast, our study

developed a PET radiomics model, which is more directly based

on the physiological manifestation of tumors. In a literature

reviews, Thawani et al. provided a broad overview of radiomics

and radiogenomics applications in lung cancer (45). However,

Wilson et al. focused specifically on the role of radiomics in

characterizing pulmonary nodules and lung cancer, discussing

FIGURE 4

Spearman correlation heatmap of 10 radiomic features identified via K-means clustering.
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how quantitative features from medical images offer insights into

tumor biology and aid clinical decision-making (46, 47). These

studies have suggested the great role of PET-based radiomics in

characterizing the SPN. In this study, we have attempted to

characterize SPN using AI-assisted PET radiomic features. We

adopted two methods for feature dimensionality reduction i.e.,

feature selection and feature reduction. In both the methods we

found a good accuracy of the model in the characterization of

the SPN. We adopted the robust multi-step method of the

feature selection that yielded the most significant optimal features

for the prediction model development. We employed the regular

grid search to tune the hyperparameters of the random forest

model. The balancing of the data using SMOTE did not improve

the model performance significantly. The accuracy and other

prediction matrices of the prediction model developed using

feature selection method employing filter method followed by

multivariate feature selection using RFE and feature reduction

method using PCA method were comparable that shows the

robustness of the radiomic feature in characterization of SPNs.

The robustness of radiomic-based prediction model is also

demonstrated by the 5-fold cross-validation and bootstrap

validation as the prediction accuracy and other prediction

FIGURE 5

Figure shows the commutative variance ration of principal components.

TABLE 4 Prediction matrices show the performance of various models in train-test, 5-fold cross-validation and bootstrap validation.

Prediction
algorithm

Feature Selection Data/Model Validation Accuracy Precision Recall f1-score AUC of
ROC

Random Forest Model Hierarchical clustering

and REF

Original/RF-Model-O Train-Test 0.80 0.81 0.80 0.80 0.79

5-folds CV 0.80 ± 0.07 0.85 ± 0.07 0.86 ± 0.06 0.87 ± 0.07 0.75 ± 0.11

Bootstrap 0.84 ± 1.11 0.84 ± 0.07 0.91 ± 0.05 0.87 ± 0.04 0.80 ± 0.10

Balanced/RF-Model-B Train-Test 0.80 0.80 0.80 0.80 0.79

5-folds CV 0.83 ± 1.10 0.79 ± 0.04 0.80 ± 0.07 0.79 ± 0.06 0.88 ± 0.07

Bootstrap 0.80 ± 0.07 0.85 ± 0.07 0.88 ± 0.05 0.86 ± 0.05 0.73 ± 0.12

PCA Original/RF-PCA-

Model-O

Train-Test 0.84 0.86 0.93 0.89 0.86

5-folds CV 0.80 ± 0.07 0.81 ± 0.08 0.86 ± 0.08 0.83 ± 0.04 0.77 ± 0.06

Bootstrap 0.84 ± 0.07 0.86 ± 0.08 0.94 ± 0.07 0.89 ± 0.05 0.87 ± 0.07

Balanced/RF-PCA-

Model-B

Train-Test 0.74 0.90 0.70 0.79 0.82

5-folds CV 0.80 ± 0.08 0.80 ± 0.10 0.75 ± 0.09 0.77 ± 0.10 0.91 ± 0.05

Bootstrap 0.75 ± 0.08 0.94 ± 0.06 0.71 ± 0.09 0.80 ± 0.06 0.84 ± 0.08
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matrices remain comparable in these methods with that of the

train-test method.

These systems can be trained on large datasets of labelled

images to learn intricate patterns that are often imperceptible to

the human eye. The AI-enhanced detection of SPNs holds great

promise not only for improving diagnostic accuracy but also for

reducing radiologist fatigue and enhancing workflow efficiency.

To ensure the practicality and clinical applicability of these AI-

driven solutions, rigorous validation and testing are imperative.

The ability of AI algorithms to generalize across diverse patient

populations and imaging devices needs to be thoroughly assessed.

Furthermore, these systems should be seamlessly integrated into

clinical workflows, taking into consideration regulatory approvals,

data privacy, and the need for radiologist oversight. extracting

and analyzing quantitative imaging features, radiomics enhances

the ability to differentiate between benign and malignant SPNs

with greater accuracy than traditional imaging techniques. This

non-invasive method allows for more precise risk stratification,

guiding clinical decisions regarding biopsy, surveillance, or

intervention. Consequently, PET radiomics can improve patient

outcomes by reducing unnecessary invasive procedures,

optimizing treatment plans, and ultimately facilitating early and

FIGURE 6

Receiver operating characteristic (ROC) curves: model performance comparison using train-test, 5-fold cross-validation, and bootstrap validation.
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accurate diagnosis of lung cancer, thus contributing to better

survival rates and quality of life for patients.

This study has several limitations. The first limitation is that

the study is a single-centre study. The single-centre study is

known to have reduced accuracy in predicting the outcome when

tested on external conditions. The second major limitation is the

sample size. The robustness of the prediction model increases

with an increased sample size. The third major limitation is the

imbalanced nature of the dataset. In our study, the malignant

SPNs were three times that of benign SPNs. As our hospital is a

tertiary cancer care centre so in our dataset, we have a large

number of malignant SPN.

Future studies on PET radiomics-based characterization of

SPNs could focus on several key areas to further enhance clinical

applications and patient outcomes. to conduct multi-center

studies to develop and validate the robust radiomic signature. To

include CT radiomic features along with PET radiomic features.

Prospective validation of radiomic signature in clinical trials. Our

future research will involve a multicentric study to validate this

prediction model using both retrospective and prospective cohorts.

5 Conclusion

The challenges posed by solitary pulmonary nodules are

complex and multifaceted and difficult the differentiate between

malignant and benign SPNs. The challenge further increased in

India due to the prevalence of tuberculosis. This study

demonstrates the utility of PET radiomics in the characterization

of SPNs. Applying the data balancing technique to the training

dataset did not improve the prediction accuracy in this study. By

harnessing the power of machine learning algorithms and PET

radiomics can bring a transformative shift towards the detection

and characterization of SPN. Accurate and efficient SPN

detection is vital for timely diagnosis and optimal patient

outcomes, particularly in the context of lung cancer.
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