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Platinum group metals for
nuclear medicine, a luxurious
dream or the future of imaging
and therapy: a review

Daniel G. Racz and lvis F. Chaple*

Department of Nuclear Engineering, University of Tennessee, Knoxville, TN, United States

Platinum group metals (PGMs) consist of six transition metals: platinum (Pt),
palladium (Pd), rhodium (Rh), osmium (Os), iridium (Ir), and ruthenium (Ru).
PGMs have been used notably in industrial, electronic, and medical
applications. For example, Ir-192 is often utilized in industry to detect
structural defects in metal and assess pipeline integrity. Pd-104 is irradiated to
produce Pd-103 seeds, used for prostate cancer treatment. Other isotopes of
elements in this group can be sourced to facilitate critical applications,
discussed in this review. Due to their unique chemical and nuclear properties,
these metals may be promising candidates for various nuclear medicine
applications, including diagnostic imaging via Positron Emission Tomography
(PET), Single Photon Emission Computed Tomography (SPECT) and Targeted
Radionuclide Therapy (TRT). This review will explore PGMs in nuclear
medicine, focusing on their production routes, nuclear characteristics, and
suitability for past and future development of radiopharmaceuticals. We will
highlight methods for radiochemical separation and purification of each
radionuclide, discussing potential challenges and emphasizing the need for
further research to ensure sustainability. As the demand for advanced nuclear
medicine techniques continues to grow, PGMs may play a significant role in
addressing current challenges in the field. We will discuss several
radionuclides of interest to nuclear medicine including !pt, 193mpt, 195mpy,
103Pd, 109Pd, 103mRh, 105Rh, 19105’ 192“,’ 97Ru, and 103RU.

KEYWORDS

platinum group metals, platinum, palladium, rhodium, osmium, iridium, ruthenium,
nuclear medicine

1 Introduction

Cancer remains one of the leading global health concerns, with an estimated 19.3
million new cancer cases and 10 million cancer-related deaths worldwide in 2020 (1),
and projections are expected to rise by 60% within the next two decades (2). The
increase incidence of cancer necessitates the development of innovative approaches
towards both cancer diagnosis and treatment. Nuclear medicine provides powerful
tools for both diagnostic imaging and therapy. Techniques such as position emission
tomography (PET) and single photon emission computed tomography (SPECT) offer
functional imaging capabilities that are crucial for accurately detecting cancerous cells.
By administering a radiopharmaceutical that targets cancer-specific cells, nuclear
medicine imaging can detect the radiation emitted from the radiopharmaceuticals,
enabling personalized treatment planning. Therefore, these imaging modalities are
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crucial in clinical practice, guiding oncologists in selecting optimal
conditions to improve patient outcomes. Beyond diagnostics,
targeted radionuclide therapy (TRT) has been utilized as a
cornerstone in oncology care. Radionuclides have also played
vital roles alongside external beam radiation therapy (EBRT).
For example, '*’Ir sources are widely used in high dose rate
brachytherapy for many types of cancers (3), and '"°Ru is used
as a standard eye-preserving treatment for uveal melanoma (4).
Whether a radionuclide is used in either diagnostic imaging or
radiotherapeutics, the continued exploration of their application
is of key importance towards nuclear medicine advancement.
The discovery of the six platinum group metals (PGMs)—
platinum (Pt), palladium (Pd), rhodium (Rh), osmium (Os),
iridium (Ir), and ruthenium (Ru)—spanning from the sixteenth
to the nineteenth centuries, laid the foundation for advancements
in the

sixteenth century in Colombia’s Choco district, where four

across diverse fields. Platinum was first discovered
additional PGMs—palladium, rhodium, osmium, and iridium—
were classified three centuries later by William H. Wollaston and
Smithson Tenant (5). Wollaston discovered palladium and
rhodium by refining platinum ores, where Tennant discovered
iridium and osmium in the residues (5). The sixth PGM,
ruthenium, was extracted by Karl Klaus in 1844 from platinum
residues, and named after “Ruthenia” (Latin for Russia) (5, 6).
Today, these elements are integral not only in everyday
technologies such as electronics and automotive catalysts but also
in innovative medical treatments, where their unique properties—
chemical, physical, nuclear—enable breakthroughs in cancer
therapies, imaging, and radiopharmaceuticals.

Platinum-based compounds, especially in the oxidation states
of 2+ and 4+, have been widely, and successfully, utilized for the
treatment of many types of cancers (2, 7). The two most notable
platinum-based chemotherapy agents are cisplatin and
carboplatin, although there are several other variations of these
drugs which are mainly characterized by a central Pt atom
surrounded by atoms of Cl, NH,, CHj, and others. The toxicity
of these compounds has become a major limitation in their use,
as it can to some extent, have a negative effect on all organs (8).
New strategies, such as the development of Pt(IV) prodrugs
have been described to overcome the effects that diminish
clinical outcomes (7). Palladium has shown similarities between
the coordination chemistry of Pd(II) and Pt(II) compounds,
advocating studies to implement Pd(II) complexes as antitumor
drugs (9-11). Furthermore, described in Lazarevic et al. (11), Pd
(I1) compounds exchange ligands 10*-10° times faster than
corresponding Pt(II) analogs—with various compounds showing
(12), (13),

antibacterial, antiviral, and antifungal capabilities (14). Ma et al.

anti-inflammatory,  antimicrobial antitumor
(15) stated that research into bioactive rhodium complexes are
warranted and may eventually lead to the discovery of drugs
with distinct mechanisms of action compared to traditional
platinum or ruthenium-based therapeutics. Due to the well-
known toxicity of OsO,, osmium’s utility in medicinal chemistry
has been less explored; however, the implementation of novel
ligands and the diverse coordination geometries and oxidation

states of this metal has led to further development (16)—with
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several papers discussing potential osmium anticancer agents
(17, 18). Konkankit et al. (16) highlighted a surge in the
application of iridium complexes as anticancer agents and
imaging probes, for example, octahedral cyclometalated iridium
complexes, along with complexes targeting DNA and inhibiting
specific proteins. Ruthenium has emerged as a “next-generation”
therapeutic metal, while offering several advantages over Pt-
based drugs, including electronic structure, tunable redox
properties, and a relatively low toxicity profile contributing to its
increasing importance (2, 7).

In addition to PGM compounds being utilized in traditional
medicine, PGMs also contribute towards nuclear medicine due
to useful nuclear decay properties essential for imaging or
radionuclide therapy. In this review, a detailed evaluation of
select PGM radionuclides, tracing their past developments and
current successes or challenges towards advancement in nuclear
medicine. Their nuclear properties will also be discussed, along
with reviewing production routes and radiochemical separation
methods that enable high purity radionuclide preparation.
Moreover, key results from either pre-clinical or clinical studies,
are reported, along with a discussion on how PGMs may be
added as novel tools to the toolkit of modern nuclear medicine.
Through this review, we aim to illustrate whether PGMs are a
luxurious dream or a key to the future of molecular imaging
and radionuclide therapy.

2 Platinum and platinum-based
radionuclides

Naturally occurring platinum isotopes include: '*°Pt
(0.012%,), '9?Pt (0.782%), "**Pt (32.864%), *°Pt (33.77%), '°Pt
(25.21%), and *®Pt (7.356%) (19). For this review, we will focus
on ''Pt, "*™pt, and '*™Pt, as other radioisotopes (‘**Pt, '*Pt,
'7pt) have not been widely studied.

2.1 Platinum-191, *°*pt

Due to its nuclear decay properties, '*'Pt may be suitable for
Auger electron therapy. This radionuclide has a half-life of 2.83 d
and decays 100% by electron capture (EC), with notable y-ray
energies of 538.9 keV (I,=13.7%) and 465.5 keV (I, =3.5%) (20).

2.1.1 Production and radiochemical separation of
191Pt

Multiple production routes for '*'Pt have been explored using
either osmium or iridium targets bombarded with protons,
deuterons, or a-particles highlighted in Table 1. Bonardi et al.
21) 191pt__which
complemented earlier work from Parent et al. (22) and Sharma
and Smith  (23)—while 170 MBq/pg  with
decontamination ~ factors of >10° via two optimized

produced  no-carrier-added (n.c.a.)

achieving
radiochemical separations (Sn(II)/ether vs. NH,OH/dithizone

extraction). Obata et al. (20) measured excitation functions,
finding peak cross sections of ~623-635mb for '*'Pt at ~26-
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TABLE 1 Production pathways for platinum-based radionuclides.

Radionuclide Nuclear Flux/Energy | References
reaction

191pg "0s(0,xn) 1Pt Epnax = 38 MeV (21, 260)
9205(*He,4n)""'Pt | 36 — 25 MeV (261)
"r(p,xn)'*' Pt Epnax = 30 MeV (20-22, 24, 262)
"Yr(d,xn) "' Pt Epnax = 40.3 MeV (20, 260, 263)

193mpy 1208(a,3n)*™Pt | Epax = 39 MeV (44, 45, 51)
192pt(n,y)'>™pt 4x10"n cm™ (52)

st
195mpy 19311 (n,y) **Ir(n, 1-25% 10" n (57, 59)

y)195m1r - 195mPt Cm—z 571

194pt(n,y)'*>™pt 3-85x10"% n (26, 59, 63, 64,
cm 257! 66)

195pt(n,n’) P> ™Pt (60)

19205(0,n)'*°™Pt 28 — 16 MeV (45)

197 Au(y,n) "™t Emax = 34 MeV (67)

32 MeV, with theoretical thick-target yields of ~108-192 MBq/
pA-h for both proton and deuteron irradiation using "*Ir or
"3[r targets. Furthermore, they noted ~25 MeV protons as the
optimal energy, though advanced target dissolution methods
were needed due to iridium exhibiting superior resistance to
acid (20). Obata et al. (24) addressed this by using an alkali-
fused Ir target and in situ HCl digestion, followed by solvent
extraction and anion exchange, yielding 17.4 + 1.1 MBq/pA-h at
EOB  (7.1+0.4 MBg/uA-h  post with  >99%
radionuclidic purity.

separation)

2.1.2 Applications of 'pt

Areberg et al. (25) demonstrated the first use of [**'Pt]cisplatin
(Figure 1A) for tumor imaging. Fourteen patients received ['°'Pt]
cisplatin (>99% radionuclidic purity)—synthesis based on the
work reported by Hoeschele et al. (26)—and showed clear
gamma-camera visualization of tumors in multiple anatomical
sites (25). Building on this, the same group (27) reported organ-
specific absorbed and effective doses for [lglPt]cisplatin (and
193mpy/195™pt analogs)—advancing beyond earlier whole-body
mean dose calculations by Lange et al. (28).

Recent work has leveraged the auger electrons emitted from
"”IPt towards targeted therapy. Obata et al. (29) developed a
resin-based method to isolate n.c.a. ['*&181°1p{]Pt(I1)CI3~, and
a one-pot radiosynthesis of [*Pt]cisplatin, yielding 30%-40%
without intermediate evaporation. Using tracer-level ['**'*'Pt]
cisplatin, Obata et al. (30) showed only 0.6% overall cell uptake
in cells, yet ~20% of internalized platinum localized to the
nucleus and ~2% bound covalently to DNA (0.28 +£0.02% ID/
mg) (30). Single-cell assays confirmed that auger electrons
caused direct DNA double-strand breaks, validating [189:191py]
cisplatin as an extremely localized therapeutic with minimal
systemic toxicity (30). Obata et al. (31) compared 191p¢
coordination to Cys, DTPA, EDDA (Figures 1B-D) to evaluate
the in vitro behavior to analogous '''In-labeled (t;,=2.8 d,
100% EC) agents (31-34). They demonstrate that free PlpiCla~
undergoes rapid thiol coordination with Cys, significantly

reducing protein binding at 60°C (~10%) compared to 45°C
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(~42%) (31). In contrast, labeling with DTPA and EDDA resulted
in moderate radiochemical yields (70%-80%) and reduced protein
binding only to ~42% and ~30%, respectively (31). Furthermore,
1Pt was complexed with the DNA-targeting dye Hoechst33258
via DTPA (['*'Pt]Pt-DTPA-Hoechst33258; >95% radiochemical
purity) and Cys ([191Pt]Pt—Cys—Hoechst33258; ~90% radiochemical
purity) to compare with [""n]In-DTPA-Hoechst33258 (>95%
radiochemical purity) and found both '*'Pt-based complexes
displayed one order of magnitude greater DNA-binding than the
""In analog (31). Notably, ['*'Pt]Pt-Cys-Hoechst33258 induced
DNA damage more effectively than its DTPA counterpart,
suggesting that thiol-based '*'Pt labeling enhances delivery to DNA
and elevates therapeutic potential (31).

