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Introduction: Ventilation-perfusion (V/Q) nuclear scintigraphy remains a vital

diagnostic tool for assessing pulmonary embolism (PE) and other lung

conditions. Interpretation of these images requires specific expertise which

may benefit from recent advances in artificial intelligence (AI) to improve

diagnostic accuracy and confidence in reporting. Our study aims to develop a

multi-center dataset combining imaging and clinical reports to aid in creating

AI models for PE diagnosis.

Methods: We established a comprehensive imaging registry encompassing

patient-level V/Q image data along with relevant clinical reports, CTPA

images, DVT ultrasound impressions, D-dimer lab tests, and thrombosis unit

records. Data extraction was performed at two hospitals in Canada and at

multiple sites in the United States, followed by a rigorous de-identification

process. We utilized the V7 Darwin platform for crowdsourced annotation of

V/Q images including segmentation of V/Q mismatched vascular defects. The

annotated data was then ingested into Deep Lake, a SQL-based database, for

AI model training. Quality assurance involved manual inspections and

algorithmic validation.

Results: A query of The Ottawa Hospital’s data warehouse followed by initial data

screening yielded 2,137 V/Q studies with 2,238 successfully retrieved as DICOM

studies. Additional contributions included 600 studies from University Health

Toronto, and 385 studies by private company Segmed Inc. resulting in a total

of 3,122 V/Q planar and SPECT images. The majority of studies were acquired

using Siemens, Philips, and GE scanners, adhering to standardized local

imaging protocols. After annotating 1,500 studies from The Ottawa Hospital,

the analysis identified 138 high-probability, 168 intermediate-probability, 266

low-probability, 244 very low-probability, and 669 normal, and 15 normal

perfusion with reversed mismatched ventilation defect studies. In 1,500

patients were 3,511 segmented vascular perfusion defects.

TYPE Original Research
PUBLISHED 17 July 2025
DOI 10.3389/fnume.2025.1632112

Frontiers in Nuclear Medicine 01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fnume.2025.1632112&domain=pdf&date_stamp=2020-03-12
mailto:rklein@toh.ca
https://doi.org/10.3389/fnume.2025.1632112
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnume.2025.1632112/full
https://www.frontiersin.org/articles/10.3389/fnume.2025.1632112/full
https://www.frontiersin.org/articles/10.3389/fnume.2025.1632112/full
https://www.frontiersin.org/articles/10.3389/fnume.2025.1632112/full
https://www.frontiersin.org/articles/10.3389/fnume.2025.1632112/full
https://www.frontiersin.org/journals/nuclear-medicine
https://doi.org/10.3389/fnume.2025.1632112
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/


Conclusion: The VQ4PEDB comprised 8 unique ventilation agents and 11 unique

scanners. The VQ4PEDB database is unique in its depth and breadth in the domain

of V/Q nuclear scintigraphy for PE, comprising clinical reports, imaging studies,

and annotations. We share our experience in addressing challenges associated

with data retrieval, de-identification, and annotation. VQ4PEDB will be a

valuable resource to development and validate AI models for diagnosing PE and

other pulmonary diseases.

KEYWORDS

database, image annotation, crowdsourcing, ventilation-perfusion scintigraphy,

pulmonary embolism

Introduction

The incidence of pulmonary embolism (PE) spans from 39–

115 per 100,000 annually (1). Ventilation-Perfusion (V/Q)

nuclear scintigraphy has long been a modality of choice for

evaluating patients with suspected PE and post treatment follow

up (2, 3). V/Q scans are also a promising modality in diagnosing

other pathologies such as CTEPH (4) and COPD (5). Over the

past two decades the community has transitioned from planar

scintigraphy to 3D single photon emission computed

tomography (SPECT) due to higher sensitivity in segmental

defects, while some persist with planar imaging (6, 7). Unlike

other medical imaging modalities, automatic PE diagnosis using

V/Q scintigraphy had once garnered significant attention for AI

applications in the 90s and early 2000s showing excellent results,

only to be subsequently abandoned. Therefore, automatic

diagnosis of PE using V/Q scans can greatly benefit from

modern advancements in deep learning algorithms (8).

The primary objective of this work was to build a multi-center,

comprehensive database of imaging and ancillary data of patients

with suspected PE and make it known to the community. Our

second goal was to share our experience in building the database

and crowdsourcing annotations of the data, including challenges

encountered in data retrieval from picture archiving and

communication system (PACS), imaging data deidentification,

clinical report deidentification, data annotation, report

homogenizing, and hosting the aggregated data. We share our

challenges, solutions, and considerations. We hope that the

registry will facilitate data management for research projects to

enable collaboration amongst researchers.

Methods

Study objective and design

The creation of the VQ4PEDB database was approved by the

research ethics boards (REB) of participating hospitals. The main

study is managed under the Clinical Trials Ontario (Project ID

3945). The study objective was to build an imaging registry of

patient-level V/Q structured dataset in the form of rich clinical and

imaging data, including nuclear medicine physician narrative and

impression, CTPA clinical report and imaging files, pre-scan

ultrasound for deep vein thrombosis (DVT) impression, D-dimer

lab test, thrombosis unit report, and annotations of V/Q images.

The workflow of this study is illustrated in Figure 1.

Internal data extraction

In consultation with The Ottawa Hospital (TOH) Data

Warehouse, we defined a query of the electronic medical record

(EMR) database with the following inclusion criteria:

• All patients referred to the nuclear medicine department for a

lung V/Q study between June 1, 2019 and February 28, 2023

• All CTPA studies within ±1 year of V/Q scan

• All Chest CT studies within ±1 year of V/Q scan

• All ultrasounds for DVT within −7 to +21 days of V/Q scan

• All D-dimer within ±3 days of V/Q scan

• All thrombosis reports within 14 days post V/Q scan

Results were returned in an Excel file (Supplementary Material I)

including corresponding sheets for each data type in tidy data table

format. This Excel file sample included patient demographics,

medical record number (MRN), accession number, ordering

department, order date and time, procedure date and time, exam

reason, narrative, findings, and impression columns for different V/

Q, CTPA, US, D-dimer, and thrombosis sheets.

To extract imaging data, we developed a bash script to

automatically retrieve V/Q and CTPA DICOM studies tailored with

each MRN and accession number from our PACS. Data transfer to

a local computer was achieved using the DICOM query/retrieve

network protocol. Thus, the PACS team only needed to aid in

establishing a DICOM node, and monitoring traffic during testing

to ensure that clinical service would not be disrupted.

External data extraction

Patient data fromUniversityHealthToronto (UHT)was extracted

for the period between August 12, 2016, and February 9, 2024. This

dataset included ventilation/perfusion (V/Q) scans, computed

tomography pulmonary angiography (CTPA) scans, and associated

clinical reports. Inclusion criteria for UHT data required patients

to have undergone both V/Q and CTPA imaging within a

clinically relevant timeframe, along with available clinical
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documentation supporting evaluation for suspected PE. The third

dataset for high probability and intermediate probability scans [as

determined by PIOPED criteria (9)] was purchased from Segmed

Inc., a private data collector company, which collected these data

from 17 unique centers between 2010 and 2023.

