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Population pharmacokinetic (PopPK) has emerged as a robust framework for
characterizing inter-individual variability in the absorbed dose estimates in
radiopharmaceutical therapy (RPT). By enabling the analysis of biokinetic data
from heterogeneous patient populations, PopPK allows individualized absorbed
dose estimates while simultaneously leveraging population-level information.
This review presents and evaluates the current applications of PopPK, such as
nonlinear mixed-effects modeling (NLMEM) and Bayesian fitting methods in
RPT, emphasizing its advantages over traditional individual-based modeling
approaches. We summarize key studies that have implemented PopPK for
modeling radiopharmaceutical biokinetics, with a focus on time-integrated
activity (TIA) estimation, including single-time-point (STP) dosimetry, uncertainty
analysis, as well as pharmacodynamic (PD) analysis. The flexibility of PopPK in
handling sparse and irregularly sampled data makes it particularly relevant for
clinical scenarios where comprehensive imaging schedules are impractical.
However, despite its potential, the widespread adoption of PopPK in RPT
remains limited due to challenges such as computational complexity and the
need for specialized expertise. This review discusses critical aspects of PopPK
implementation while emphasizing the importance of interdisciplinary
collaboration in translating PopPK methodologies into clinical practice. Future
directions include integrating PopPK into adaptive dosimetry frameworks and
applying it in STP dosimetry and PD modeling to optimize treatment
personalization. By providing a comprehensive overview of PopPK applications in
RPT, this review aims to facilitate the integration of advanced modeling
techniques into routine clinical workflows, ultimately supporting the
development of accurate and precise RPTs.
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1 Introduction

Radiopharmaceutical therapy (RPT) is commonly administered using fixed activity
protocols or simple adjustments based on body surface area (1-3). However, evidence
shows that absorbed doses can differ markedly between patients receiving the same
administered activity, raising the risk of suboptimal tumor control or avoidable
toxicity (3-12). Recognizing this, the European Council Directive 2013/59/EURATOM
mandates patient-specific treatment planning and verification for all radiotherapeutic
procedures, underscoring the necessity of individualized dosimetry approaches that
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capture inter-individual variability in radiopharmaceutical
distribution and clearance (13).

A central challenge in individualized dosimetry is the reliable
estimation of time-integrated activity (TIA) from time-activity
curves (TACs), particularly when imaging measurement data are
sparse, a frequent condition in nuclear medicine practice.
Incorporating prior knowledge into the TAC fitting process has
been shown to improve the accuracy and precision of TIA and,
(14-17).
pharmacokinetic (PopPK) modeling offers a powerful framework
this. Unlike fitting

approaches, PopPK leverages data sharing across patients, fitting

consequently, absorbed dose estimates Population

for achieving conventional  individual
model parameters simultaneously at the population level while
still yielding individualized estimates. This paradigm enhances the
ratio of data to estimated parameters, thereby improving the
accuracy of TIA estimates. Importantly, PopPK, specifically
nonlinear mixed-effects modeling (NLMEM), is recognized by
both the FDA and EMA as standard methodologies in drug
development, particularly valuable for handling sparse data and
heterogeneous measurement protocols (18, 19).

Several pioneering studies have highlighted the value of
PopPK modeling in RPT. Hardiansyah et al. provided the first
demonstrations that integration of population priors within
PopPK framework significantly strengthens individual dosimetry
in RPT (20). Merril et al. optimized sampling schedules for '*'I
therapy in Graves™ disease (21), while Puszkiel et al. employed a
three-compartment PopPK model to quantify the effects of amino
acid co-infusion on ['”’Lu]Lu-DOTATATE pharmacokinetics and
toxicity in neuroendocrine tumor patients (22). Devasia et al. (17)
applied a bi-exponential function within NLMEM for single-
time-point (STP) dosimetry of ['’Lu]Lu-DOTATATE. They
demonstrated reduced bias compared to the commonly used STP
approach proposed by Hinscheid (23) and Madsen (24).
Hardiansyah et al. introduced population-based model selection
(PBMS) with PopPK modeling to improve the accuracy of
absorbed dose estimates (25). More recently, Hardiansyah et al.
introduced a population-based model selection framework within
the NLMEM paradigm to optimize sum-of-exponential functions
for *'I therapy in benign thyroid disease, demonstrating superior
accuracy compared with standard individual fitting approaches
recommended by the European Association of Nuclear Medicine
(15). Collectively, these studies demonstrate the ability of
NLMEM to combine population-level priors with patient-specific
data, thereby enabling accurate and robust absorbed dose
estimation. The methodological rigor and flexibility of NLMEM
make it particularly well suited for routine clinical use, where
simplified protocols and sparse data are the norm. Examples of
NLMEM applications in RPT, along with software suitable for
NLMEM analyses, in the
(Supplementary Tables S1, S2).

are provided supplemental file

2 Clinical relevance of PopPK in RPT

One of the major challenges in RPT dosimetry is the
absence of a standardized approach for selecting fit functions
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to calculate TIAs, a critical determinant of absorbed dose. In
current practice, fit function selection is often guided by
subjective “rules of thumb”, primarily based on the number of
available biokinetic data points. As highlighted in an EANM
recommendation (26), at least three data points are required
to fit a mono-exponential function with two estimated
parameters in individual fitting methods. This aligns with the
(27), which
emphasizes that the number of data points should exceed the

general principle outlined by Gear et al
number of parameters to avoid overfitting and ensure reliable
uncertainty estimation.