Obata et al. (35) conjugated '*'Pt to a oncogene MYCN-
specific pyrrole-imidazole polyamide (PIP) scaffold (**'Pt-
MYCN-PIP) (R3) for
penetration (36), and a fluorescent compound coumarin (GCC-
Cys-R3-coumarin control, '*'Pt-GCC-PIP). The MYCN gene is
a transcription factor that is amplified in human neuroblastoma

bearing Cys, tri-arginine cellular

and is related to the patient’s prognosis (35). Noted in Obata
et al. (35), targeting cancer-related genes with PIPs have been
utilized in preclinical studies with mice and marmosets (37, 38),
along with developments of MYCN-targeting PIP in Yoda et al.
(39) showed promising specific targeting ability and therapeutic
effects. With 50%-70% radiochemical yield and >95%
radiochemical purity, '°’Pt-MYCN-PIP achieved ~10-fold higher
uptake and DNA-binding in MYCN-amplified vs. non-amplified
neuroblastoma cells, and reduced MYCN expression in vitro
(35). Omokawa et al.
platinum

(40) synthesized a sugar-conjugated
FGC-Pt
glucopyranosidyl)propane-1,3-diamino-2-propyl]platinum)  (41)
and labeled it with n.c.a. '*'Pt by either direct activation (61.7%
radiochemical purity) or post-labeling of neutron-activated
["'PtIK,PtCl, (14.5+7.3% radiochemical 93.8%
radiochemical purity), with the Ilatter method providing
significantly higher yield and purity. In healthy mice, both
["'PtlEGC-Pt  preparations
biodistribution at 24 h—and y-counting correlated with ICP-MS
measurements (r=0.92, p<0.05), confirming their utility for

complex, (cis-dichloro[(2-fluoro-o-p-

yield;

showed almost identical

quantitative imaging (40). Most recently, Obata et al. (42)
developed a PSMA-targeting '*'Pt-trithiol complex showing a
46-fold uptake advantage in PSMA® vs. PSMA~

vitro), outperforming the Cys-based analog (2.2 +0.3).

tumors (in

2.2 Platinum-193 m, 1°3™pt

Platinum-193 m is a metastable isomer of platinum-193 that
may be useful for Auger electron therapy. This radionuclide is
attractive due to emitting around 26 Auger electrons per decay
and has a half-life of 4.33 days (43).

2.2.1 Production and radiochemical separation of
193mPt

193m

The production routes to obtain Pt are shown in Table 1.

Uddin et al. (44) measured the experimental excitation function
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synthesized with Pt ([***Pt]-cisplatin) for investigation (25-28, 30). The complex is represented as elemental platinum. Obata et al. (31)
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for the '*>Os(0,3n)'*>™Pt reaction—building on previous work by
Hilgers et al. (45)—reporting a peak cross section of 1.47 +£0.19 b
(66.63 keV x-ray) and 1.53+£0.21b (135.5keV y-ray), both at
36.4+0.2 MeV. As the authors noted, several methods for the
dissolution of osmium had been reported (45-47). An optimized
electrolytic technique was carried out to prepare highly enriched
'%2Qs, where the authors noted, low electrodeposition yields
were minimal to this point (44). Jones et al. (48) reported a
maximum deposition of 9.5% at pH 13—which encouraged the
authors to focus on this effort. Chakrabarty et al. (47) on the
other hand, reported a high yield of ~80% for an isotopically
enriched osmium sample, where efforts by Uddin et al. (44)
were devoted to optimizing the electrolytic deposition process.
By using their electrolyte, a maximum electrodeposition yield of
~75% at pH 12.8 was achieved for the enriched osmium, with
15%
separation techniques from Bonardi et al. (21) and Hilgers et al.
(45), Uddin et al. (44) oxidized the osmium sample with the Ni
backing in concentrated nitric acid and evaporated out the
liquid. The OsO, was distilled and trapped in 4.7 N KOH, while
the residual Pt was dissolved in 3 N HCl, and reduced from Pt
(IV) to Pt(Il) with SnCl,. The [Pt(SnCls)s]>~ anion was
extracted into the ether phase, achieving a radiochemical yield
(44).
Compared to Hilgers et al. (45) and predictions from nuclear
model codes [TALYS (49) and STAPRE (50)], the measured
excitation functions from (44) showed excellent agreement

lower for natural osmium. Adopting radiochemical

of 80%-96% across 20 individual osmium samples

across the energy range. Integral yield calculations 1 pA for 1 h
yielded ~10 MBq/pA-h of '*™Pt and ~0.06 MBq/pA-h of
19>Mpt  within the optimal energy window of 40—30 MeV,
establishing 9205(0,3n)1°™Pt as the most effective cyclotron-
based route for producing clinically relevant quantities of
193mpy (44),

Uddin et al. (51) demonstrated a small-scale, cyclotron-based
production of 193mp¢ via 20s(0,3n)'">™Pt reaction, achieving
99% radionuclidic purity and a specific activity of 1 GBqg/ug
193mpt - effectively overcoming the limitations of low specific
activity associated with reactor-based (n,y) production on 192p¢
targets as highlighted by Azure et al. (52). Target dissolution
and OsO, distillation, previously reported in Hilgers et al. (45)
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and Uddin et al. (44), combined with a SnCl,-ether extraction
sequence developed by Ahmed and Koch (53) and Koch and
Yates (54), enabled 85% recovery of enriched Os and 90%
radiochemical yield of '**™Pt (51). The experimental batch yield
at EOB was 1.6 pA beam for 3h,
corresponding to ~40% of the theoretical value predicted from
the excitation function of the '*?Os(0,3n)'*>™Pt reaction (44,
51). In contrast, (n,y) production using 5mg of 57% enriched
192pt (p=4x10" n cm™> s7%; 7 d) yielded 3 GBq with a specific
activity of only 0.6 MBg/ug '**™Pt (51, 52). Moreover, a-
induced production results in minimal '*>™Pt impurity (0.5%)

~10 MBq wusing a

compared to the (n,y) route (~12%), emphasizing its suitability

for  scalable, high-purity = Auger-electron  radionuclide

production (51, 52).

2.2.2 Applications of 1°3Mpt

Lange et al. (55) performed the radiosynthesis of cisplatin
labeled with '**™Pt and subsequent biodistribution on rabbits
and mice. From their findings following intravenous injection,
most of the activity accumulated in the kidneys, urine, and liver,
with
eliminated by 24 h) (55). A year later, the same group (28),

rapid excretion of the radiolabeled complex (79%

performed distribution studies and dose calculations for '**™Pt
and '®>™Pt and reported similar biodistribution results from the
prior study, along with similar behavior with the '**™Pt-labeled
analog (28). Azure et al. (52) performed the first microscale
synthesis of carboplatin labeled with '**™Pt, reporting ['**™Pt]
carboplatin (Figure 2) uptake had saturated by 2-3 in V79 cells,
and similar findings to [lgsmPt]transplatin in Howell shown in
Figure 3A (56). Notably, ~70% of internalized 193mpt was in the
nucleus, with ~60% of that bound to DNA (52)—substantially
higher targeting than observed with Pt (25% cellular
radioactivity in nucleus, 42% bound to the DNA) (56).

2.3 Platinum-195 m, *°>™pt

Owing to its favorable nuclear decay properties, '*>™Pt has
been studied for its use in both nuclear medicine diagnosis and
therapy. The radionuclide has a half-life of 4.02 d, emits low-
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FIGURE 2

An analog of cisplatin, cis-diammine(1,1-cyclobutanedicarboxylato)-
platinum(ll) (carboplatin, paraplatin®) has demonstrated to strongly
diminish renal toxicity and other associated deleterious physiological
phenomena, along with clearance of the drug from the body is
much faster than for cisplatin (52). We present the complex
structure using elemental platinum; however, Azure et al. (52)
radiochemically ~synthesized carboplatin ~ with ([**™py]
carboplatin) (52).

195mpt

energy photons (E,=98.85keV, I,=11.4%), each disintegration
releases 36 Auger electrons depositing around 25keV within
nm-pum distances in tissue (57, 58).

2.3.1 Production and radiochemical separation of
195mPt

High specific activity '°™Pt is best obtained via indirect
reactor routes or enriched target irradiation, and all its
production routes are shown in Table 1. Knapp et al. (59)
produced n.ca. ">™Pt by irradiating enriched '*’Ir to produce
95mpe (t,,,=3.67 h)—via *Ir(n,y)'**Ir(n,y)'**™Ir—which then
decays (87) to '"™Pt while taking advantage of the high
thermal flux of the High-Flux Isotope Reactor (HFIR) at Oak
Ridge National Laboratory (ORNL) to surpass the specific
activities achievable by direction 194pt(n,y) or **Pt(n,n’) routes
(26, 59, 60). 195mpy was separated from bulk Ir via thiourea-HCl
elution on cation resin—where methods were previously
reported by Siegfried et al. (61) and Berg and Senn Jr (62).—
yielding high purity of '**™Pt (59). Hilgers et al. (45) measured
the 192Os(ot,n)lgsmPt reaction, reporting a maximum Ccross
section of 4.4+0.7 mb at 22.1 £0.7 MeV, and projected ~0.09
GBq yield—about an order of magnitude lower than reactor
methods (63). Vosoughi et al. (64) irradiated "*'Pt in a reactor
(3x10" n cm™ 57", 30 h, 5 MW power), obtaining 16.28 MBq
of "*™Pt. The product was allowed to decay for 48-h due to
short-lived Au/Pt impurities and solvent extraction separation
was performed following an established method by Vimalnath
et al. (65), they obtained radiochemical yield and separation
efficiency of >99% and 99.4%, respectively (64). However,
specific activity was only ~0.8 MBq/mg, much lower compared
to the reported <37 MBq/mg (59) and 15.9 MBq/mg (66) that
were achieved with enriched '**Pt targets at ORNL and
SAFARI-1 reactors, respectively (64). Bodnar et al. (67) aimed to
develop a method of preparation of '**™Pt with high specific
activity via a photonuclear reaction. Obtaining '*>™Pt via the
7 Au(y,np) "> Pt reaction, they implemented a novel technique
for gold extraction and produced high specific activity '*™Pt >1
Ci/mg (67). Wawrowicz and Bilewicz (57) tested the double-
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neutron capture approach but proved it to be impractical due to
an unknown second-step cross section and difficult target
dissolution, yielding <10% recovery. Therefore, until nuclear
data and chemical processing improves, double-capture routes
offer no advantage (57).

2.3.2 Applications of °>™pt

Leveraging reactor-produced n.c.a. '>™Pt, Zeevart et al. (66)
prepared ['*>™Pt]cisplatin for a Phase 0 clinical trial on healthy
patients (66). Using an optimized synthesis—building on work
by Smith (68)—[195“’Pt]cisplatin was obtained in >95%
radiochemical yield (**™pt and '"’Pt combined), with co-
produced impurities (**’Ir, '°'Pt, Au isotopes) below detection
(66). Sathekge et al. (69) obtained whole-body planar scans and
SPECT/CT images up to 144 h post-['*™Pt]cisplatin injection in

Bodnar et al. (67)
Of 195m

five volunteers. also optimized the

radiosynthesis Pt-cisplatin from earlier works of
Chernyaev (70) and Dykiy et al. (71) for in vitro and in vivo
evaluation. They confirmed induced necrosis and apoptosis in
vitro at mass doses over five orders of magnitude lower than
conventional cisplatin doses (67, 70, 71). In mice with Ehrlich
tumors, a single ['*°™Pt]cisplatin dose achieved 65% tumor
growth 100% 35%

inhibition by conventional cisplatin (67).

inhibition—and animal  survival—vs.