Anonymization of DICOM files and
deidentification of clinical reports

For The Ottawa Hospital, all imaging data were stored in

DICOM format and automatically anonymized using a custom

in-house script. This script used a multi-step approach to remove

patient PII/PHI DICOM tags, as detailed in Supplementary

Material II and then removed all private DICOM tags as defined

by the DICOM NEMA standard. As a further measure, we

visually inspected sample deidentified data from at least one case

for each camera type to ensure no remaining private tags and no

PII/PHI in the remaining fields. Additionally, each patient’s

Medical Record Number (MRN) was replaced with a unique

study ID generated by the data warehouse. Study ID and accession

numbers were used to link patient data from the different sources.

Furthermore, all secondary screen captures were excluded from

the database as they pose a risk of containing patient identifiers in

the binary image data. Subsequently, planar scintigraphic

projection DICOM files, which commonly contain acquisition of

two projections (e.g., anterior and posterior) were split to have one

DICOM file per projection using a custom Python script. This was

done to comply with the annotation platform’s requirement of one

unique DICOM file and DICOM Series UID per image

visualization slot. Since each patient might have multiple imaging

studies, DICOM files were organized into separate folders based

on the study ID and accession number.

For clinical report texts, we adopted and compounded the effect

of the following three independent approaches as a conservative de-

identification strategy: (1) Segmed Inc.’s Python-based web server

was used to remove PII/PHI from clinical reports, (2) RegEx rules

were used to remove Canadian formatted addresses and postal

codes in Python, and (3) resulting texts were fed to a Microsoft

Copilot agent that was instructed to list suspected people names,

FIGURE 1

Schematic representation of processing steps for building the VQ4PEDB registry. Note, EMR, electronic medical record.
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addresses, street names, 5–8 digit numbers, business names, clinic

names and occupations. The agent was further prompted to

ignore medical terms. The resulting terms were then manually

screened for relevance, the terms were searched for in the text and

then replaced with “[Anon]”.

At UHT, data extraction was performed using Health Canada-

approved software for anonymization of DICOM files and

deidentification of clinical text reports was conducted manually

by onsite technologists before transfer of the data. As for dataset

provided by Segmed Inc., Segmed Inc. is already HIPAA

compliant, and it is assumed that patient privacy measures have

been adequately addressed. Nevertheless, as an extra layer of

security against PII/PHI leaks, DICOM files and clinical text

reports from UHT and Segmed Inc. were also processed using

the in house-built Python scripts at the core lab (TOH).

Annotating V/Q images

To annotate this large number of studies, we resorted to a

distributed crowd sourcing approach using the V7 Darwin

internet hosted platform (V7 Labs, London, UK). The V7 viewer

was configured to display paired V/Q planar images in 6

projections (anterior, posterior, and 4 oblique views), emulating

our clinical viewer (Figure 2a). The V7 viewer has basic

functionality for controlling image display (intensity saturation,

contrast, brightness, window length, window width, zoom, and

colormap). In addition, annotation tools are available including

segmentation and labeling. Segmentation overlay display can be

controlled including display toggling and opacity. Lastly, V7

offers commenting tools to communicate with study leads, for

example, regarding ambiguous cases or tasks.

The V7 platform also offers versatile workflow tailoring with

custom steps, e.g., consensus among annotators, splitting ratios

for annotators, webhook for either custom sanity checks or

storing annotations in cloud to manage study design (Figure 2b).

AI models also can be integrated into V7 workflow to

automatically generate segmentations which later could be

modified by annotators. V7 also provides statistical metrics for

performance of each annotator on dataset and individual

basis that are useful for tracking individual annotator

performance and financially compensating them. De-identified

FIGURE 2

(a) Example of annotation using the V7 viewer, displaying paired V/Q planar images in six projections with basic image display adjustments and

annotation tools. Communication features for discussing ambiguous cases are also illustrated. (b) Illustration of the image dataset annotation

workflow configuration on the V7 platform including splitting ratios for annotators, webhooks for custom sanity checks or cloud storage of

annotations, and consensus among annotators.
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data were uploaded to a Microsoft Azure blob storage and then

pushed to V7 cloud.

Annotators were tasked with segmenting vascular V/Q

mismatch defects on all relevant projections. Furthermore,

annotators recorded their perceived risk of PE using the modified

PIOPED criteria (Table 1) using the imaging data and

accompanying interpreting physician report from the clinic (10).

Baseline and follow-up V/Q examinations in this study were

originally classified as chronic PE but were treated as acute PE

during the annotation and relabeling process. According to

modified PIOPED, annotators also labeled studies into one of the

following categories with regards to likelihood of PE: high,

intermediate, low, very low, normal, or normal perfusion with

ventilation reverse mismatches (11). Annotations were performed

in several stages with different batch sizes to train, qualify and

audit each annotator, and to fine tune the instructions to the

annotators with the aim of minimizing task ambiguity.

First, each annotator was given an introduction dataset of 49

patients with high probability PE prevalence, identified based on

original impression of the reporting nuclear medicine physician,

and the annotator was tasked with segmenting all perfusion

defects. Annotations from this dataset were reviewed and

analysed with senior nuclear medicine physician along with

feedback collected from the annotators. All annotations were

visually reviewed by the study lead (AJ and in consultation

with staff physicians). Studies with obvious annotations errors

—including those with missed defects or false positives—were

rejected and returned to the annotators with detailed feedback.

This process was facilitated by a built-in feature in V7 Darwin

that enables precise communication of findings at any point

within any projection, supporting iterative training and

improving annotation quality. Based on the annotation results

and survey from annotators on this first dataset, tasks were

more clearly defined, tutorial materials were produced to guide

labeling of ambiguous cases, and the viewer functionality was

enhanced. Ambiguous cases were reviewed and discussed with

two senior nuclear medicine physicians until a consensus was

reached. Improved instructions are listed in Figure 3.

Annotators were not remunerated for annotating these data

but were financially compensated for all subsequent annotations.

A similar, second dataset (i.e., 49 patients and high PE

probability) was created for validating annotators performance.

Performance of annotators again were reviewed and analysed.

Low-quality annotations were sent back to the original annotator

to correct. Annotators whose performance was deemed

unacceptable were excluded from the rest of the project.

The third and fourth datasets were uploaded to V7, comprising

500 randomly selected studies. These were assigned to qualified

annotators on a first-come, first-to-annotate basis. All

annotations were reviewed by the study lead and—where

disputed—were sent back to the annotator for further review and

refining until a consensus was reached. These data are used to

train and validate a preliminary AI for semantic segmentation of

vascular perfusion defects.

As a means to accelerate annotation, we developed a deep

learning model based on annotated images from the first to

fourth datasets to automatically propose candidate vascular

perfusion defects on V/Q planar imaging and deployed it on V7.