Typically, radiopharmaceutical kinetics exhibit multiphasic
behavior, including an uptake phase and multiple clearance
phases (28, 29). Due to limited data availability and the
reliance on subjective modeler judgment, simplified mono-
exponential or, at best, bi-exponential functions are often
employed (30-32). Such subjective choices may introduce
substantial variability in absorbed dose estimates and bias
dose-effect relationships, ultimately undermining the reliability
of clinical dosimetry.

Population pharmacokinetic (PopPK) modeling provides
a systematic and objective alternative for analyzing
radiopharmaceutical kinetics. Rather than relying on subjective
judgment, fit functions can be identified through PBMS, which
applies robust statistical criteria to determine the optimal model.

This approach provides several advantages:

1. objectivity, relying on statistical measures such as goodness-of-
fit tests and Akaike weights (33, 34);

2. systematic evaluation, testing a range of models from simple
single-phase to more complex multi-phase functions (35);
PBMS NLMEM can also be used to test various structures of
compartmental and physiologically-based pharmacokinetic
models.

3. accuracy, as PBMS NLMEM has been shown to outperform
rule-of-thumb or individual-based model selection (IBMS)
approaches (36), including parameter-sharing PBMS
strategies (14, 28); and

4. reproducibility, since model choice is determined by the data
and not by subjective judgment of the modeler, leading to
more consistent TIA and absorbed dose estimates.

A key strength of PBMS within the NLMEM framework is its
ability to pool biokinetic data from across patients. This
increases the ratio of observations (N) to estimated parameters
(K), enabling the construction of more complex yet stable
models, while simultaneously reducing uncertainty in model
selection. Importantly, this framework is particularly powerful
under conditions of sparse sampling, a common condition in
clinical nuclear medicine, where it could maintain good
accuracy despite limited data (15, 25, 35, 37, 38). Given these
advantages, PBMS-NLMEM holds strong potential not only for
improving individualized dosimetry but also for serving as a
RPT,
standardization, reproducibility, and regulatory confidence.

robust reference framework system in ensuring
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3 Pharmacodynamic analysis

PopPK and pharmacodynamic (PD) modeling have emerged as

powerful approaches to characterize drug behavior across
heterogeneous patient populations (39-41). By quantifying inter-
individual variability and identifying covariates that influence drug
disposition and response, these models are increasingly recognized
as essential tools for optimizing dosing strategies and improving
clinical outcomes in RPT. Recent studies have demonstrated the
value of population PK/PD modeling in characterizing the kinetics
of ["’Lu]Lu-labeled radiopharmaceuticals and explaining inter-
patient variability in therapeutic outcomes (22, 42).

In one study, a PopPK model was applied to evaluate the impact
of amino acid (AA) co-infusion on the pharmacokinetics of [""Lu]
Lu-DOTATATE in with

neuroendocrine tumors (22). Using a three-compartment model,

patients gastroenteropancreatic
investigators found that AA co-infusion significantly increased the
elimination rate constant (kjo), with substantial inter-individual
variability (104%). This variability translated into differences in
systemic exposure, which were associated with hematological
toxicity, particularly lymphopenia observed on Day 15. Notably,
the population-based framework enabled identification of covariate
effects and highlighted the need for personalized supportive care
strategies in peptide receptor radionuclide therapy.

A complementary study extended PopPK analysis to ['”Lu]Lu-
PSMA-I&T in patients with metastatic castration-resistant prostate
cancer (mCRPC). Here, a five-compartment model informed by
SPECT/CT data was
radiopharmaceutical uptake in tumors and normal organs (42).

quantitative developed to describe
The model was subsequently integrated into a PK/PD framework
by linking tumor-level drug concentrations to longitudinal PSA
dynamics. As in the DOTATATE study, pronounced inter-
individual variability in tumor uptake was observed, with a
progressive decline across treatment cycles. PSA response was
captured using both direct and delayed drug-effect models, with
tumor exposure emerging as a strong predictor of therapeutic
efficacy. The incorporation of covariates such as renal function,
tumor volume, and cycle number provided additional mechanistic
insight into variability in treatment response.