Apart from cisplatin analogs, Aalbersberg et al. (72) conducted
a preclinical evaluation of '*>™Pt SPECT using NanoSPECT/CT
and U-SPECT'/CT following
irradiation of **Pt in the High Flux Reactor (HFR) in Petten,

the Netherlands. They achieved sub-millimeter resolution and

scanners thermal neutron

linear quantification over a wide activity range (0.035-
4.36 MBq),
measurements

confirming accurate in vivo Pt distribution
(72). SPECT-based quantification, calibrated
using a '*>™Pt dilution series, correlated strongly with ex vivo
gamma-counting and graphite-furnace atomic
(GF-AAS),
quantification of platinum biodistribution (72). Although the
study validated the feasibility of '*>™Pt SPECT in small animals,

the authors noted limitations including low specific activity 3-

absorption

spectroscopy validating  accurate in  vivo

4 MBq per injection, small sample size, and the need to improve
purification methods to extend imaging with radiolabeled
cisplatin (72). Muns et al. (73) characterized a metal-organic
(called Lx) with
antibody-drug conjugates (ADCs) for in vivo stability and tumor
targeting using '*>™Pt and ¥Zr (t,,, = 78.36 h). Nearly identical
199mpt and  ¥zr

confirmed the in

linker, [ethylenediamineplatinum(II)]2+

biodistributions in tumor-bearing mice
stability of the Pt(II)-histidine

coordinative bond within Lx (73). However, the amounts of

Vivo

platinum incorporated into Lx-based ADCs and the specific
activity of '*>™Pt were too low to support preclinical or clinical
SPECT imaging studies (73).

Nadar et al. (74) synthesized a n.c.a '*>™Pt-BP complex, shown
in Figure 3B, to achieve bone-targeting Auger-electron therapy.
This complex was introduced previously by Margiotta et al. (75).
In healthy C57BL/6N mice (2.5 mM Pt, 24 h), ICP-MS showed a
4.5-fold higher uptake in hard tissue (12.18 +0.56%ID/g) vs. its
bisphosphonate-free precursor Pt(NO3),(en) (2.69 +0.26%ID/g),
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(A) (8)

FIGURE 3

(A) The complex of trans-dichlorodiammineplatinum(ll) (transplatin)
was radiochemically synthesized with radioactive platinum
(1*9°™Pt]-transplatin) in Howell et al. (56) to be utilized as an
antitumor  drug  (56). (B) Radioactive  bisphosphonate-
functionalized platinum (:*™Pt-BP) complexes were investigated
to specifically accumulate in intratibial bone metastatic lesions in
mice (74-76). Both complexes are presented as elemental platinum.

and accomplished reducing off-target retention in many organs
including the kidney (5.70 £ 0.15 vs. 3.38 + 0.28%ID/g) (74). Pt-
BP also induced minimal Pt-DNA adduct formation (<0.5% of
total Pt in most tissues; kidney: 2.8%, spleen: 1.4%) compared to
the precursor (kidney: 4.8%, spleen: 9.8%), confirming that
bisphosphonate conjugation both enhances bone selectively and
spares healthy tissues for DNA damage (74). In micro-SPECT/
CT studies, '*>™Pt-BP rapidly localized to growth plates,
whereas '°™Pt(NO;),(en) accumulated specifically in soft tissues
(74). Laser ablation ICP-MS (LA-ICP-MS) further validated 73.5%

. . 1
co-localization of '*°™

Pt-BP, showing almost a four-fold increase
accumulation of Pt in bone compared to the precursor—
highlighting its specific bone-binding mechanism (74). In a
subsequent study, Nadar et al. (76) treated mice with intratibial
bone tumors using '*>"Pt-BP and ['**™Pt]cisplatin. '*>™Pt-BP
exhibited significantly higher and sustained accumulation in
metastatic lesions with 2.8-3.3-fold higher uptake than the
contralateral tibia, indicating selective targeting (76). In contrast,
19°Mpt_cisplatin exhibited lower uptake (<3.7%ID/g) with no
evidence of lesion selectivity at any time point (76). Therapeutic
efficacy was assessed via y-H2AX staining—a biomarker specific
for double-strand DNA breaks—revealing that '*°™Pt-BP
induced a 4.6-fold greater fraction of y-H2AX-positive tumor
cells (1.66+0.4%) compared to '*>™Pt-cisplatin (0.36 + 0.1%)
and an 11-fold increase over non-radioactive Pt-BP (0.15 +0.1%)
(76). These results confirm that bone-targeted 195mp¢_BP delivers
Auger radiation directly to tumor-associated bone lesions with
superior efficacy compared to ['**™Pt]cisplatin (76).

Most recently, de Roest et al. (77) explained [195mPt]cisplatin
uptake in cisplatin-sensitive and -resistant head-and-neck cancer
models. They found that cisplatin-resistant HNSCC cell line
(VU-SCC-OE) accumulated more [195mPt]cisplatin in DNA and
exhibited greater capacity to repair cisplatin-induced crosslinks
compared to the cisplatin-sensitive HNSCC cell line (VU-SCC-
1131), with a DNA retention ratio of 3.4 vs. 1.45 (77). The
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that
predictive of tumor sensitivity to cisplatin but may serve as a

authors concluded ["*™Pt]cisplatin imaging is not

tool for assessing cisplatin-related off-target toxicity (77).

3 Palladium and palladium-based
radionuclides

There are six naturally occurring stable isotopes of palladium:
192p4 (1.0%), '**Pd (11.0%), '°°Pd (22.2%), '°°Pd (27.3%), '°*Pd
(26.7%), and ''°Pd (11.8%) (19). Radioisotopes of palladium
include '°°Pd, 'Pd, '7Pd, and '®Pd, in this review we will
discuss '®Pd and '*°Pd.

3.1 Palladium-103, °3pd

193pd (t,,,=16.99 d) is a therapeutic radionuclide that has
been used in brachytherapy for the treatment of prostate cancer,
mostly used as a metal seed or stent (78, 79). The radionuclide
decays to '>™Rh by electron capture, which then de-excites
through internal transition (IT) to stable 195Rh. 'pd emits x-
rays and Auger electrons due to the EC and IT decays, which
makes 'Pd suitable for internal radiotherapy (79).

3.1.1 Production and radiochemical separation of
103Pd

A variety of production methods exist for '>Pd, including
reactor- and accelerator-based routes which is described in
Table 2. Sudar et al. (80) reported a maximum cross-section of
505+ 26 mb at 10.05+0.19 MeV (via x-ray measurements) and
identified the optimal energy range for maximizing specific
cross-sections (300-500 mb) and yields to be between 8 and
12 MeV. The authors compared between neutron-counting
studies—including those by Albert (81), Johnson et al. (82), and
Hansen and Albert et al. (83)—and activation measurements—
Blaser et al. (84), Harper et al. (85), Treytl and Caretto (86),
Mukhammededov and Vasidov (87), and Hermanne et al. (88)
—from energies 2.8-400 MeV,
across studies, with discrepancies at lower energies mainly

confirming good agreement

TABLE 2 Production pathways for palladium—based radionuclides.

Radionuclide Nuclear Flux/Energy @ References
reaction

193pq "'Ag(p,x)'°Pd Emax = 100 MeV (79, 89-91)
193Rh(p,n)'**Pd Emax = 50 MeV (79, 80, 101, 102)
193Rh(d,2n)'®*Pd Epmax = 34 MeV (79, 92, 93, 99)
19Ru(a,n)'%pd 25 — 9 MeV (79, 94, 95)
19'Ru(a,2n)'*Pd 25 - 15 MeV (79, 94, 95)
192Ru(*He,2n)'®Pd | 34 - 7 MeV (79, 94, 95)
"pd(d,xn)'Ag = | Epax =20.5 MeV (95, 98)
lOSPd
"Pd(p,x)'”Ag = | Epax=37.3 MeV (79, 97, 98)
103Pd

199pq 198pd(n,y)'°Pd 3%x10"” n cm™ (78, 123)

-1
S
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attributing to systematic uncertainties and differences in target
preparation (80). Building on this, Hussain et al. (79) provided a
comprehensive evaluation of all accelerator-based production
routes for n.c.a. '®’Pd, integrating six reaction channels (89-95)
reported in Table 2 using EXFOR data and key literature
sources, and by normalizing the raw measurements with three
(STAPRE (50), TALYS (49),
EMPIRE (96)) to produce recommended excitation functions

nuclear-reaction codes and
with 95% confidence limits. Furthermore, they investigated
another indirect precursor of "*Pd(p,x)'>Ag—'"Pd (97, 98)
that can form up to 70% of total '©’Pd via '“Ag decay but
suffers from long-lived impurities and complex chemistry,
limiting their large-scale clinical applicability (79).

Manenti et al. (99) optimized n.c.a. '®>Pd production via the
193Rh(d,2n) reaction using a stacked-foil activations method at
deuteron energies from 5 to 33 MeV on the JRC-Ispra and
ARRONAX 100-170nA, 1h
irradiations). Experimental cross-sections rose steadily above the
3.62 MeV threshold, peaking at 1,261 +71 mb at 15.0 + 0.4 MeV,
and then declined gradually at higher energies (99). Comparison

cyclotrons (beam currents

with prior data and models showed good agreement with
Hermanne et al’s (92) y-ray measurements and close agreement
with the recommended values of Hussain et al. (79), while
Ditroi et al. (100) reported cross-sections up to 15% lower (99).
EMPIRE-II and EMPIRE-3.2.2 (96) both
reproduced the experimental curve within uncertainty, whereas
TENDL-2015 (49) underestimated cross-sections above 10 MeV
(99). Thick-target yields (TTYs) were computed from integrated

Furthermore,

thin-foil data, reporting that up to ~12 MeV, deuteron-induced
TTYs matched those of the 103Rh(p,n) route (99). Above
12 MeV, deuteron yields exceed proton yields by up to a factor
of two—reflecting the higher (d,2n) cross-section at medium
energies and marking deuteron beams as especially attractive for
high-throughput production (99). Radionuclidic purity within
the 5-33 MeV window is excellent as authors noted only '°'Pd
(ti/2=8.47 h) co-produces above its 22 MeV threshold, greatly
simplifying post-irradiation separation (99). The higher stopping
power of 13.3 MeV deuterons also reduces target mass, with a
188 um Rh foil suffices for full absorption vs. 214 ym for
10.5 MeV protons, marginally easing radiochemical separation
(99). Despite these advantages, high-energy deuteron cyclotrons
remain scarce, which may constrain routine clinical-scale '*>Pd
production (99).

Ohya et al. (101) demonstrated an efficient method for
producing no-carrier-added '“Pd, followed by radiochemical
separation and target material recycling. The radiochemical
separation incorporated a Bi-Rh alloying pretreatment at 500°C,
enabling high-yield dissolution of the Rh target and achieving a
93 4% dissolution efficiency (101). Following co-precipitation
to remove Bi and palladium radionuclides—including '°°Pd and
'9pd— a dimethylglyoxime (DMG)-based extraction, achieved
99 + 1% yield (101). The radiopalladium was subsequently back-
extracted from chloroform using aqueous ammonia, yielding
97+2% of ['“Pd(NH;),** (101). The entire process was
completed within 3.5 h, yielding a '®*Pd radiochemical yield of
87% and >99% radionuclidic purity (101). During the recycling
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process, 91 3% of the Rh target was efficiently recovered with
minimal Bi contamination (9 pg per 50 mg Rh) through cation
exchange purification; therefore, providing a framework for
clinical-scale '**Pd radionuclide production (101).