Subsequent studies from TOH and other hospitals will be

annotated using this AI model to initialize the segmentations.

Annotators are tasked with either approving or correcting the

AI-generated candidate segmentations. This approach enables us

to iteratively improve the AI with additional data with the aim of

eventually developing an AI that can be applied to autonomous

image segmentation.

Data ingestion pipeline

All training data and labels were ingested into Deep Lake on

Activeloop (Mountain View, USA), a SQL-based database

designed to organize complex unstructured data. Processed

imaging data, their metadata, modified PIOPED scores, polygons

of perfusion defects, and bounding boxes generated from

polygons were ingested into one database, while de-identified

clinical reports were ingested separately into different datasets.

To utilize the ingested data, an Activeloop-provided API was

used to perform single or joined queries to load the required

data into the Python environment to train AI models using

data loaders.

Quality control

Imaging and ancillary data were quality checked in several

stages of this study to verify the integrity of the study. After de-

identification, 10% of DICOM files were randomly sampled and

manually inspected to check patients’ PII and PHI leakage and

update the de-identification algorithm accordingly. Clinical

TABLE 1 Summarized modified PIOPED category used for re-scoring
studies. Note, CXR is assumed to be normal for all patients.

Category Conditions (any condition
qualifies)

High • Two large segmental perfusion defects without

ventilation or chest x-ray abnormality

• One large and two moderate perfusion defects

• Four moderate perfusion defects

Intermediate • One moderate or less than two large defects

• Corresponding lower lung zone defect and

chest x-ray abnormality

• Ventilation-perfusion defects and

small effusion

• Difficult to categorize as high or

low probability

Low • Defect with larger chest x-ray abnormality

• Fewer than three small segmental defects

Very low • Nonsegmental perfusion defect

• Perfusion defect smaller than chest x-

ray finding

• Stripe sign

• Triple match mid/upper lung

• Multiple matched defects

Normal • No perfusion abnormalities

Normal Q with reversed

mismatched V defects

• No perfusion abnormalities with reversed

significant mismatched ventilation defects
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reports were also sampled by 10% and hand-checked to verify the

performance of the de-identification algorithm and update it

accordingly. Randomized screening of uploaded studies to V7

was performed to ensure having ventilation and perfusion from

the same date for patients who had more than one study.

Although data ingestion to Deep Lake dataset has been

conditioned on study IDs and should prevent confusion of data

between patients, Deep Lake dataset was investigated logically for

any mismatch between clinical and imaging data in any of study

IDs, gender, and patient age. Finally, a script was developed to

cross check Deep Lake dataset information with clinical reports

and imaging dataset. Any discrepancies were investigated and

followed to resolve the issue.

Results to date

Extracted studies

The data warehouse query from TOH resulted in 2,289 studies

and DICOM downloading script successfully retrieved 2,288

studies. Eight studies were excluded from the analysis because they

were acquired using an older Mediso Orbiter gamma camera with a

circular field of view. Additionally, 152 patients were excluded due

to either missing ventilation or perfusion data, or because the

images were pseudo-planar. Finally, 2,137 images were included.

UHT hospital contributed 600 V/Q planar and SPECT studies. The

Segmed Inc. database contributed 385 V/Q images of high and

intermediate PIOPED score with corresponding clinical reports

collected from 17 different sites. In total, the dataset consisted of

3,119 V/Q planar and SPECT images, many with corresponding

clinical reports, CTPA, US, and D-dimer test. The breakdown of

number of the included imaging modalities and corresponding

reports is presented in Table 2. Additionally, the distribution of

included scanners is depicted in Figure 4.

Image acquisition protocols

The included scanner models and the percentage of included

studies from each scanner are listed in Table 2. Most of the

included studies were acquired using Siemens scanners, including

Ecam, Intevo Evo, Symbia, Bold, and the rest were imaged by

Philips Brightview. All images were acquired using a dual head

gamma camera. All used low energy, high resolution parallel

hole collimators.

TOH image acquisition protocol consists of performing

ventilation portion in supine position with 370–555 MBq (10–

15 mCi) of Technegas (99mTc-Pertechnetate). SPECT image

acquisition parameters are matrix size of 128 × 128, zoom 1.0,

energy window 140 ± 7.5% [129–150] and lower scatter [108–

129] with 64 number of views per head, time per view 15 s, and

acquire-during-motion. Perfusion studies were performed in

supine position using either with full dose 148–185 MBq

(4–5 mCi) of 99mTc-macroaggregated albumin (MAA) or half

dose 74–93 MBq (2–2.5 mCi) for pregnant or pulmonary

hypertension patients. To properly appreciate true blood

perfusion to the lungs, perfusion count rate was ensured to be

FIGURE 3

Annotation policy workflow developed for annotators, outlining step-by-step procedures to ensure consistency and accuracy. It includes guidelines

for annotation criteria and protocols for handling ambiguous cases.

TABLE 2 Summary of number of datasets from each data source.

Datasets\Source TOH UHT Segmed Inc.

SPECT V N/A 368 N/A

SPECT Q 563 368 N/A

Planar V 2,137 600 371

Planar Q 2,137 600 385

V/Q report 2,137 600 385

CTPA 1,644 N/A N/A

CTPA report 1,644 39 N/A

US for DVT report 706 115 N/A

D-dimer 501 N/A N/A

Thrombosis report 2,137 N/A N/A
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at least 4 times the ventilation count rate. The SPECT images,

if available, were reconstructed using Hermes Hybrid Recon

V1.1a or higher with 4 iterations and 8 subsets of OSEM

reconstruction algorithm. Attenuation correction was applied

using either with CT if available or using synthetic attenuation

maps from the scatter. Collimator correction was performed

followed by 3D Gaussian 0.8 cm FWHM post filter correction.

The ventilation and perfusion static images were acquired in

the 6 projections including anterior, posterior, right anterior

oblique, left posterior oblique, left anterior oblique, and right

posterior oblique using dual head camera with matrix size of

256 × 256, zoom 1.45, energy window 140 ± 7.5% [129–150]

keV. Ventilation planar and perfusion planar acquisition was

continued until 150 kcts/image or 300 s and 600 kcts/image or

300 s, respectively.

UHT data had a similar acquisition protocol except that they

acquired two extra projections, right lateral and left lateral and

used a variety of ventilation agents as summarized in Table 3.

The three most frequently reported aerosol in this dataset were

Technegas (n = 2,280), 99mTc-diethylenetriamine pentaacetate

(99mTc-DTPA, n = 397) and 99mTc-methyl diphosphonate

(99mTc-MDP, n = 148), respectively. MAA is the only perfusion

agent used throughout all centers.