Together, these studies underscore the clinical relevance of
population PK/PD modeling in advancing precision medicine for
RPT. Despite
indications, and endpoints, both investigations underscore the

differences in radiopharmaceuticals, clinical
central role of individualized modeling in unraveling the complex
interplay between drug exposure, biological response, and patient-
specific factors. By enabling more accurate prediction of efficacy
and toxicity, population PK/PD modeling supports the rational
design of tailored dosing regimens, ultimately improving the

therapeutic index of ["”’Lu]Lu-based radiopharmaceutical therapies.

4 Simplified dosimetry
PopPK provides a robust framework for simplified dosimetry

in RPT (15, 17, 25, 35, 38). By estimating mean (“fixed”)
pharmacokinetic parameters across a patient cohort while
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simultaneously quantifying inter-individual variability through
“random” effects, NLMEM effectively borrow strength across
subjects for optimizing the fitting. This stabilizes parameter
estimates even when individual patients contribute only one or
two imaging time points, thereby reducing reliance on labor-
intensive multi-time-point schedules. Figure 1 illustrates the
PopPK framework for simplified dosimetry.

Several clinical studies have demonstrated the feasibility and
accuracy of such NLMEM-driven approaches. In peptide
receptor radionuclide therapy,
NLMEM showed that a single planar scan at ~47h post-

injection yielded a renal absorbed dose bias of 7%-8%

simplified dosimetry with

compared to multi-time-point dosimetry, which was reduced to
~6% when two scans at 23 and 47 h were used (25, 38). These
findings provide practical guidance to physicians in selecting
one- vs. two-scan protocols depending on available resources
and clinical need (38). Similarly, for ['””Lu]Lu-PSMA-617, a
single SPECT/CT acquired ~42 h post-injection produced renal
absorbed dose estimates within an RMSE of ~10% compared to
full-protocol dosimetry (35), supporting the feasibility of
accurate simplified dosimetry with STP imaging for routine
clinical workflows.

Other studies have employed PopPK principles using Bayesian
fitting approaches to enhance STP dosimetry. For example,
Patrianesha et al. demonstrated that integrating population-
based model selection into Bayesian fitting for ['”’Lu]Lu-PSMA-
617 improved the accuracy of TIA estimation. A single SPECT/
CT measurement at 48h post-injection yielded TIA values
within an RMSE of 8% compared to the reference TIA derived
from multi-time-point data, highlighting the ability of Bayesian-
PopPK integration to deliver reliable absorbed dose estimates
under clinically constrained sampling conditions. Together,
these findings underscore the clinical utility of PopPK with
NLMEM for enabling accurate, reproducible, and personalized
simplified dosimetry. By reducing the imaging burden, these
approaches can facilitate broader implementation of
individualized dosimetry in routine practice and support the
transition from fixed-activity protocols toward precision-guided

radiopharmaceutical therapy.

5 Uncertainty analysis

Uncertainty analysis is a critical component of RPT dosimetry,
ensuring that patient-specific absorbed dose estimates are both
reliable and clinically relevant (3, 27, 43). Jundi et al. proposed
PopPK with a Bayesian fitting framework to estimate the
precision of STP dosimetry in ['”’Lu]Lu-DOTATATE peptide
receptor radionuclide therapy by applying a mono-exponential
SPECT/CT (43). By
incorporating prior distributions of the model parameters

function to a single acquisition
derived from multi-time-point population data fitting, their
approach reliably estimated the precision of individual TIAs.
STP dosimetry demonstrated lower TIA precision compared to
TIA derived from multi-time-point dosimetry methods: the

coefficient of variation (CV) of individual TIA standard
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FIGURE 1

Conceptual framework of population pharmacokinetic modeling for single-time-point dosimetry in radiopharmaceutical therapy. The approach
combines biokinetic data from a new patient with single-time-point imaging with a comprehensive biokinetic database from previous population
studies. Through simultaneous fitting using nonlinear mixed-effects modeling, the method generates individualized time-integrated activity
coefficients (TIACs) for the new patient while accounting for inter-individual variability observed in the population. The upper graph shows the
predicted time-activity curve for the new patient, along with associated residual variability bounds. The lower graph demonstrates the inter-
individual variability curves from the population database, illustrating how population pharmacokinetic modeling leverages shared information to
enable accurate absorbed dose estimation using minimal individual patient data.

deviations ranged from 0.8%-49% with ATP fitting, but increased
to 22%-33% with STP estimates using the PopPK Bayesian fitting
method (43).