Krol et al. (102) presented the first feasibility study on the
production of '’Pd via the '®Rh(p,n)'?’Pd reaction using
cyclotron irradiation of a liquid target. By achieving an EOB
activity of 1.03+0.05MBq (20.06 +0.97 MBq/pA)
optimized conditions (30+0.5 pnA, 1h irradiation, 200 psi top

under

up pressure, and 16.4 mg/ml metal-salt concentration), they
demonstrated that liquid targets can reliably yield research-scale
103pq (102).
Furthermore, an anion-exchange separation using Dowex 1 x 8
resin with 1 M HNO;
90.1 £2.1% recovery from the irradiated target solution, while a
I:1 mixture of 0.5M NH;+NH,Cl for palladium elution
resulted in a 103.8+2.3% recovery—achieving a rhodium

quantities  of suitable for radiochemistry

for rhodium elution achieved a

reduction factor of ~10° (102). More recently, Laouameria et al.
(103) addressed previous limitations by developing a diffusion-
driven extraction to separate '“Pd from its stable '“Rh target,
relying on the metals’ differing vapor pressures. Using their
radionuclide separation equipment (RSE), they achieved an
overall separation of 17 +2% and deposition yields of 77 +2%
on Nb foil and 49+2% on ZnO/W discs, respectively (103).
Furthermore, using the ZnO/W disc substrate, the method
produced 31.9 MBq EOB with a specific activity of 8.1 GBq/g,
representing a

streamlined alternative to traditional wet-

chemistry approaches for Auger-emitter production (103).

3.1.2 Applications of °*Pd

Blasko et al. (104) conducted a study on a cohort of 230 men
with clinically T1-T2 prostate cancer treated exclusively with '*>Pd
brachytherapy. The study found an overall 9-year biochemical
control rate of 83.5%, with PSA-only progression observed in
just 4.3% of patients (104). The findings validated '°Pd
brachytherapy as an effective and durable treatment option cross
a range of risk groups, achieving high biochemical and clinical
outcomes in patients with organ-confined prostate cancer (104).

Li et al. (105) developed an electroless plating method to
fabricate '®*Pd brachytherapy seeds by directly depositing '**Pd
onto carbon bar substrates, thereby eliminating the metallic pre-
coatings and the complex pellet assemblies required from prior
reports. Under hydrazine-based bath conditions optimized in Li
et al. (106), this method achieves a 98% deposition efficiency
and a '®Pd utilization rate of 51%, which is more than double
(~25%) seen with traditional silver bars (105). By streamlining
the plating process and cutting material losses, the approach
reduces both fabrication cost and complexity, paving the way for
more economical, high-performance '*Pd seed production and
broader clinical adaptation (105).

Researchers have also explored '®Pd in nanoparticle-based
(107) evaluated the
therapeutic efficacy, biodistribution, and tolerability of two

brachytherapy. Laprise-Pelletier et al.
formulations of '°*Pd-doped Pd@Au nanoparticles (NPs) in a

prostate cancer xenograft model. Like Djoumessi et al. (108), the
Pd NP synthesis achieved a high encapsulation efficiency of 87%
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for all '®Pd atoms incorporated into the 10-14 nm cores (107).
Comparing to Moeendarbari et al. (109), who reported 80%
tumor inhibition after a 1.5mCi implant given in 40 pl, the
present study achieved similar therapeutic effects using a tenfold
smaller volume (4 ul at 1.6-1.7 mCi) (107). Fach et al. (110)
'Pd  within (AuPd)
nanoparticles, intrinsically radiolabeled with '®’Pd, capable of

formulated gold-palladium alloy

forming biodegradable gel-like implants upon injection.
Therapeutic efficacy of '®’Pd-nanogels in a tumor-bearing
mouse model indicated doses of 25 MBq ['°>Pd]AuPd-nanogel
produced a robust tumor-growth delay and double median
survival compared to controls, with no systemic toxicity (110).
Building on this, Sporer et al. (111) compared injectable '°*Pd-
brachytherapy seeds that form biodegradable LOIB-based solids
in situ, using either intrinsically radiolabeled PdAuNPs or a
novel SSIB-[16]aneS, chelator. The ['*Pd]PdAuNPs were
synthesized by co-reduction of ['*Pd]PdH,Cl, and AuHCl,
surface-functionalized with a lipophilic coating and dispersed in
LOIB:EtOH to achieve an overall radiochemical yield of 83% or
via conjugation of the [16]aneS, chelator shown in Figure 4A to
a lipophilic sucrose septaisobutyrate (SSIB), followed by
complexation with ['Pd]PdH,Cl, in 99% yield (111). While
both formulations reached activities of 1-1.5GBq/ml with
negligible release (<1%) of radioactivity over 30 days, the
chelator strategy deems to be favorable as it avoids non-
degradable gold and offers a versatile platform for other
radiometals (111).

Hindie et al. (112) used the Monte Carlo track-structure code
CELLDOSE (113) (for electrons) in conjunction with PHITS (114)
(for photons) to quantify energy deposition from '**Pd/'**™Rh at
the cell surface, within the cytoplasm, and in the nucleus enabling

normalized comparison against '*'Tb and '”’Lu. In the single-cell

NH,

(A) (B)

FIGURE 4

(A) A tetradentate thioether macrocycle,
1,5,9,13-tetrathiacyclohexadecane ([16]aneS,), has been a suitable
chelator for binding Pt(ll) and Pd(ll) complexes. The chelator has
been used to immobilize *°*Pd in a °*™Rh generator (118), where
Sporer et al. (111) coupled [16]aneS, to sucrose septaisobutyrate
(SSIB) moiety, furnishing a ligand capable of efficiently trapping
103pd within the lactose octaisobutyrate (LOIB) seed. (B) The
elemental palladium complex with bipyridyl and alendronate
ligands, Pd,(bpy).ale, was radiochemically synthesized with *°*Pd
and '°°Pd for radionuclide therapy of bone metastatic tumor
cells (115).
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model, 1°°Pd delivered 7- to 10-fold higher nuclear absorbed dose
and 9- to 25-fold higher membrane dose than '"’Lu—driven
primarily by Auger and conversion electrons—with '*'Tb
showing intermediate dose profiles (112). Annamalaisamy et al.
(115) reported the first radiosynthesis and evaluation of
19°pd, (bpy),ale (Figure 4B), designed as an in vivo '®>Pd/'**™Rh
generator for bone-targeted Auger-electron therapy—extending
prior work by Cipriani et al. (116) and Fathy et al. (117). At pH
of 7 and 60°C, the radiosynthesis achieved >85% radiochemical
yield by iTLC, and preparative HPLC confirmed radioactive and
non-radioactive complexes were identical (115). Notably, iTLC
showed complete retention of parent '“>Pd and daughter '“*™Rh
103p 4 /103mpp
generators reported by Jensen et al. (118), which exhibited ~7%

—significantly improving upon macrocyclic
103mRh release—related to the electron-donating bipyridyl ligand
quenching “Coulomb explosion” effect discussed in Nath et al.
(115, 119). The result from the work of Jensen et al. (118) can
be explained by works of van Rooyen et al. (120) and Szucs
et al. (121) who conducted detailed recoil energy calculations
associated with the emission of Auger electrons, photons, and
neutrinos (115). Finally, 1°3Pd2(bpy)2ale exhibited potent
multimodal toxicity via Auger electrons and demonstration
chemotoxicity comparable to cisplatin by works of Zhao et al.

(122), highlighting its theragnostic potential (115).

3.2 Palladium-109, 1°°Pd

199pq (t,/, = 13.7 h) possesses favorable nuclear characteristics
suitable for targeted radionuclide therapy and SPECT imaging as
it decays by = emission (Eg(max) = 1.12 MeV, 100%) to 109mAg (ty
»=39.6 s), which then emits an 88 keV photon (I, = 3.6%) before
it finally decays to '®Ag, from a cascade emission of both
conversion and Auger electrons (123). As described in Boros
and Packard (78), the radionuclide was originally proposed for
radiolabeling of antibodies for antitumor therapeutic purposes,
but the focus has changed to exploring '°’Pd-porphyrin
complexes as photosensitizing agents for photodynamic therapy
of cancer (78). Fawwaz et al. (124) first demonstrated the
anticancer capabilities of '®Pd by labeling hematoporphyrin and
protoporphyrin for controlling homograft rejection (125).

3.2.1 Production and radiochemical separation of
1O9Pd

Highlighted in Table 2, '*Pd is produced using an enriched
198pd (98%) metal target, which was performed by Chakraborty
et al. (123), obtaining a specific activity of ~1.85GBq/mg
(50 mCi/mg) at a thermal neutron flux of 3 x 10® n em™2 7!
for 3 days (78). In the review by Boros and Packard (78), a
dissolution method is carried out in heated aqua regia and is
subsequently evaporated and heated to dryness with 12 N HCI
to form H,PdCl,. Silver-111 (mAg) is co-produced and can be
removed by coprecipitation with small amount of AgNO; (78).
The supernatant containing '°°Pd is later dissolved in
dimethylsulfoxide (DMSO) to produce 199pd(DMSO),Cl, for
subsequent syntheses (78). Hien et al. (126) reported thermal
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neutron capture cross-section (g,) and resonance integral (Ip) of
the IOSPd(n,y)wgPd, backing previous work of thermal neutron
capture cross sections (127-134) and resonance integral data
(131, 135) for this reaction.

3.2.2 Applications of 1°°pd

Porphyrin derivatives are well known to preferentially
accumulate in malignant tumors via photodynamic mechanisms
(136-139), and early efforts to radiolabel these macrocycles with
therapeutic radionuclides—such as '°’Pd-hematoporphyrin (140)
(141)—demonstrated
targeting potential but lacked tumor retention. To expand upon

and '”Pd-antimelanoma  antibodies
this potential, Das et al. (142) radiolabeled a porphyrin
derivative (DHBEP) with n.ca. '®Pd to create a highly stable,
rapidly tumor-localizing radiopharmaceutical. The novel ligand
DHBEP was synthesized via a two-step sequence and complexed
with 'PdDMSO,Cl, at 80°C for 1h,
radiochemical purity. The '°’Pd-DHBEP complex remained
stable at >97% after 48h (~4 half-lives of '°Pd) at room
temperature in saline (142). Biodistributions studies with Swiss

achieving >98%

mice bearing fibrosarcoma tumors revealed high tumor uptake
at 30 min p.i. [(5.28 £1.46%IA/g)] and activity was cleared via
the renal pathway (142).

Pineau et al. (125) evaluated TEIPA, shown in Figure 5, to
demonstrate its suitability for complexation with both natural
and radioactive palladium towards radiopharmaceutical
development. Under all conditions and comparing TEIPA to
cyclam, TE1Bn (benzyl cyclam), TE1Py (pyridylmethyl cyclam),
they reported significant improvement in inertness of ['*°Pd]
[PA(TE1PA)]* over ['*Pd] [Pd(cyclam)]2+ at room temperature
over a 24-h period, highlighting the enhances properties of the
picolinate derivative (125).

Gharibkandi et al. (143) developed 199pd-coated gold
nanoparticles (Au@'®’PdNPs) functionalized with polyethylene
glycol (PEG) conjugated to trastuzumab for targeted therapy of

HER2-positive cancers. The resulting Au@Pd-PEG-trastuzumab

)

NH N

NH NH

L o

A monopicolinate cyclam, TE1PA, was developed by (255-258) as it
exhibited improved properties for ®*Cu-immuno-PET imaging in
terms of radiolabeling yield, conjugation to those of DOTA and
NOTA derivatives (125). Pineau et al. (125) investigated the
coordination of the chelator with elemental Pd and '°°Pd to
assess the potential development of theragnostic pairs of either
4Cu/'**Pd or **Cu/**°Pd.
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radiobioconjugate averaged 9.5 antibodies per nanoparticle and
demonstrated high HER2-specific uptake in SKOV-3 cells,
achieving >99% internalization within 1h, consistent with
findings reported by Gaweda et al. (143, 144). The authors
compared the cytotoxicity of radiobioconjugates labeled with the
Auger emitter 1 (t;,=59.49 d; Au@Pd'*I-trastuzumab),
B~ emitter !Au (t,,,=2.69 d; '"®Au-trastuzumab), and the
199pd/'®MAg in vivo generator (Au@'°°Pd-trastuzumab) (143).
With consistent activity concentrations of 20 MBg/ml, the
'9pd/'%°™Ag-based conjugate demonstrated significantly higher
cytotoxicity than those conjugates radiolabeled with either '*°I
or '*®Au, highlighting the therapeutic advantage of simultaneous
emission of both radiation types from this generator design
(143). A subsequent study in 2024 (145) improved 109pq
production using '°®Pd, achieving >500 MBq/mg from the
natural palladium target and >2 GBq/mg from the enriched
palladium target (78). Their findings indicated that Pd NPs
labeled with '*’Pd were significantly more cytotoxic at similar
activities than those labeled with either ''I or '*°I (145).
Analogous to 103pq, Annamalaisamy et al. (115) also reported
the radiosynthesis and evaluation of '°Pd/'®™Ag in situ
generator bound to a mixed bipyridyl-bisphosphonate scaffold,
19%pd,(bpy),ale, for bone-targeted radionuclide therapy. in vitro,
the conjugate significantly reduced metabolic viability in
prostate and ovarian cancer cells, with cytotoxicity depending
on both activity concentration and exposure time (115).