Demographics

At TOH, most participants were female, with 1,461 (64%)

females compared to 819 (36%) males. The age of participants

ranged from 16–101 years, with an average age of 52.89 and

60.54 years females and males, respectively. At UHT, females

also had a higher representation, with 379 (63%) females

compared to 221 (37%) males. The age range of participants was

similar, from 18–104 years, with an average age of 59.13 years

for females and 66.57 years for males. Segmed Inc. contributed

342 female (59%) and 240 (41%) male participants to this study

FIGURE 4

Distribution of camera types. This pie chart illustrates the distribution of different camera types collected from (a) TOH (b) UHT (c) SEGMED (d) all

centers. The chart shows the percentage and absolute number of each camera type, highlighting their respective contributions to the total.
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with mean age of 65.62 and 67.94 years for females and males,

respectively. Patient age was missing for 33 patients in

Segmed dataset.

Demographics of patients are represented in Figure 5. The

oldest and most recently acquired V/Q studies in this dataset

were from Segmed Inc. in 2010 and UHT in 2024, respectively.

Finally, Figure 6 illustrates a time distribution of when data were

acquired for each of the 3 sources.

Planar image annotation

We recruited a total of eight nuclear medicine fellows and two

senior nuclear medicine physicians for this study. All eight fellows

participated in the annotation process. While both senior

physicians were involved in reviewing ambiguous cases and

providing annotation instructions, one also contributed to

labeling process. Five fellows whose annotations evaluated as

unsatisfactory or who were unable to continue due to scheduling

conflicts were excluded from further participation. Consequently,

four annotators were qualified to continue until the fourth

dataset, with three fellows and one senior physician for

annotating the last dataset. By November 30th, 2024, a total of

1,500 studies had been annotated. Table 4 provides a

TABLE 3 Summary of ventilation agents used at each data source.

Radiopharmaceutical Number of studies

TOH 2,137

Technegas 2,137

UHT 600

MDP 148

DTPA 47

MIBI 35

PYP 15

Pyrophosphate 2

Sodium Pertechnetate 1

Myoview 1

N/A 351

Segmed 385

DTPA 350

Xenon-133 12

PYP 9

N/A 14

FIGURE 5

Histogram of age of included patients colour coded for male/female and data source.
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comprehensive breakdown of the annotation details. Contouring

segmental perfusion defects resulted in 3,511 contours in 1,500

studies. Distribution of vascular perfusion defects per patient and

projection are depicted in Figures 7a,b, respectively. After

removing annotation times more than 1000s as outliers, the

average time spent on annotating cases was 3.50 ± 4.20 min, with

a total annotation time of 82.53 h across all cases, Figure 8. The

time ranged from 0.28 min–24.93 min, with a median of

1.70 min. The interquartile range (IQR) was 0.80–4.49 min.

Discussion

AI powered by machine learning algorithms is dependent on

large and diverse dataset examples for training and validations.

Data collection and annotation are often the most difficult

component of AI development. To that end, we are growing a

large imaging and clinical registry dataset of V/Q images

including ancillary data crucial to the diagnosis of PE. In doing

so, it is our hope to fuel collaborative research that will deliver

useful clinical tools to aid in the diagnosis of pulmonary diseases

such as PE, COPD, CTEPH, and segmental quantification for

pre-operation. There are several publicly available datasets for PE

acquired with computed tomography (CT), which have fostered

diagnostic AI models for CTPA (12–14). In contrast, the absence

of similar datasets for V/Q imaging—due to the associated

challenges and difficulties outlined in this work—has hindered

progress in V/Q-based AI applications. With the development of

VQ4PE-DB, we aim to address this gap and facilitate

advancement in the field. In fact, the establishment of VQ4PEDB

has already proven its utility. Ghassel et al. investigated the effect

of different resizing techniques on similarity metrics, Ghassel

et al. developed a deep learning based pseudo-planar V/Q image

generation model and Ansari et al. built a bronchopulmonary

segment atlas registration strategy on V/Q images as a diagnostic

aid for PE, utilizing data directly from the registry (15–18).

These projects demonstrated the ability to quick and efficiently

extract data meeting specific requirements (e.g., a mixed

population of studies with normal PIOPED interpretations, or a

balanced set of images in terms of PIOPED criteria. Reasonable

data requests can be directed to the senior author. By making

this database available to the research community, we hope to

accelerate the development of lung V/Q applications.

PACS data extraction

Like CTPA, V/Q SPECT can detect small subsegmental

pulmonary emboli, which, in the absence of clinical complications,

may not necessitate therapeutic intervention. V/Q imaging

methodology exhibits notable geographic variation: planar imaging

continues to be the predominant approach in the United States,

whereas V/Q SPECT is endorsed by the European Association of

Nuclear Medicine (EANM) and widely adopted across Europe,

Australia, and several Asian countries (19). TOH and UHT were

identified for this study since, to our knowledge, they are among

the limited number of institutions employing a combined V/Q

SPECT and planar imaging protocol. To ensure alignment with

FIGURE 6

Trends in V/Q acquisition over time. This figure illustrates the temporal evolution of V/Q imaging, demonstrating uniform data collection over the

inclusion date range with some variations with a sharp decrease associated with the early phase of the COVID-19 outbreak.

TABLE 4 Summary of annotations to date from each data source.

Datasets\Source TOH UHN Segmed

Number of studies 1,500 600 385

SPECT V/Q defects N/A N/A N/A

Planar V/Q defects 3,511 N/A N/A

High 138 72 104

Intermediate 168 12 281

Low 266 200 0

Very low 244 30 0

Normal 669 286 0

Normal Q with reversed mismatched V defects 15 N/A 0
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broader North American standards, Canadian regulatory frameworks

often require the inclusion of United States sourced data when

evaluating or validating planar V/Q imaging protocols.

The inclusion criteria for each center were tailored according to

the scope and practical availability of archived data. TOH provided

the most comprehensive dataset, including V/Q scans, CTPA,

ultrasound reports, D-dimer results, and thrombosis clinic

documentation, due to capabilities for automated data extraction

from PACS for imaging data by us (as described in the methods

section) and by the data warehouse team for all non-imaging data.

In contrast, UHT dataset was limited to V/Q and CTPA records as

manual data extraction was required. Although Segmed Inc. offered

data across all PIOPED probability categories—including low, very

low, and normal—to address class imbalance, we restricted

inclusion to high probability and intermediate probability studies,

thereby excluding cases with a few or no detectable defects.

At our institution, image retrieval times from PACS could take

several minutes per study as older data is backed up to lower tier,

long term storage requiring retrieval. For patients whose data was

stored in tier 2 storage, retrieval attempts sometimes failed due

FIGURE 7

Histogram representation of number of vascular perfusion defects per patient (a) and projection (b).

FIGURE 8

Histogram illustrating the distribution of time spent on annotating cases as automatically recorded by the V7 darwin platform.
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to timeout errors. In these cases, simply repeating the retrieval

process was often sufficient to access the data successfully. Batch

processing mitigated this issue through retries, to prevent

disruption to clinical services due to increased server workload,

we scheduled batch jobs to run after hours when PACS traffic

was much reduced. The entire image dataset retrieval was

successfully completed within 3 days.