Building on this, Budiansah et al. systematically assessed both
the accuracy and precision of STP dosimetry using PopPK with
the NLMEM framework for PRRT (16). Here, uncertainty was
rigorously propagated through a PBPK model embedded within
an NLMEM framework. This enabled not only accurate
estimation of population and individual kinetic parameters but
also inclusion of both measurement and model-related errors in
the uncertainty budget. By applying the law of propagation of
uncertainty, total absorbed dose uncertainty was analytically
derived from the variability of individual parameter estimates
and their covariance structure. This methodology is particularly
advantageous for reduced imaging schedules such as STP
additional
uncertainty introduced by sparse sampling, while still providing

protocols, as it transparently quantifies the

clinically ~ meaningful ~ confidence  bounds to  guide
treatment decisions.

As expected, the use of STP protocols resulted in a modestly
lower precision compared to ATP fitting, as indicated by higher
relative standard errors (RSEs) in both kidney and tumor
absorbed dose estimates (16). Nonetheless, the availability of
explicit uncertainty quantification is critical for individualized
therapy planning, as it enables clinicians to gauge the robustness
of absorbed dose estimates and make informed adjustments over
treatment Such frameworks

successive cycles.

confidence in simplified dosimetry approaches, bridging the gap

strengthen

between clinical feasibility and scientific rigor.

Frontiers in Nuclear Medicine

6 Challenges and future perspectives

PopPK modeling in RPT dosimetry is hampered primarily by
its computational complexity and the specialized expertise
required (44). PopPK software, such as Monolix or NONMEM,
requires advanced statistical knowledge and proficiency with
dedicated software, skills that many nuclear medicine centers
currently lack. At the same time, validating PopPK models
requires comprehensive, high-quality pharmacokinetic data and
robust quality-assurance protocols (44). Determining optimal
sampling schedules, whether via serial imaging time points or
blood draws, and establishing rigorous acceptance criteria for
model performance further complicate implementation.

Another significant barrier is the scarcity of formal training
and educational resources tailored to PopPK methods in the
RPT context (45, 46). Most medical physicists and nuclear
medicine physicians receive little to no exposure to PopPK
model development or interpretation of population-based
pharmacokinetic outputs. This knowledge gap not only slows
the development but also undermines confidence in applying
existing ones, reinforcing reliance on empirical, one-size-fits-all
activity administration protocols.

Economic considerations add another layer of difficulty (45,
47). Many centers are still struggling to implement standard
dosimetry workflows (48). They do not compensate for the
additional time, personnel, and imaging resources required to
collect the detailed data necessary for PopPK-based dosimetry. If
standard dosimetry is

already challenging, creating and

maintaining high-quality population datasets to support PopPK
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modeling is even more daunting. Without financial incentives,
centers lack the motivation and funding to invest in the
infrastructure necessary for personalized, model-driven dosing,
despite its clear long-term benefits of improved tumor control
and reduced toxicity (49, 50).
Looking forward, however, several converging trends
promise to dissolve these hurdles. User-friendly commercial
software platforms will embed robust PopPK frameworks into
intuitive graphical interfaces, allowing clinicians to perform
PopPK analysis without needing to understand the underlying
complexity. Simplified dosimetry based on population models
will reduce the number of required scans or blood draws, ease
workflow burdens, while preserving the accuracy of the
estimated absorbed dose. Meanwhile, machine learning-driven
automation of covariate selection, model selection, and outlier
detection will enable near-real-time treatment adaptation
across multi-cycle therapies. As multinational interdisciplinary
collaborative consortia establish standardized PopPK libraries,
quality-assured datasets, and unified regulatory guidelines, and
as reimbursement policies evolve to reward personalized
dosimetry, RPT dosimetry will transition from empirical
practice to a precision-medicine discipline. Ultimately,
clinicians will rely on streamlined software workflows that
require only basic operational skills to tailor administered
activities dynamically for each patient, thereby achieving truly

individualized therapy.

7 Conclusion

PopPK modeling represents a paradigm shift in RPT
dosimetry, providing a rigorous framework to individualize
treatment while addressing the practical constraints of routine
clinical care. PopPK modeling enables the accurate estimation
of the absorbed dose from simplified imaging protocols,
reducing the need for intensive multi-time-point schedules
while preserving the precision required for effective treatment
planning. Clinically, the impact extends beyond technical
accuracy. PBMS with PopPK
reproducible dosimetry, supporting the development of a

offers standardized and
reference framework and reducing patient and institutional

burden. Furthermore, PopPK-based uncertainty analysis
provides clinicians with the precision of the absorbed dose
estimates, facilitating informed adjustments in multi-cycle
therapy and reinforcing clinical decision-making. Looking
ahead, PopPK-guided dosimetry is poised to become the
foundation of precision medicine in RPT. With advances in
computation and Al integration, this approach will establish
individualized dosimetry as a standard of care, comparable to
external beam radiotherapy treatment planning, transforming
RPT from an empirical practice into a precision-driven
discipline that

absorbed dose.

minimizes toxicity for a prescribed
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