4 Osmium and osmium-based
radionuclide

Naturally occurring osmium consists of seven stable isotopes:
184, 186 187 188 189
Os (0.02%), '8°0s (1.59%), '70s (1.97%), '¥30s (13.24%), '*°0s
(16.15%), '*°Os (26.26%), and '**Os (40.78%) (19). Radioisotopes
include '*°0s, '*'0s, >0, and '**Os, in this review we will only
discuss "' Os.

4.1 Osmium-191, **0Os

¥10s (t,=15.4 d) decays to WImp (¢, =496 s) by p~
emission (100%), suitable for an *'Os/*'™Ir generator used for
first-pass radionuclide angiocardiography (146). Cheng et al.
(147) first used ®'Os in the development of the 1910g/191m]
generator (148). The long half-life facilitates its use in generator
construction, quality-control, and clinical use distant from
production facilities (146, 149).

4.1.1 Production and radiochemical separation of
191

Shown in Table 3, Salek et al. (149) irradiated isotopically
enriched osmium (**°Os, 97.8%) in the 5 MW Tehran Research
Reactor (p=4x10" n cm™
fusion in a mixture of KOH-KNO;, reporting a specific activity
of ~325 mCi/mg. The dissolution method for osmium reported
by Brihaye et al. (150) has been established in subsequent steps

s7") for 15 days with subsequent
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to form K,0sClg; and carried out for all reported studies in this
review. Additionally, osmium by-products 1850s (ty,=15.4 d)
via '%0s(n,y)'*°0s reaction and '**Os (t;,=30.2h) via
19205(n,y)'**0Os reaction are produced only in trace amounts
(149). These are neglected as '*Os decays to stable '**Re, and
19304 decays quickly (149). However, an unavoidable longer-
lived impurity is Y201 (ty,=73.8 d), which is produced when
stable '"'Ir—the stable decay product of '*'Os—undergoes a
r(n,y)"*Ir  reaction during irradiation (146, 149, 151).
Brihaye et al. (150) demonstrated two separation methods—
distillation and solvent extraction—between '°'Os and '**Ir.
Using these methods, they achieved a separation efficiency of
100% by distillation and 99.9% efficiency by solvent extraction
(150). Salek et al. (149) modified the extraction method and
yielded a 98.8+0.48% '*'Os recovery, while completing the
procedure in 30 min.

4.1.2 Applications of *°'Os

In a study performed by Jamre et al. (148), BLM (Figure 6A)
was radiolabeled with '°'Os by reacting it with K,OsCls. The total
labeling and formulation of '*'Os-BLM took approximately 24 h,
resulting a >95% radiochemical yield and >97% radiochemical
purity, with <3% free '°'Os- K,0sCls detected by radio-TLC
(148). They reported the '*'Os-BLM complex remained stable in
aqueous solution for ~72 h. Biodistribution studies (4 h, 24 h,
48h, 72h, and 14d pi) for 'Os-BLM demonstrated high
uptake in the lungs and moderate accumulation in the liver and
spleen, all remaining >1% ID/g throughout the study (148). In
vivo imaging at 24, 48, and 72h confirmed these retention
patterns as well (148).

TABLE 3 Production route for **'Os.

Radionuclide Nuclear Flux/Energy  References
reaction

10.3389/fnume.2025.1656374

Labeling APMTS (Figure 6B) with '*'Os, Moghaddam et al.
(152) achieved >95% radiochemical yield in a 12h synthesis
with a specific activity of 21.5 GBq/mmol, while the complex
remained >95% stable for at least 48h (152). the
biodistribution studies (4, 24, 48, and 72 h p.i.) using the ¥10s-
APMTS complex, liver uptake and kidney uptake peaked by
48 h (5.2%-6.7% ID/g), while there was low blood, heart, bone
retention by 24 h and negligible by 72h (<0.5% ID/g) (152).
A follow-up study by Moghaddam-Banaem et al. (151),
demonstrated the preparation of '°'Os-phyate complex shown in

In

Figure 6C that could be used for radiosynovectomy applications.
Using 10 mg of sodium phytate, the complex forms in ~24h
with a labeling yield >98% detected by radio-chromatography,
while remaining stable in an aqueous solution for at least 72 h
(151). Biodistribution studies (0.5, 4, 24, 72 h p.i.) showed most
of the injected dose remained in the joint with minimal uptake
in the kidney, and other organs considered negligible (<0.5%
ID/g) (151).

5 Iridium and iridium-based
radionuclide

Iridium has two naturally occurring stable isotopes, '*'Ir
(37.3%) and 'Ir (62.7%) (19). Radioisotopes include '*'™Ir,

19200y In this review we will only discuss '**Ir.

5.1 Iridium-192, *°?Ir

The radionuclide '**Ir (t,,=78.83 d) is an important
therapeutic radionuclide, particularly in brachytherapy, due to
the favorable nuclear properties including 95% J~ emission
(Es—=7 MeV) and 5% electron capture (153). Furthermore, two
notable y-ray energies include 316 keV (I,=82.7%) and 468 keV

(I,=47.8%) (153). Bertermann and Brix (154) obtained

191 190, 191 13 -2
Os Os(ny) ~0s 4x107 n em (149) preliminary results for the use of '*’Ir in high dose rate (HDR)
S
brachytherapy to treat prostate cancer (155, 156).
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FIGURE 6

develop an in vivo radionuclide generator.

(A) Bleomycins (BLMs) are tumor seeking antibiotics that have been widely used in cancer chemotherapy, where these compounds are activated by
cation insertion as anti-neoplastic agents; therefore, resulting in DNA decomposition (148). (B) Moghaddam et al. (152) labeled 2-acetyl pyridine 4-N-
methylthiosemicarbazone (APMTS) with *°Os (elemental Os shown in structure) to develop a potential in vivo tumor-targeting radionuclide
generator. (C) Moghaddam-Banaem et al. (151) labeled the salt form of phytic acid, phytate, and radiolabeled with *'Os (**'Os-phytate) to
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5.1.1 Production and radiochemical separation of
192|

r

Due to its widespread use, '**Ir is routinely produced in nuclear
reactors via the '*'Ir(n,y)"*?Ir reaction, using either Na,IrClg targets
—described by Ananthakrishnan (157)—or iridium wire, as applied
in clinical settings by Schaeken et al. (153, 158). All production
routes are shown in Table 4. Irradiating Na,IrCls under standard
-2

conditions —10 mg; ¢=1.5x10"> n cm™ s7%; 7 days—can yield
12 GBq of 'Ir, with specific activity >185 GBq per gram Ir
(157). After irradiation, the targets are dissolved in 10 ml of 0.1
N HCl, yielding radiochemical solutions with concentrations
ranging from 74 to 370 MBg/ml and >99% radionuclidic purity
(157). This method remains the benchmark for high-activity,
high-purity '*Ir production for clinical brachytherapy (157). As
reactor-produced '**Ir is carrier-added, accelerator routes have
been explored to produce n.ca. '*Ir with potentially higher
specific activity.

Via the 192Os(p,n)mhr reaction, Hilgers et al. (153) measured
a peak cross-section of 68+8mb at 9.1+0.5MeV, while
identifying an optimal production window of 8-16 MeV
(~0.16 MBq/pA-h 9211).  The their
experimental data with nuclear model codes [EMPIRE-II (96)
and ALICE-IPPE (159)] and pointed out that though a
cyclotron approach yields lower activity than those achieve via

authors  confirmed

reactor-based production, the specific activity could be much
higher (153). They
conditions (30h, ¢=3.74x 10" p/s), projected batch yields
could reach ~5.6 GBq—serving as a complementary approach
high 2y
brachytherapy sources (153). Langille et al. (155) demonstrated
that a
electroplated osmium targets yields '*’Ir with an average

estimated under realistic irradiation

and broadening access to specific  activity

12.8 MeV  proton beam on naturally abundant,

measured cross section of 46.4+ 6.2 mb, which compared well
with literature values of Hilgers et al. (153) and Szelecsenyi et al.
(160). Targets underwent oxidative dissolution (H,O,/HCI) and
anion-exchange chromatography on Dowex 1x8, with the
process delivering an overall radiochemical efficiency of ~80%
and radionuclidic purity of 100% (155). Building on established
syntheses
[(ppy).Ir(p-Cl),Ir(ppy).] and Ir(ppy).(bpy)—reported earlier by
Alam et al. (161), Bura et al. (162), and Wu et al. (163)—the
authors performed the first radiosynthesis of an iridium
cyclometallation reaction by adding n.ca. [IrClg]*~ to the
(155). They achieved up 68%
radiochemical purity of Ir(ppy).(bpy) with a maximum specific
activity of 0.54 +0.14 Ci umol™" (20 + 5.2 GBq umol™) (155).

microwave-assisted of non-radioactive complexes

microwave reaction to

TABLE 4 Production routes for 1°2Ir.

Radionuclide | Nuclear Flux/Energy | References
reaction

1921y O r(n,y) Ir 1- 1 5x10" n cm™2 (157, 158)

S

19205(p,n)'*Ir 19 —» 6 MeV (153, 155, 160)
19205(d,2n)"**Ir 21 - 5MeV (164)
193Ir(y,n)lgzlr Epnax = 40 MeV (165)
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Tarkanyi et al. (164) reported the first experimental cross
sections for the 192Os(d,2n)1921r reactions up to 21 MeV,
employing a stacked-foil technique with 84.5% enriched '**Os
targets electrodeposited on 25um thick Ni foils, thereby
observing a cross sectional peak of 370+46mb at
12.1 +0.8 MeV. Although reactor-based '*’Ir production yields
remain higher, the deuteron route results in a n.c.a. product of
164).
Compared with the earlier '*?Os(p,n) process via Hilgers et al.

"?Ir with significantly higher specific activity (153,

(153), the (d,2n) channel delivers higher cross sections and
thick-target yields in the same energy window; however, due to
smaller and higher-current proton cyclotrons being more readily
available, the choice for the 192Os(p,n)-reac‘[ion is preferred
(164).
demonstration of photonuclear 19371(y,n)"*?Ir on natural iridium

Dovbnya et al. (165) reported the first experimental
using a tantalum bremsstrahlung converter integrated within a
neutron moderator, which enhanced '*Ir yields by ~50% via
the "'Ir(n,y)"**Ir reaction and delivered up to ~900 MBg/h
under 40 MeV, 4pA beam conditions.
with PENELOPE-2008

supplemented by evaluated photonuclear

Computational
(166)—
sections—

simulations software

cross
accurately reproduced experimental yields for '**Ir as well as co-
produces isotopes (*°Ir, **Mo, 99M0), validating the mixed y-
and n-flux model (165). Compared to traditional reactor-based
“r(n,y)'*’Ir  production (74 MBq/h; >1,000 MBg/h-g) and
192Os(p,n)1921r (>185 MBq/h;
carrier), this approach offers
competitive batch yields and modular flexibility (153, 157, 165).

While the specific activity is low, the authors suggest that

cyclotron-based production

without electron-accelerator

optimizing activation-cooling regimes and employing enriched
"Ir targets could enable scalable, reactor-free '*’Ir production
suitable for medical and industrial applications (165).
5.1.2 Applications of *°?|r

2Ir has been significantly utilized in high dose rate (HDR)
brachytherapy, offering a steep dose gradient that concentrates
therapeutic radiation within tumors while minimizing damage
to the surrounding normal tissue (167). Jayakody et al. (167)
reviewed a suite of independent verification methods—including
radiochromic ~ films, ionization-chamber plastic

scintillation detectors, and TLD/OSLD systems—that have been
192
Ir.

arrays,

benchmarked against TPS-calculated dose maps for
Roussakis and Anagnostopoulos (168) wrote a mini-review on
the aspects of the Iridium-Knife, detailing the key physical
properties of the '"*Ir HDR source and illustrating how these
underlie its characteristic steep dose gradients.