Including REB approval, data warehouse report generation and

image data retrieval from PACS, all data collection was completed at

our local institution in under 4 months. This approach will serve as a

successful working model for future large data collection projects.

While several publicly available imaging datasets exist—such as

the Stanford dataset (20) and other multimodal repositories (21)—

none include V/Q scintigraphy. A recent publication by Slomka

et al. provides a valuable example by detailing the development

of the REFINE SPECT registry for myocardial perfusion imaging

and associated clinical data (22). However, even in such efforts,

data collection typically involves a labor-intensive manual

workflow: patient identification, DICOM extraction from PACS,

anonymization of DICOM files, de-identification of clinical

reports, annotation, and database construction. This manual

approach not only limits scalability but also hampers timely

development of AI solutions. In contrast, VQ4PEDB introduces

an automated and standardized pipeline that streamlines these

processes. For instance, while PACS retrieval remains largely

manual across institutions, VQ4PEDB fully automated the image

data retrieval and deidentification tasks, significantly reducing

human overhead. Moreover, many existing databases are static

and closed to external contributions, impeding collaborative

expansion and real-world adaptability. This automated pipeline

also substantially reduces human exposure to patients’ PHI and

PII in clinical report text, thereby enhancing data privacy and

security during the curation process. Our infrastructure is

designed to be extensible, collaborative, and compatible with

modern machine learning workflows—facilitating direct ingestion

into deep learning pipelines. Thus, to our knowledge, VQ4PEDB

is not only a first-of-its-kind multimodal V/Q dataset, but also a

blueprint for constructing automated, scalable, and collaborative

imaging registries tailored for AI-driven research.

Annotations

PIOPED scores were already present in few clinical reports,

however, PIOPED is not commonly reported for chronic

patients. Therefore, annotators were tasked to reevaluate and

assign a new PIOPED probability for every study, including

chronic cases. The modified PIOPED criteria does not have

normal perfusion with ventilation reverse mismatches category.

Therefore, we included a category to capture the scenario when

there is an absence of evidence for PE (i.e., normal probability

without segmental perfusion defects) but defects are evident on

the ventilation portion. In endpoints such as image registration,

broncho pulmonary atlas mapping, and count enhancements,

this category could be used to exclude cases with defects on

ventilation studies.

Nuclear medicine physicians commonly report PIOPED scores

which are neither quantitative nor need accurate segmentation of

defects. In this study, annotators were asked to annotate

segmental perfusion defects and ignore nonsegmental perfusion

defects. Nonsegmental perfusion defects are consequent of other

process, irregularly shaped, and do not correlate with

bronchopulmonary anatomic segments. They are generally not

wedge-shaped and may or may not be pleural-based (23). Partially

mismatched defects were also expected to be annotated, which were

another source of discrepancy among annotators, which is

commonly exacerbated by blurring of images, particularly on

ventilation scans. Although physicians were tasked with annotating

vascular defects of any size (segmental and subsegmental), the most

controversial cases were those with small lesions at the periphery of

the lungs or cardiac silhouette and can be related to artifacts or

cardiac cavity. This is a limitation, as annotators have restricted

access to ancillary data such as, CXR which may affect the accuracy

of their assessments. Inconsistent labelling of such lesions in the

training dataset can confuse the AI models. The two first training

datasets helped annotators to learn the morphological

characteristics for appropriate annotation. As illustrated in Figure 7,

most abnormal cases in the database exhibit only a few (1–3)

defects across the six projections, reflecting an underrepresentation

of defects in the dataset. This imbalance may pose a limitation for

AI models, as the segmentation task requires a sufficient number of

representative cases to ensure robust training and generalization.

Employing a combination of data augmentation and diversity-

enhancement strategies could be used to improve the

representational diversity of the dataset. These include classical

augmentations (e.g., spatial/geometric transformations), generative

augmentation using Generative Adversarial Networks (GAN) (24),

and manually inserting pathologies which is time-intensive (25).

Another approach could use weighting of the loss function or a

selection of image subsets. Nevertheless, the data from TOH and

UHT is comprised of consecutive patients in the clinic and thus

represents the true distribution of cases at these clinics.

Consequently, the development of a large and diverse database

is essential to enable effective automatic segmentation of segmental

perfusion defects and reliable detection of PE. While invasive

angiography, the gold standard for diagnosing PE, is not being

performed anymore, V/Q scintigraphy sensitivity was validated

against angiography within PIOPED study (8, 26). There is a

wide range of inter- and intra-observer variability in reading V/Q

images which makes it potential candidate to benefit from

automated and reproducible modern AI algorithms.

One of the key technical improvements to the annotation setup

on the V7 platform was the provision of clinical reports for

annotators, which was implemented for patients annotated after

the initial bulk dataset, including referral physician’s final

impression, location of potential V/Q mismatch site, comments

on heterogeneity/ homogeneity of V/Q images. Although

annotators were instructed to record their independent judgment,

the availability of these reports effectively served as a form of

second-reader consultation.

The V7 Darwin platform is a web-based AI annotation tool

designed primarily for natural image and video data, and it has
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been adapted for certain medical imaging workflows. While it

supports a variety of file formats, including JPEG, PNG, TIFF,

BMP, MP4, and AVI, DICOM files are not natively supported.

They can, however, be ingested after conversion to standard 2D

image formats. Annotations can be exported in multiple

industry-standard formats such as JSON (Darwin native), COCO,

Pascal VOC, and YOLO, enabling interoperability with machine

learning frameworks like PyTorch and TensorFlow. Data upload

can be performed via the web interface, CLI, or through API

endpoints, and the platform supports integration into custom

pipelines through its RESTful API. Once uploaded, datasets are

organized into version-controlled projects that allow for

structured annotation workflows and collaboration. Although V7

Darwin includes basic image manipulation features, its

windowing capabilities are limited, particularly for grayscale

medical imaging; annotators must adjust brightness and contrast

on a per-image basis, and global or modality-specific presets are

not supported. The platform includes a built-in quality control

system that allows project leads to reject annotations and provide

targeted feedback at the image or projection level, which is

particularly useful for medical datasets. Real-time collaboration,

version tracking, and audit logs are supported, alongside role-

based access control. V7 Darwin is hosted on secure AWS

infrastructure with encryption at rest and in transit, and while it

is GDPR-compliant, HIPAA compliance is available through

enterprise agreements with appropriate data handling terms.

Data ingestion

QA revealed our unstructured text data to be properly

deidentified, highlighting the effectiveness of our multiple layers

of de-identification approaches. Structured DICOM data from

hospital sources proved straightforward to robustly de-identify

using our strategy. Also, during our QA process, various

nonstructured DICOM tags, such as series description, used

during splitting process were identified and addressed

accordingly to preserve integrity of workflow.