Nohara et al. (169) reported that 166 localized prostate cancer
patients treated with a 44 Gy EBRT and 3 x 6 Gy '**Ir HDR boost
achieved a 5-year biochemical recurrence-free survival of 93.0%.
Shigehara et al. (170) observed a 4-year overall survival of 87.2%
and PSA progression-free survival of 82.6% in 84 prostate
patients receiving 18 Gy '*’Ir HDR and 44 Gy EBRT. Chin et al.
(171) treated 65 prostate cancer patients with EBRT plus two
8.5Gy '"Ir HDR fractions, reporting a 3-year biochemical
disease-free rate of 90.8%. Potter et al. (172) used CT-planned
"“?Ir HDR and 48.6-50 Gy EBRT in 189 cervical cancer patients,
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achieving 3-year pelvic control of 77.6% and disease-specific
survival of 68.6%. Ott et al. (173) demonstrated that interstitial
19211 accelerated partial breast irradiation (APBI) in 69 early-
stage breast cancer patients which yielded 100% 2-year local
control, minimal acute and late toxicity, in 90% of cases.

Abtahi et al. (174) conducted a systematic review (1984-2020)
between '**Ir and ®°Co in GYN cancers. They reported that the
5-year overall survival (OS), local control, disease-free survival
(DES) GI/GU
equivalent between the two (174). Wen et al. (175) compared

and high-grade toxicity were statistically
minijaturized HDR sources for cervical brachytherapy and found
nearly identical dose distributions within 25 mm of the source,
with equivalent clinical outcomes and toxicity rates. Strohmaier
and Zwierzchowski (176) reviewed the physical and logistical
aspects of ®°Co vs. '**Ir, concluding that the two radionuclides
matched in radial dose function, while delivering equivalent
clinical efficacy. Tantivantana and Rongsriyam (177) performed
a retrospective analysis of 480 stage IB2-IIIB cervical cancer
patients treated between 2004 and 2014, comparing outcomes
following HDR brachytherapy with '**Ir (274 patients; 57.1%) or
0Co sources (206 patients; 42.9%). The study found no
statistically significant differences in OS, recurrence rate, or DFS
between the *Ir and *°Co cohorts (177).

6 Rhodium and Rhodium-based
radionuclides

Rhodium has one naturally occurring stable isotope, '**Rh
(100%) (19). Radioisotopes include %Rh, °'Rh, °'™Rh, °2Rh,
102mpyy 103mRh, and '°°Rh, in this review we will only discuss
103mph and '°Rh.

6.1 Rhodium-103 m, °>™Rh

An isomer of rhodium that has seen applications in targeted
radionuclide therapy due to its Auger electrons is '“™Rh
(t1/2=56.1 min). It has also been involved in convenient generator
pairs with 103p4 and '®Ru, respectively, in vivo (118, 178).

6.1.1 Production and radiochemical separation of
103mRh

The production for '®*™Rh is shown in Table 5. Epperson et al.
(179) introduced a rapid, high-yield generator for '™Rh by
solvent-solvent extraction of RuO, into CCl; achieving
94+0.6% '©™Rh yield with 3.8 +0.7% '®’Ru contamination in a
single, 15-min extraction. This method contrasts with earlier
ion-exchange and distillation approaches referenced by the
authors, offering a practical foundation for routine on-demand
103mph availability (179). Bartos et al. (178) similarly used
reactor-produced 193Ru (from natural ruthenium irradiation of
36 h, yielding 466 MBq) and separated 103mph from RuO,
extraction. This work laid the foundation for supplying short-

d 103m

live Rh in sufficient quantities for further studies (178).

Thery et al. (180) reported the recent progress in ruthenium
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TABLE 5 Production routes for rhodium-based radionuclides.

Radionuclide | Nuclear Flux/Energy | References
reaction

103mph 12Ru(n,y) ' ®Ru - | 3x10"™ nem™ s | (178, 179, 184)
103mRh
192pq(n,y)'**Pd —» | 1.2-1.4x 10" n (118, 181, 184)
103mph cm 27!
1%Rh(p,n)'”Pd —» | Ep=14-18 MeV (118, 181, 184)
lOSmRh

195Rh 19Ru(n,y)'Ru —» | 3-8 x 10" n cm™ (188, 191)
IOSRh 571
196pd(y,p)'Ru = | Epax = 55 MeV (195, 197)
lOSRh
"Pd(p,x)'°Rh 40 - 4 MeV (198)

chemistry for the '’Ru/'%™Rh generator for Auger therapy,
describing the main limiting factor being an effective separation
between the two radionuclides due to the unpredictable,
misunderstood chemistry. Their work overcame prior barriers in
earlier solvent-extraction and speciation studies, establishing
optimal conditions for examining the experimental feasibility of
the generator in the future (180).

More recently, Jensen et al. (118) demonstrated a solid-phase
'03pd/'*™Rh generator using neutron-activated '°’Pd targets.
They chelated carrier-added '>Pd with a lipophilic macrocycle,
16aneS,, and loaded it on a C18 cartridge (118). The optimal
elution performance for '™Rh was achieved with 1.0 M HCI,
yielding a radiochemical purity of 99%, an apparent molar
activity of 26.6 MBq/nmol, and an elution yield of 5.81% (118).
Despite the potential, the low elution yield indicates that further
optimization is necessary to utilize the generator for extended
use, particularly in clinical applications (118). Ohya et al. (181)
improved on this by testing various anion-exchange resins—
inspired by Berk (182) and Mamadaliev et al. (183)
separation method described in Ohya et al

—following a
(101).
commercially available gel-type anion-exchange resins with

Four

comparable functions groups and matrixes were investigated:
IRA410 and SA20A (dimethylethanol ammonium), and IRA904
and SA11AL (trimethyl ammonium) (181). Of these, SA11AL
delivered the best performance, with a raw yield of 39% and
lowest '®Pd breakthrough of 0.29% over 32 milking cycles
spanning eight weeks (181). More recently, Zagryadsky et al.
(184) performed measurements of the 192pd(n,y)!*Pd and '**Ru
(n,y)'®Ru reactions in the IR-8 Reactor for the purpose of
'Ru/'P™Rh and '"’Pd/'®™Rh generators. They indicated the
experimental channel of the IR-8 reactor will be capable of
achieving sufficiently 'Ru and '’Pd for the utilization of
103mph in radiopharmaceuticals (184).

6.1.2 Applications of 1°*™Rh

Bernhardt et al. (185) performed Monte Carlo simulations to
model the metastatic growth of tumor sizes for radionuclide
therapy, comparing between high-energy electron emitter *°Y
(t1/2 = 64.05 h), e
(t12=6.65 d), and the low-energy electron emitter 103mph. They
(TNC)

medium-energy  electron  emitter

observed for low tumor-to-normal tissue activity
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concentrations, '*"Rh performed slightly better compared to
71u; however, for high TNC values, 103mph was the best
choice for tumor treatment (185). However, as the authors
noted, the short half-life (t;/, =56.1 min) may be a limitation in
the adaptation as an optimal radiotherapeutic (185).

6.2 Rhodium-105, °°Rh

15Rh  (ty,=35.36 h)
radiotherapeutic applications due to its nuclear characteristics
(186). '%Rh decays via S~ -emission with energies of 179 keV
(75.0%), 74keV (5.2%), and 70 keV (19.7%), along with two
low-abundant y-rays at 319 keV (I, =20%) and 306 keV (I, = 5%)
—useful for mapping the in vivo uptake of the administrator

is an attractive candidate for

radiopharmaceutical (78, 187, 188). Grazman and Troutner
(189) first explored the viability of '°’Rh and its properties for
use as a radiotherapeutic agent (190).

6.2.1 Production and radiochemical separation of
105Rh

Described in Table 5, Jia et al. (191) developed a scalable route
to n.c.a. '®’Rh by irradiating enriched '®*Ru in the MURR reactor
(¢ =8x10" ncm 57", 72 h), achieving average yields of ~5 mCi
per mg Ru and >85% total recovery of '“Rh. Their MgO
adsorption method eliminated the need for chlorine gas and the
formation of RuO,—required in an earlier approach (189)—
while delivering a ruthenium decontamination factor of 16,600,
the availability of '*Rh large
quantities (191). Subsequently, Unni et al. (188) developed a

supporting reliable in
methodology for the production and purification of carrier-free
195Rh by irradiating natural Ru (99.9%) at a thermal flux of
3x10"” n cm™? s7' for 5-7 days, followed by a 24 h decay of
'Ru to '"°Rh, achieving within 5% of ~24 mCi predicted by
Bateman’s equation. The authors oxidized the Ru matrix (97Ru,
193Ru, and trace '’Ir) to volatile RuO, (KIO/KOH at 70°C,
20 min), performed successive solvent extractions with CCly
(retaining 97.8 +0.78% of '“Rh in aqueous phase), and then
applied 100% TBP extraction to obtain 95.35+0.78% of '®>Rh
(aqueous phase) and 96.6+0.8% of '**Ir (organic phase) (188).
A co-precipitation of 'Rh with Fe(Ill) as hydroxide using
KOH recovered 89.4+2.2% of '©Rh, and a three-stage Fe
removal—using cationic exchange chromatography—delivered a
final overall recovery of ~80% (15-20 mCi) of carrier-free 195Rh
(188). Okoye et al. (192) demonstrated a comprehensive strategy
to reclaim, purify, and reuse enriched '**Ru targets—originally
captured as RuO, in 3 M HCI from decades of '®Rh production
—for economical, high-yield '°°Rh manufacture. The recycled
metal retained 98.84% '*‘Ru enrichment—a slight decrease from
their original—and enabled up to 97.3% '®Rh recovery
(19.10 mCi) (192). The isolated '®>Rh was subsequently used in
radiolabeling with
chelators (193, 194), vyielding radiochemical efficiencies of
91.0% + 1.5 for 222-S,-diAcOH (Figure 7A) and 80.9% + 0.4 for
16S,-diol (Figure 7B) (192).

experiments two previously developed
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Inagaki et al. (195) investigated the production of '®>Rh via
two distinct routes: neutron irradiation of "'RuO, powder
(¢=45%10" n cm™ 5™, 10 min) through the 4R u(n,y) °Ru
reaction; and bremsstrahlung photon irradiation of natural Pd
foils (5x5mm?) at 20-40 MeV using an electron linear
accelerator (linac), inducing the 1%pd(y,p)!®Ru reaction. To
enable comparison, the authors normalized yield data to
equivalent target masses, beam currents, and irradiation times,
reporting 77 + 2kBq of 'Rh via the reactor method (10 mg)
and 88+5kBq at 40 MeV from the linac method (50 mg,
100 pA, 10 min) (195). Furthermore, extrapolation to clinical-
scale conditions using the linac method—10 g Pd target, 1 mA
current, and 24h irradiation—predicted a 'Rh yield of
approximately 20.1 GBq, far exceeding the 0.148 GBq typically
required for diagnostic or therapeutic applications, as described
in Sciuto et al. (195, 196). Kazakov et al. (197) investigated a
method for producing carrier-free '©Rh using a 55 MeV
electron accelerator, analyzing the isotopic composition of
irradiated PdCl, and optimizing separation methods. Irradiation
of 270 mg PdCl, in 5ml solution at 100 nA for 1h yielded
73.7 kBq/uAh of total rhodium activity, with '®’Rh containing
82% (60 kBq/pnAh, 2.1 kBq (197). When compared to Inagaki
et al. (195), who reported 88 kBq from 50 mg "'Pd foil for at
40 MeV 100 nA), both demonstrated feasible
accelerator-based alternatives to reactor or cyclotron production
for medical applications (197). Nonetheless, the irradiated PdCl,
was dissolved in 2 M HCl and passed through extraction

(10 min,

chromatography columns using either DGA-Normal or TEVA
resins (197). Column and distribution coefficient studies showed
DGA-Normal offered superior performance, eluting >98% of
'%Rh in 2 M HCI and enabling complete Pd stripping with 11
M HCl (Pd/Rh separation factor >10°), while TEVA failed to
achieve sufficient Pd/Rh separation (197).