Deep Lake database stands out as an indispensable tool for our

study due to its specialization in handling diverse types of raw data

crucial for deep learning applications, such as images, text, and

other unstructured formats. This specialized database transforms

raw data into a deep learning native sensorial storage format,

optimizing accessibility and efficiency for model training across

networks. Loading data using queries is efficient in terms of both

time and computational resources. Moreover, Deep lake’s

integration capabilities enable advanced functionalities such as

training and fine-tuning using state-of-the-art data loading

mechanisms tailored for AI frameworks. This allows seamless

connectivity and enhances the ability to harness diverse data

types effectively in deep learning studies, where data loading and

preprocessing won’t be a bottleneck of an experiment.

Building such a comprehensive database inevitably comes with

significant drawbacks, including substantial time and effort,

financial costs, complexity, and data transferring issues. The

development process involves extensive customization to align

functionalities with the expected data structure. The complexity

of managing a comprehensive database can pose challenges in

data integration, system performance, and overall management.

Additionally, ensuring robust data security to protect against

breaches and unauthorized access adds another layer of difficulty

and expense. As the database grows, scalability issues may arise,

requiring careful planning to accommodate increased data volume

and user load. To address security concerns, we have stored our

data in secure Microsoft Azure storage containers. For systems with

low-speed internet connections, data loading to models could

become a bottleneck. In such cases, an alternative approach is to use

a local database with provisions to synchronize it with an online

database, allowing for efficient data access and collaboration.

Considering both the benefits and drawbacks, we recommend Deep

Lake for only large-scale, long-term, and multi-institutional projects.

Microsoft Azure encrypts data both at rest and in transit. The

administrator of the Azure storage account can restrict access based

on geographic location and user identity. Access to storage

accounts is granted through shared access signatures (SAS) with

defined expiry dates and permission levels tailored to specific

roles (e.g., data providers, students, annotators). Any data

processed locally is protected by the secure network

infrastructure at the core lab (TOH).

All patient data used in this study were fully de-identified prior

to annotation, ensuring that neither patients could be re-identified.

Furthermore, in the finalized database annotators are anonymous

with no way to link their real or study identities to specific

annotations. Annotator participation was entirely voluntary, and

annotators were informed they could withdraw at any time, but

their completed annotations may be retained. Their engagement

in the task was considered implied consent and they were

financial reimbursed for completed annotations.

The VQ4PEDB dataset is distinguished by its depth and

diversity, encompassing data from multiple centers. However,

given that the majority of cases originate from TOH, it is

essential to critically assess AI models trained on this dataset for

potential biases stemming from TOH-specific acquisition

protocols. Thus our ingestion pipeline was designed to

accommodate future data from other sources.

Missing data

TOH acquires standard six projections, while UHT and

Segmed Inc. data include eight projections. Unlike other centers

TOH database includes several ancillary data such as nuclear

medicine physician narratives and impressions, clinical reports

and imaging files from CTPA, pre-scan ultrasound impressions

for DVT, D-dimer lab test results, and thrombosis unit reports.

These additional data provide a comprehensive resource for

various applications, including multimodal diagnostic studies,

validation of AI models for cross-modality integration, and

research into clinical pathways for thrombosis management. We

excluded studies that were missing either the ventilation or

perfusion component in planar or SPECT scans, as well as those

with fewer than six planar projections. Annotation of SPECT V/

Jabbarpour et al. 10.3389/fnume.2025.1632112

Frontiers in Nuclear Medicine 12 frontiersin.org

https://doi.org/10.3389/fnume.2025.1632112
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/


Q images has not yet been completed but will be integrated into the

dataset upon finalization, further enhancing its utility for research

and clinical applications.

Limitations

One potential limitation of VQ4PEDB is the absence of chest x-

rays (CXRs), which are commonly used in clinical practice to help

assess PE probability through the PIOPED criteria. Since PIOPED

classification depends on identifying triple matches or mismatches

(including CXR findings) the absence of CXR data could influence

the interpretive accuracy of certain cases. However, the primary

objective of our annotation process was to identify V/Q

mismatched vascular defects consistence with the appearance of PE,

not to assign PIOPED probability scores. Therefore, VQ4PEDB

could be used to design an AI workflow that specifically could

detect these mismatched defects using only V/Q images, thereby

enabling a segmentation pipeline that operates independently of

ancillary imaging. Nonetheless, the lack of CXR input may have

occasionally contributed to overcalling of defects by annotators, as

CXRs are typically used to rule out alternative diagnoses that can

mimic perfusion defects. Importantly, this remains an addressable

limitation: our fully automated and scripted workflow is designed

to be readily extensible. Should we choose to incorporate CXR

data, retrieval and integration into the Deep Lake database—via

accession number alignment and the pipeline shown in Figure 3—

would require minimal additional effort.

An important challenge we faced during the creation of the

database was the difficulty in adjusting windowing parameters

(brightness and contrast) while annotating images in the Darwin

platform. Annotators were unable to apply consistent windowing

settings across all projections of a patient nor between studies nor

customize the default image visualization configuration, which

hindered optimal visualization during the annotation process.

Proper windowing is essential for accurate interpretation of V/Q

scans, and the inability to dynamically and intuitively adjust these

settings—compared to standard nuclear medicine viewing software

—posed a notable challenge. Although some modifications were

implemented between annotation phases to improve this

functionality, the solution remained somewhat cumbersome and

lacked the fluidity and responsiveness of dedicated imaging

platforms. While we do not believe this limitation compromised

the quality of the annotations, it may have significantly impacted

the efficiency of the annotation process and contributed to

annotator fatigue. V7 Darwin was not originally designed with

medical imaging as its primary focus, which contributes to its

limited windowing capabilities. In future work, we aim to address

this limitation through close collaboration with the platform’s

technical team during interim phases of the annotation process.

Conclusion

This study established a multisource database, the

VQ4PEDB, annotated the V/Q scintigraphic images, and

documented the challenges and solutions encountered during

its development. The VQ4PEDB database represents a

significant resource for advancing PE diagnosis and

management. It holds immense potential advancing

multimodal diagnostic research, assessing AI models for cross-

modality applications, and facilitating comprehensive

investigations into clinical workflows for thrombosis

management. This work not only highlights the importance of

curated datasets in medical imaging but also provides a

roadmap for addressing challenges in large-scale data

annotation and integration. Availability of this dataset will

foster the development of AI-driven lung V/Q applications.

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material, further inquiries can be

directed to the corresponding author.

Ethics statement

The studies involving humans were approved by Ottawa Health

Science Network REB. The studies were conducted in accordance

with the local legislation and institutional requirements. The

human samples used in this study were acquired from a by-

product of routine care or industry. Written informed consent

for participation was not required from the participants or the

participants’ legal guardians/next of kin in accordance with the

national legislation and institutional requirements.

Author contributions

AJ: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Project administration, Resources,

Software, Validation, Visualization, Writing – original draft,

Writing – review & editing. EM: Conceptualization, Funding

acquisition, Investigation, Methodology, Project administration,

Resources, Software, Supervision, Writing – original draft, Writing –

review & editing. SK: Formal analysis, Investigation, Methodology,

Visualization, Writing – original draft, Writing – review & editing.