Khandaker et al. (198) reported the first experimental
measurement of natPd(p,x)lOSRh excitation function from 4 to
40 MeV  using stacked-foil activation, observing significant
discrepancies between measured cross-sections and nuclear
model predictions from TALYS (49) and ALICE-IPPE (159).
From the experimental data, thick target yield calculations
suggest that low-energy cyclotrons (E <20 MeV) can effectively
produce '%°Rh, primarily via the 198pd(p,a)'°Rh reaction (198).

6.2.2 Applications of °°Rh

Jurisson et al. (187) investigated 195Rh radiopharmaceutical
development by exploring a suite of cis- and trans-[RhCL1]"
complexes using tetradentate thioether ligands. Brooks et al.
(190) reported the synthesis and purification of novel '°’Rh-
(*>Rh-BLM) >80%
complexation yield, high in vitro stability, and rapid biphasic in

bleomycin complex, demonstrating
vivo clearance with minimal non-specific retention. Although
1°Rh-BLM achieved tumor uptake approximately four-fold
greater than contralateral muscle, its potential for targeted
radiotherapy is limited by significant levels and prolonged
retention in the kidneys relative to tumor (190). The study by
Ando et al. (199) evaluated '®Rh as

radiotherapeutic applications targeting bone metastases by

a candidate for
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Okoye et al. (192) labeled °°Rh successfully with previously used chelators for Rh(lll) complexation, (A) the tetrathioether ligand (222-S4-diAcOH) by
Goswami et al. (193) and (B) the tetradentate thiamacrocyclic ligand (16S4-diol) by Venkatesh et al. (207). (C) In an early study by Ando et al. (259),
Y714 can be chelated to ethylenediamine-tetra-methylene phosphonic acid, EDTMP, producing a bone-seeking phosphonate complex that is
chemical and biologically stable. Therefore, the same group (199) investigated the biological behavior of *°>Rh when chelated to EDTMP.

leveraging its favorable decay properties and investigating its
biological behavior when chelated to EDTMP shown in
Figure 7C. Radiolabeling with EDTMP achieved >99% labeling
efficiency, with no dissociation observed for up to 5 days at
room temperature (199). Compared to a study using **™Tc-
MDP by Sanada et al. (200), 15Rh-EDTMP demonstrated
comparable bone uptake, but exhibited faster clearance from
circulation and significantly higher bone-to-tissue ratios (199).
Mentioned in Okoye et al. (192), a variety of chelates have been
evaluated (186, 193, 194, 201-213), along with preclinical
biological distribution studies have been highlighted in Li et al.
(209) and Goswami et al. (193) for '®Rh clinical utility towards
advancing therapeutic radiopharmaceuticals.

7 Ruthenium and ruthenium-based
radionuclides

Ruthenium has seven naturally occurring isotopes: “°Ru
(5.6%), ®Ru (1.87%), *Ru (12.76%), 'Ru (12.6%), °’Ru
(17.06%), '“Ru  (31.55%), 1%4Ru  (18.62%)  (19).
Radioisotopes of ruthenium include *’Ru, '*Ru, and '°°Ru,

and

where our review will focus on ’Ru and °*Ru. '°°Ru, which
has been predominantly involved in brachytherapy in the last 25
years (4, 214-227), was omitted in this review, due to lack of
applications in nuclear medicine.

7.1 Ruthenium-97, °’Ru

Ru (t;,=2.8 d) decays by electron capture (100%) to 97Rh,
with the emission of low-energy y-rays, 216 keV (86%) and
324keV (11%) (228). This radionuclide provides excellent
conditions for in vivo imaging, as it is within the energy
window of clinical SPECT detectors (228).

7.1.1 Production and radiochemical separation of
97
Ru

The production routes for °’Ru are listed in Table 6. Zaitseva
et al. (229) measured excitation functions for *’Ru production via
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the 99Tc(p,3>n)97Ru reaction, using a stacked-foil technique (50—
100 nA) from 20 to 99 MeV. They measured a 438 + 66 mb peak
at 32 MeV—corresponding to a thin-target yield of ~934 uCi/
pAh—and a cumulative yield of ~10.49 mCi/pAh  when
degrading protons from 99MeV to the threshold
(Ew=183MeV) (229). An optimal 19-50 MeV window
maximized *’Ru production (~7 mCi/uAh) while higher-energy
beams (>50 MeV) could push yields beyond 10.5 mCi/pAh for
Ci-scale production at higher currents (229). Building on this,
Zaitseva et al. (230) optimized a radiochemical separation for
metallic Tc targets irradiated at 50 MeV (~8 pA, 1h), isolating
40-50 mCi of *’Ru. A four-step process—dissolution, acid
conversion, oxidation-distillation, and absorption—reduced Ru
(VIII) to Ru(III) and recovered 95%-98% of Ru with >10*
purity after 6-7h (230). An estimated delivery of >150 mCi of
’Ru is needed (50 MeV, 6-8 pA, 8 h) for clinical purposes to be
feasible ~70 h after EOB (230).

Ditroi et al. (231) and Tarkanyi et al. (232) explored a-induced
routes on natural molybdenum, measuring “’Ru excitation
functions up to 40 MeV. Both found peaks near 39 MeV
(182.4+20.5 mb and 232 + 26 mb, respectively), along with good
agreement from previous results by Levkovskij (233) and Graf
and Munzel (234) across all energy ranges, and with Rapp et al.
(235) at low energies (231, 232). Model comparisons (TENDL-
2011/TENDL-2015 (49), ALICE-IPPE (159), and EMPIRE-3.1
(96)) generally agreed in trend, with (232) calculating thick-
target yields reaching 2 GBq/C (0.19 mCi/uAh), and potential to
increase the yield by a factor of three through isotopic
enrichment favoring the **Mo(a,n), *>Mo(a,2n), and **Mo(0,3n)
reactions. Thick target yields were described by Abe et al. (236),
thereby obtaining a yield of 126 pCi/uAh via the °*Mo(a,n)
reaction using 30 MeV a-particles (232). Sitarz et al. (237)
extended a-induced production of “’Ru to 67 MeV, confirming
a 237 £20 mb at 41.8 MeV, agreeing with (232) and (231) below
40 MeV. Most recently, Happl et al. (238) demonstrated *’Ru
production for a-induced irradiation of ™Mo for 10 h to yield
>300 MBq end of irradiation (EOI). Post-irradiation, the target
foil was dissolved and bulk Mo was removed using two
sequential ion exchange columns; obtaining trace impurities of
Mo (0.9-2.0 pg) contaminants

and minor radionuclidic
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TABLE 6 Production routes for ruthenium-based radionuclides.

 Radionuciide Flux/Eneray

Ru *Te(p,3n)”"Ru Emax = 99 MeV (229, 230)
"2t o(a,n)”’Ru Emax = 67 MeV (231, 232, 237, 238)
8Y(12C,4n)*”*"™Rh — *’Ru 70 — 65 MeV (239)
8Y(">C,p3n)”"Ru 70 — 65 MeV (239)

1%3Ru "NMo(a,n) ' “Ru 40 — 8 MeV (231, 232)
Z2Th(p,H) '’ Ru Enmax = 89.6 MeV (245)
"Ru(n,y)'“Ru 5-10x 10" n cm™2 s~ (238, 243, 246)

including **Ru (t;,=1.6h), *™Tc (t;,=61.0h), and *Tc (t;, 7.2 Ruthenium-103, 1°3Ru
,=20.0h) in the *"Ru eluate (238). The reported radiochemical

yield of “’Ru was 40%-56%, resulting in deliverable activities of 1Ry (t,/,=39.3 d) decays by B~ -emission (100%), and has
87-123 MBq (74-106 MBg/ml) (238). two y-rays, 497 keV (91%) and 610keV (6%) (238). Although

Furthermore, Maiti and Lahiri (239) introduced a novel  this radionuclide has therapeutic applications, its use in the
C+®Y production route for n.ca *’Ru, while avoiding co-  103g,,/103mpy generator is of importance as well.

production of longer-lived radionuclides to achieve tracer-level

ields aft ling. Furth , th thors developed a two- . . . .
yields affer cooling. Furthermore, The autiors developec 4 tWo™ 7 2 1 Production and radiochemical separation of

103Ru
The production routes for obtaining '°’Ru are highlighted in

separation scheme—a solid-liquid extraction in 1 M HCI and
sequential 0.1 M/6 M HCl column chromatography—yielding
88% n.c.a. °’Ru and resulting distinct Ru(IV)/Ru(Ill) speciation

under certain conditions (239). Table 6. The measured excitation function in Ditroi et al. (231)

demonstrated a maximum cross-section of 10.6+1.2mb at
13.8+ 0.6 MeV, then gradually declined and plateaued between
7.1.2 Applications of 9Ru 18 and 40 MeV, with cross sections ranging from 0.5 to 5 mb
Oster et al. (240) evaluated *’Ru-DTPA as a potential imaging ~ (231). The experimental results aligned closely with earlier
agent for cerebrospinal fluid by injecting 0.4 mCi of the measurements by Graf and Munzel (234) and Esterlund and
compound into the cisterna magna of dogs, while comparing  Pate (244), though discrepancies in peak values were observed
the performance with '"'In-DTPA. From their study, they  across the studies (231). TENDL-2011 (49) underestimated the
established *’Ru-DTPA to be superior to '''In-DTPA as it experimental cross-sections and exhibited a shift towards the
delivered approximately half the absorbed dose to the tissues, lower energies for the maximum, while EMPIRE-3.1 (96) better
along with better imaging capabilities (240). Som et al. (241)  replicated the shape of the curve but slightly overestimated the
labeled transferrin with ’Ru (°*’Ru-TF) and compared its maximum value (231). Integral yield data indicated that a-
biodistribution to ¢’Ga-citrate, '*’I-transferrin, 9ngc—plasmin, induced production of 103pu is inefficient—due to its low cross-
'°_fibrinogen, and '*'I-albumin in tumor and abscess bearing  sections—compared to *’Ru (mentioned in 8.1.1), with practical
animals. Notably, the difference between “’Ru-TF and ®“’Ga-  yields falling well below the MBq/uAh range (231). Tarkanyi
citrate were of particular focus, as tumor concentrations of et al’s (232) experiment demonstrated a rise in cross section
%Ru-TF increased substantially with time, whereas the %’Ga  from threshold to a peak of 15.6+ 1.7 mb at 13.79 £ 0.6 MeV,
concentration did not (241). The authors noted although there  following a gradual decline and plateau between 18 and 40 MeV,
were no significant advantages using *’Ru over “’Ga, the nuclear ~ with values ranging from approximately 6.2 to 1.2 mb (232).
characteristics of “’Ru may improve imaging quality (241). The authors reported good agreement with the corrected data of
More recently, as a potential radiopharmaceutical, Borisova  Ditroi et al. (231) and earlier measurements by Graf and
et al. (242) reported the first “’Ru complex with pyridine-  Munzel (234) and Esterlund and Pate (244), except for a
2,6-dicarboxamide conjugate shown in Figure 8A (243). Happl  discrepancy by a factor of two near the absolute maximum
et al. (238) further explored the same method from Happl et al. ~ (232). The TENDL-2011 and TENDL-2015 (49) libraries were
(243) for a three-step synthesis for radiolabeling BOLD-100  found to underpredict the experimental cross sections and
(Figure 8B) with ca. [’’Ru]RuCl; (0.2-0.5 MBq/umol). The  shifted the peak position toward lower energies, whereas
radiochemical purity of all three intermediates was >99% (238).  EMPIRE-3.1 (Rivoli) (96) best reproduced both the shape and
The final product exhibited an overall radiochemical yield of 8%  magnitude of the experimental excitation curve (232).
and an overall chemical yield of 13%, based on the mass of Mastren et al. (245) developed a two-step chromatographic
isolated intermediates and products (238). Additionally, the purification scheme for obtaining '“*Ru from proton irradiation
specific activity at the end of synthesis was 0.1 MBq/mg, with a on a thorium target. Elution with 30ml of 10M HNO;
molar activity of 0.05 MBq/umol (238). Although radiolabeling  (fractions 8-15) recovered 85+5% of 18Ry with a
BOLD-100 with ®’Ru was successful, the radiochemical yield radiochemical purity of 82%, where they reported main
and specific activity must be improved to enable SPECT  impurities of '""™Sn and '*>'?°Sb with trace amounts of
imaging using c.a. [*’Ru]BOLD-100 (238). 230.233py 95Nb, and *°Zr in this fraction (245). To remove those
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FIGURE 8

[°7*03RUIBOLD-100 described in this section.
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(A) (B)
X NH_ ~
| N ®
O = (0] |

SMe NH NH SMe cI= cl
. N

~  'NH

o OH OH o

(A) Borisova et al. (242) synthesized a peptidomimetic conjugate of natural methionine and pyridine-2,6-dicarboxylate and labeled the ligand with
9’Ru for potential radiopharmaceutical utilization. (B) One of the more promising Ru(lll) anticancer complexes is BOLD-100, formerly called IT-139 or
KP1339, which is undergoing clinical investigation (238). Although the structure is shown as elemental Ru, Happl et al. (243) radiosynthesized c.a.

impurities, the DGA resin was incorporated, yielding a final
1Ru recovery of 83+5% with a radiochemical purity of
>99.9% (245).