SG: Conceptualization, Formal analysis, Investigation, Software,

Visualization, Writing – original draft, Writing – review & editing.

WZ: Conceptualization, Data curation, Formal analysis,

Investigation, Writing – original draft, Writing – review & editing.

RA: Data curation, Investigation, Writing – original draft, Writing –

review & editing. AC: Data curation, Methodology, Writing –

original draft, Writing – review & editing. AR: Data curation,

Methodology, Writing – original draft, Writing – review & editing.

RL: Data curation, Methodology, Writing – original draft, Writing –

review & editing. YL: Data curation, Methodology, Writing –

original draft, Writing – review & editing. NH: Data curation,

Methodology, Writing – original draft, Writing – review & editing.

SA: Data curation, Methodology, Writing – original draft,

Jabbarpour et al. 10.3389/fnume.2025.1632112

Frontiers in Nuclear Medicine 13 frontiersin.org

https://doi.org/10.3389/fnume.2025.1632112
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/


Writing – review & editing. FS: Data curation, Methodology,

Writing – original draft, Writing – review & editing. EL: Data

curation, Methodology, Writing – original draft, Writing –

review & editing. SB: Data curation, Writing – original draft,

Writing – review & editing. SA: Data curation, Writing –

original draft, Writing – review & editing. BG: Data curation,

Writing – original draft, Writing – review & editing. RK:

Conceptualization, Formal analysis, Funding acquisition,

Investigation, Methodology, Project administration, Resources,

Supervision, Validation, Writing – original draft, Writing –

review & editing.

Funding

The author(s) declare that financial support was received for

the research and/or publication of this article. This work was

supported by Mitacs through the Mitacs Accelerate program

under the grant no. IT29092. Funding for this project was

provided in part by INOVAIT through the Government of

Canada’s Strategic Innovation Fund.

Conflict of interest

AJ is funded by Jubilant DraxImage Inc. EM is an employee of

Jubilant DraxImage Inc. RK received revenue shares and is

consultant to Jubilant DraxImage Inc. for Rubidium-82 generators

and elution systems. RK performs collaborative research and

receives in-kind support from Hermes Medical Solutions and Invia

Medical Solution. RK consults to Boston Scientific.

The remaining authors declare that the research was conducted

in the absence of any commercial or financial relationships that

could be construed as a potential conflict of interest.

Correction Note

A correction has been made to this article. Details can be found

at: 10.3389/fnume.2025.1671281.

Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of

the authors and do not necessarily represent those of

their affiliated organizations, or those of the publisher,

the editors and the reviewers. Any product that may be evaluated

in this article, or claim that may be made by its manufacturer, is

not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/fnume.

2025.1632112/full#supplementary-material

References

1. Horlander KT, Mannino DM, Leeper KV. Pulmonary embolism mortality in the
United States, 1979–1998: an analysis using multiple-cause mortality data. Arch Intern
Med. (2003) 163(14):1711–7. doi: 10.1001/archinte.163.14.1711

2. Coulden R. State-of-the-art imaging techniques in chronic thromboembolic
pulmonary hypertension. Proc Am Thorac Soc. (2006) 3(7):577–83. doi: 10.1513/
pats.200605-119LR

3. Bajc M, Neilly JB, Miniati M, Schuemichen C, Meignan M, Jonson B. EANM
guidelines for ventilation/perfusion scintigraphy. Eur J Nucl Med Mol Imaging.
(2009) 36(8):1356–70. doi: 10.1007/s00259-009-1170-5

4. Moradi F, Morris TA, Hoh CK. Perfusion scintigraphy in diagnosis and
management of thromboembolic pulmonary hypertension. Radiographics. (2019)
39(1):169–85. doi: 10.1148/rg.2019180074

5. Yang L, Hsu K, Williamson JP, Peters MJ, Ho-Shon K, Ing AJ. Changes in
ventilation and perfusion following lower lobe endoscopic lung volume reduction
(ELVR) with endobronchial valves in severe COPD. Clin Respir J. (2019)
13(7):453–9. doi: 10.1111/crj.13031

6. Bajc M, Schümichen C, Grüning T, Lindqvist A, Le Roux P-Y, Alatri A, et al.
EANM guideline for ventilation/perfusion single-photon emission computed
tomography (SPECT) for diagnosis of pulmonary embolism and beyond. Eur J Nucl
Med Mol Imaging. (2019) 46(12):2429–51. doi: 10.1007/s00259-019-04450-0

7. Le Pennec R, Le Roux P-Y, Robin P, Couturaud F, Righini M, Le Gal G, et al.
Comparison of three diagnostic strategies for suspicion of pulmonary embolism:
planar ventilation-perfusion scan (V/Q), CT pulmonary angiography (CTPA) and
single photon emission CT ventilation-perfusion scan (SPECT V/Q): a protocol of a
randomised controlled trial. BMJ Open. (2024) 14(5):e075712. doi: 10.1136/
bmjopen-2023-075712

8. Jabbarpour A, Ghassel S, Lang J, Leung E, Le Gal G, Klein R, et al. The past, present,
and future role of artificial intelligence in ventilation/perfusion scintigraphy: a systematic
review. Semin Nucl Med. (2023) 53(6):752–65. doi: 10.1053/j.semnuclmed.2023.03.002

9. Gottschalk A, Stein PD, Goodman LR, Sostman HD. Overview of prospective
investigation of pulmonary embolism diagnosis II. Semin Nucl Med. (2002)
32(3):173–82. doi: 10.1053/snuc.2002.124177

10. Freitas JE, Sarosi MG, Nagle CC, Yeomans ME, Freitas AE, Juni JE. Modified
PIOPED criteria used in clinical practice. J Nucl Med. (1995) 36(9):1573–8.

11. Gottschalk A, Sostman HD, Coleman RE, Juni JE, Thrall J, McKusick KA, et al.
Ventilation-perfusion scintigraphy in the PIOPED study. Part II. Evaluation of the
scintigraphic criteria and interpretations. J Nucl Med. (1993) 34(7):1119–26.