Blicharska et al. (246) developed a streamlined separation
process to obtain '>Ru as a surrogate for fission produced '°*Ru
for the utilization in brachytherapy sources. The authors
explored the Ru extraction efficiency in various oxidizing
solutions, reporting HsIOg the highest
conversion of Ru(III/IV) to RuO, with 86.1% extraction (246).
The method proved to be sufficiently scalable to produce
hundreds GBq of 106Ru per liter of PUREX raffinate (246). More
recently, Happl et al. (243) obtained ['*Ru]RuClze xH,O by
neutron activation with the Production Neutron Activation

to demonstrate

(PNA) installation at the spallation neutron source SINQ at Paul
Scherrer Institute. The irradiation occurred over a three-week
! with five

ampoules containing 40-50 mg "*RuClse xH,O that were then

period at a neutron flux of 4x10” n cm™ s~

dissolved in concentrated hydrochloric acid, thereby resulting in
activities up to 185 MBq (3.7-4.7 MBq/mg) (243). Happl et al.
(238) improved their methods by obtaining '“’Ru via thermal

> s7') for 6-8 d using

neutron irradiation (5-10x10™ n cm™
"Ru metal foils enclosed in quart ampoules, vyielding
1,049 MBq at end of irradiation (EOI). From this, c.a.!®®Ru was
recovered with radiochemical yields of 81%-82% (up to 648 MBq),
molar activities up to 19.4 MBq pumol™' (249 MBq ml™"), and a

radionuclide purity of >99.9% (238).

7.2.2 Applications of *°*Ru
Tanabe (247) reported '“Ru scintigraphy in 37 patients with

various types of malignant tumors. In the cohort of four lung
cancer patients, '“Ru failed to reliably differentiate carcinoma
from inflammatory lesions under the study conditions. Wenzel
et al. (248) synthesized a metallocene-based analog of iodo-
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hippuran—ruthenocenoyl-glycine ~ (ruppuran)  shown in
Figure 9A—and labeled it with '“Ru to directly compare its
renal clearance kinetics with '**I-labeled hippuran. The authors
reported similar renal and plasma clearance pattern between the
two compounds (248). Moreover, they did report absorbed
doses to kidney and bladder with using *’Ru-ruppuran as well,
achieving slightly lower than that of '*’I-hippuran, with the
results of clearance studies and dose estimates encouraging
further kidney scintigraphy and secretory renal function
measurements regarding the °’Ru-labeled compound (248).
Weiss et al. (249) demonstrated radiolabeled ['**Ru]RAPTA-C
(Figure 9B) to be a promising compound for translation to
clinical evaluation as it rapidly cleared from the organs and the
excreted by the kidneys.

Happl et al. (243) modified a three-step synthesis—published
and patented for non-radioactive BOLD-100 in 2018 (250)—of
['®Ru]BOLD-100 using 1.8-4.2 MBg/mg ['°*Ru]RuCl,,

obtaining a >93% radiochemical purity of all three compounds

c.a.

and >38% overall radiochemical yield in the final product.
Cytotoxicity of BOLD-100 and ['**Ru]BOLD-100 were compared
in human colon carcinoma (HCT116) and murine colon
carcinoma (CT26) cell lines using the colorimetric MTT assay
with an exposure time of 96 h (243). The authors reported no
effects to the biological activity in vitro even at low specific
of 0.5-14MBg/mg for ['Ru]BOLD-100 (243).
Furthermore, biodistributions studies with both BOLD-100 and
['®*Ru]BOLD-100 were conducted in Balb/c mice bearing CT26
allografts over a period of 72 h (243). The authors reported from

activities

their tissue distribution studies that sub-equimolar amounts of
ca. ['®Ru]BOLD-100 achieved a higher and prolonged tumor
uptake over 72 h, establishing a potential theragnostic approach
with '”Ru and *’Ru once diagnostic SPECT imaging studies with
ca. [P’Ru]BOLD-100 are performed (238).
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(A) Synthesizing a metallocene analog of iodo-labeled (hippuran), ruthenocenoly-glucine (ruppuran), wenzel et al. (248) injected °”/*°*Ru-labeled
ruppuran in rabbits. (B) Weiss et al. (249) demonstrated the prototype compound, [Ru(y®-p-cymene)Cl(pta)l, where pta =1,3,5-triaza-
7-phosphaadamantane (RAPTA-C), reduces the growth of primary tumors in preclinical models for ovarian and colorectal carcinomas while
being radiolabeled with °3Ru. Both chemical structures show elemental ruthenium.
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8 Discussion

In this review, we discussed eleven PGM radionuclides—"°"'Pt,
193mpt, lQSmPt’ 103Pd, ]OQPd, 103mRh’ IOSRh, 19105, 19211,, 97Ru, and
'%Ru—that offer unique nuclear characteristics involving their
half-lives, decay modes, and coordination chemistry suited to
both diagnostic imaging and TRT. Across the radionuclides, we
address two overarching themes: (1) production and separation
challenges or solutions that require high specific activity and
radionuclidic purity, and (2) introducing novel chelators and
implementing strategies to utilize a specific radionuclide
effectively. The optimal production route balances the yield,
specific activity, and managing radionuclidic impurities
accordingly. Reactor-based methods yield high activities but are
often composed of carrier-added products, whereas accelerator
routes deliver n.c.a. production—for example, '*'Pt via ™Ir(p,
xn) and '®Ru via "Mo(a,x)—at the expense of enriched targets
and complex target dissolution methods. Innovative in vivo
generator systems, most notably, 103pq 103mpyy 103Ry/103mRh,
and '”Pd/'®™Ag show promise for implementing short-lived
radionuclides; however, must overcome yield limitations relative
to established generators clinically: 88Ge/8Ga, **Ti/*Sc,
627n/%*Cu, and 7*Se/”*As (118, 181, 251). Moreover, emerging
nanoparticle-based brachytherapy with '’Pd and '"Pd and
theragnostic applications of '*>™Pt-labeled complexes highlights
the potential for seamless diagnostic-to-therapy transitions
without altering compound pharmacokinetics. As future avenues
for personalized theragnostics are of importance, platinum-based
radionuclides that may offer suitable characteristics but were not
mentioned in detail for this review were '*®Pt (t;,=10.2 d),
89pt (ty,,=10.87 h), and ""Pt (t;,,=0.83 d) (252). Preliminary
production and chemical separation methods have been
explored regarding these radionuclides, highlighted particularly
in Bonardi et al. (21), Neves et al. (253), Smith et al. (252), and
Wren et al. (254).

The future for PGM radionuclides may not be mainstream in
the clinic; however, the recent research trends towards an

optimistic future, especially regarding the radionuclides that
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were discussed in this review. Over the past decade, there have
been notable progressions with differing radionuclides, whether
through demonstration of optimal production routes and
conditions, innovative separation techniques, or implementation
of novel compounds for in vivo or in vitro studies. However,
there are key components that deserve attention. One of the
motivations is scaling up production and accessibility, as these
radionuclides are produced by not only different target
material but also different production pathways which makes
this continued development critical. However, from this review,
we have seen researchers make progress in optimizing
production for certain radionuclides, yielding high specific
activities that are feasible for clinical studies. Furthermore,
improvements regarding radiochemical separation and
recycling methods need to be of focus for cost-effective
production and automative radiochemical workflows. We have
seen established radiochemical separation techniques carried
out to ensure high purity and yields, along with recycling of
costly enriched targets to be achievable with minimal loss of
enrichment (192). As future work continues to expand upon
the of PGMs

radioactive waste, and developing automated

radiochemistry, recovery post-irradiation,
minimizing
separation systems may enable sustainability—economically
and environmentally—for routine PGM radionuclide use later
down the line. A more exciting, future component of PGM
radionuclides is integrating them with novel classes of
targeting agents—potentially those that have not yet been
explored—that would be essential in broadening the toolkit for
the

mainstream adoption of PGM radionuclides will require

radiopharmaceuticals.  Lastly, pathway to ensure

clinical evidence of safety and efficacy.

To expand upon '*'Pt’s potential, improvements are needed in
scaling up production on enriched iridium targets, along with
developing automative dissolution/separation to
high
irradiation parameters will be required to elevate the small batch
193m

techniques

ensure reliable, specific activity supply. Optimizing

yields achieved for Pt, while in vivo evaluations of '>>™Pt-

labeed complexes should be explored upon their therapeutic
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efficacy, DNA damage profiles, and off-target toxicity. As
Aalbersberg et al. (72) noted, enhanced purification protocols
need to be developed for '*>™Pt, while taking advantage of its
unique characteristics may open future opportunities in
theragnostics. While nanoparticle-based approaches for '*Pd are
showing promise, future work must focus on taking the next
step from preclinical to clinical studies, while validating
dosimetry, biodistribution, and long-term safety. Like '°’Pd,
19pd-porphyrin and nanoparticle-based approaches require
extensive investigation in vivo stability, tumor uptake, and scale-
up of n.ca. '®Pd production to support clinical studies. To
exploit '*™Rh’s Auger emissions, efforts should focus on
103 ,/103mpp 103p 4 /103mpp

generators, while optimizing elution efficiencies and conducting

improving both and in  vivo

preclinical studies to validate its therapeutic capabilities.

Advancing '"Rh as a therapeutic radionuclide will require
chelators capable of maximizing tumor targeting and
minimizing retention, along with scale up of carrier-free routes
to enable groundbreaking efficacy and toxicity studies.
Streamlining osmium target dissolution and Os/Ir separation—
while minimizing '**Ir impurities—will be critical in advancing
10s/"'™r generators, while working towards conducting
preclinical studies that could translate to clinical utilization.
Developing cyclotron-based routes for n.c.a. '**Ir with increased
specific activity would revolutionize source availability, along
with exploring novel complexes that may open new avenues
beyond conventional HDR brachytherapy. Both *’Ru and '“Ru
will require continued optimization of production and
separation methods to support the design of matched pair
with  further

imaging performance.

theragnostics in  vivo targeting and

In conclusion, we provide a comprehensive review of platinum
group metals that have been explored upon over the years, or
those that are beginning to make their mark in nuclear
These

that can elevate current areas

essential
of
necessities, complimenting traditional radionuclides that are

medicine applications. radionuclides offer

nuclear characteristics
utilized in clinical practice. For patients, this could mean more
precise imaging options, more effective treatments with fewer
side effects, and personalized radiotherapy; therefore, extending
the lifespan for someone. As we look ahead, the potential for
PGM
continued efforts from across the world, what was once

implementation continues to be promising. With
considered a luxurious dream in nuclear medicine may well
become a future breakthrough for diagnostic imaging and

cancer therapy with PGMs leading the way.
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