12. Sadegh-Zadeh S-A, SakhaH,Movahedi S, Fasihi Harandi A, Ghaffari S, Javanshir E,
et al. Advancing prognostic precision in pulmonary embolism: a clinical and laboratory-
based artificial intelligence approach for enhanced early mortality risk stratification.
Comput Biol Med. (2023) 167:107696. doi: 10.1016/j.compbiomed.2023.107696

13. Condrea F, Rapaka S, Itu L, Sharma P, Sperl J, Ali AM, et al. Anatomically aware
dual-hop learning for pulmonary embolism detection in CT pulmonary angiograms.
Comput Biol Med. (2024) 174:108464. doi: 10.1016/j.compbiomed.2024.108464

14. Wu H, Xu Q, He X, Xu H, Wang Y, Guo L. SPE-YOLO: a deep learning model
focusing on small pulmonary embolism detection. Comput Biol Med. (2025)
184:109402. doi: 10.1016/j.compbiomed.2024.109402

15. Ghassel S, Jabbarpour A, Moulton E, Lang J, Klein R. Count enhancement of
perfusion images in lung scintigraphy using artificial intelligence. J Nucl Med.
(2023) 64(supplement 1):P1240. Available online at: http://jnm.snmjournals.org/
content/64/supplement_1/P1240.abstract

Jabbarpour et al. 10.3389/fnume.2025.1632112

Frontiers in Nuclear Medicine 14 frontiersin.org

https://doi.org/10.3389/fnume.2025.1671281
https://www.frontiersin.org/articles/10.3389/fnume.2025.1632112/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnume.2025.1632112/full#supplementary-material
https://doi.org/10.1001/archinte.163.14.1711
https://doi.org/10.1513/pats.200605-119LR
https://doi.org/10.1513/pats.200605-119LR
https://doi.org/10.1007/s00259-009-1170-5
https://doi.org/10.1148/rg.2019180074
https://doi.org/10.1111/crj.13031
https://doi.org/10.1007/s00259-019-04450-0
https://doi.org/10.1136/bmjopen-2023-075712
https://doi.org/10.1136/bmjopen-2023-075712
https://doi.org/10.1053/j.semnuclmed.2023.03.002
https://doi.org/10.1053/snuc.2002.124177
https://doi.org/10.1016/j.compbiomed.2023.107696
https://doi.org/10.1016/j.compbiomed.2024.108464
https://doi.org/10.1016/j.compbiomed.2024.109402
http://jnm.snmjournals.org/content/64/supplement_1/P1240.abstract
http://jnm.snmjournals.org/content/64/supplement_1/P1240.abstract
https://doi.org/10.3389/fnume.2025.1632112
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/


16. Ghassel S, Jabbarpour A, Lang J, Moulton E, Klein R. The effect of resizing on
the natural appearance of scintigraphic images: an image similarity analysis. Front
Nucl Med. (2025) 4:1505377. doi: 10.3389/fnume.2024.1505377

17. Jabbarpour A, Ghassel S, Moulton E, Lang J, Klein R. Automatic identification of
perfusion defects in lung scintigraphy using artificial intelligence and anomaly
detection. J Nucl Med. (2023a) 64(supplement 1):P1290. Available online at: http://
jnm.snmjournals.org/content/64/supplement_1/P1290.abstract

18. Ansari M, Jabbarpour A, Moulton E, Klein R. Comparison of spatial normalization
strategies in perfusion scintigraphy for patient-specific registration to a bronchopulmonary
segment atlas. J Nucl Med. (2024) 65(supplement 2):242356. Available online at: http://
jnm.snmjournals.org/content/65/supplement_2/242356.abstract

19. Waxman AD, Bajc M, Brown M, Fahey FH, Freeman LM, Haramati LB, et al.
Appropriate use criteria for ventilation-perfusion imaging in pulmonary embolism:
summary and excerpts. J Nucl Med. (2017) 58(5):13N–5N.

20. Shared Datasets, Center for Artificial Intelligence in Medicine & Imaging. (no date).
Available online at: https://aimi.stanford.edu/shared-datasets (Accessed June 22, 2025).

21. Sfikas G. GitHub—sfikas/medical-imaging-datasets: A List of Medical Imaging
Datasets (no date). Available online at: https://github.com/sfikas/medical-imaging-
datasets (Accessed June 22, 2025).

22. Slomka PJ, Betancur J, Liang JX, Otaki Y, Hu L-H, Sharir T, et al. Rationale and
design of the REgistry of fast myocardial perfusion imaging with NExt generation
SPECT (REFINE SPECT). J Nucl Cardiol. (2020) 27(3):1010–21. doi: 10.1007/s12350-
018-1326-4

23. Mettler FA, Guiberteau MJ. Respiratory system. In: Mettler FA, Guiberteau MJ,
editors. Essentials of Nuclear Medicine Imaging, 6th ed. Philadelphia, PA: W.B.
Saunders (2012). p. 195–235. Available online at: https://www.sciencedirect.com/
science/article/pii/B9781455701049000068

24. Sandfort V, Yan K, Pickhardt PJ, Summers RM. Data
augmentation using generative adversarial networks (CycleGAN) to improve
generalizability in CT segmentation tasks. Sci Rep. (2019) 9(1):16884. doi: 10.1038/
s41598-019-52737-x

25. Pezeshk A, Petrick N, Chen W, Sahiner B. Seamless lesion insertion for data
augmentation in CAD training. IEEE Trans Med Imaging. (2017) 36(4):1005–15.
doi: 10.1109/TMI.2016.2640180

26. PIOPED Investigators. Value of the ventilation/perfusion scan in acute
pulmonary embolism. Results of the prospective investigation of pulmonary
embolism diagnosis (PIOPED). JAMA. (1990) 263(20):2753–9. doi: 10.1001/jama.
1990.03440200057023

Jabbarpour et al. 10.3389/fnume.2025.1632112

Frontiers in Nuclear Medicine 15 frontiersin.org

https://doi.org/10.3389/fnume.2024.1505377
http://jnm.snmjournals.org/content/64/supplement_1/P1290.abstract
http://jnm.snmjournals.org/content/64/supplement_1/P1290.abstract
http://jnm.snmjournals.org/content/65/supplement_2/242356.abstract
http://jnm.snmjournals.org/content/65/supplement_2/242356.abstract
https://aimi.stanford.edu/shared-datasets
https://github.com/sfikas/medical-imaging-datasets
https://github.com/sfikas/medical-imaging-datasets
https://doi.org/10.1007/s12350-018-1326-4
https://doi.org/10.1007/s12350-018-1326-4
https://www.sciencedirect.com/science/article/pii/B9781455701049000068
https://www.sciencedirect.com/science/article/pii/B9781455701049000068
https://doi.org/10.1038/s41598-019-52737-x
https://doi.org/10.1038/s41598-019-52737-x
https://doi.org/10.1109/TMI.2016.2640180
https://doi.org/10.1001/jama.1990.03440200057023
https://doi.org/10.1001/jama.1990.03440200057023
https://doi.org/10.3389/fnume.2025.1632112
https://www.frontiersin.org/journals/nuclear-medicine
https://www.frontiersin.org/

	On the construction of a large-scale database of AI-assisted annotating lung ventilation-perfusion scintigraphy for pulmonary embolism (VQ4PEDB)
	Introduction
	Methods
	Study objective and design
	Internal data extraction
	External data extraction
	Anonymization of DICOM files and deidentification of clinical reports
	Annotating V/Q images
	Data ingestion pipeline
	Quality control

	Results to date
	Extracted studies
	Image acquisition protocols
	Demographics
	Planar image annotation

	Discussion
	PACS data extraction
	Annotations
	Data ingestion
	Missing data
	Limitations

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Correction Note
	Generative AI statement
	Publisher's note
	Supplementary material
	References


