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Anorexia nervosa is a severe psychiatric disorder most commonly starting during the
teenage-years and associated with food refusal and low body weight. Typically there
is a loss of menses, intense fear of gaining weight, and an often delusional quality of
altered body perception. Anorexia nervosa is also associated with a pattern of high cog-
nitive rigidity, which may contribute to treatment resistance and relapse. The complex
interplay of state and trait biological, psychological, and social factors has complicated
identifying neurobiological mechanisms that contribute to the illness. The dopamine D1
and D2 neurotransmitter receptors are involved in motivational aspects of food approach,
fear extinction, and cognitive flexibility.They could therefore be important targets to improve
core and associated behaviors in anorexia nervosa. Treatment with dopamine antagonists
has shown little benefit, and it is possible that antagonists over time increase an already
hypersensitive dopamine pathway activity in anorexia nervosa. On the contrary, applica-
tion of dopamine receptor agonists could reduce circuit responsiveness, facilitate fear
extinction, and improve cognitive flexibility in anorexia nervosa, as they may be particu-
larly effective during underweight and low gonadal hormone states. This article provides
evidence that the dopamine receptor system could be a key factor in the pathophysiology
of anorexia nervosa and dopamine agonists could be helpful in reducing core symptoms
of the disorder. This review is a theoretical approach that primarily focuses on dopamine
receptor function as this system has been mechanistically better described than other neu-
rotransmitters that are altered in anorexia nervosa. However, those proposed dopamine
mechanisms in anorexia nervosa also warrant further study with respect to their interaction
with other neurotransmitter systems, such as serotonin pathways.
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INTRODUCTION
The eating disorder anorexia nervosa is a severe psychiatric disor-
der with high mortality. Anorexia nervosa usually begins during
adolescence (1) with a lifetime prevalence of about 0.9% of the
female and 0.3% of the male population (2). Between 20 and
40% of individuals drop out of treatment and only about 30% of
individuals with anorexia nervosa have a successful recovery (3).

The hallmark sign of anorexia nervosa is the restriction of
energy intake relative to requirements leading to a significantly low
body weight (1). This severe disturbance of adequate food intake
suggests potential biological factors that “enable” an individual
with anorexia nervosa to severely restrict food intake. Anorexia
nervosa’s second diagnostic criterion is an intense fear of gaining
weight or becoming fat, even though underweight. This fear may
be conditioned after comments from the social environment. The
third symptom cluster is the disturbance in the way one’s body
weight or shape is experienced, undue influence of body weight or
shape on self-evaluation, or denial of the seriousness of the current
low body weight. This distortion of one’s body image is particu-
larly difficult to understand and especially in the restricting type of
anorexia nervosa this has psychotic quality (4). The lack of menses
in anorexia nervosa has been removed from the diagnostic criteria

in DSM-5, but typically the disorder is associated with low gonadal
hormone levels, which is important as gonadal hormone levels
affect brain function and behavior (5–7). Another typical behav-
ior associated with anorexia nervosa is the resistance to change
behavior even when recognizing the severe negative consequences
the illness causes (8). This suggested that individuals with anorexia
nervosa have deficits in cognitive flexibility.

The causes for developing anorexia nervosa are considered
complex interactions between psychosocial and neurobiolog-
ical abnormalities (1). This has limited the development of
neuroscience-based treatments (9), and no medication or other
biological treatment has been approved for the disorder (10).

For a long time, the brain serotonin system was the primary
focus of neurobiological research in anorexia nervosa, but this
system is very complex and difficult to model in terms of distinct
receptor-stimulus-behavior associations. More recently research
suggested that brain dopamine circuitry could be a potential key
player in the pathophysiology of altered food intake in anorexia
nervosa (9, 11, 12). This is important as the dopamine system has
been particularly well characterized, computational models exist
that predict dopamine neuron activation, and this system can be
manipulated pharmacologically (13, 14).
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Frank Neuroscience and drug development of anorexia nervosa

This article will review research on dopamine in anorexia ner-
vosa and then provide evidence that brain dopamine function is
tied to a variety of core and associated symptoms of anorexia
nervosa. Targeting this system pharmacologically especially with
dopamine agonists could be a promising approach to ameliorate
this illness and facilitate recovery.

STUDIES ON BRAIN DOPAMINE IN ANOREXIA NERVOSA
The main dopamine releasing neurons arise from the midbrain
ventral tegmental area and substantia nigra and project to cau-
date and putamen, the medial prefrontal, cingulate, and entorhinal
cortex (mesocortical projections), as well as to the limbic sys-
tem with nucleus accumbens, amygdala, septum, and piriform
cortex (mesolimbic projections) (15). The best-studied recep-
tors of this system are the G-protein coupled dopamine D1 and
D2 receptors, but other receptor types have also been identified
(15). The human dopamine D1 receptor is a postsynaptic recep-
tor that mediates more directly behavior and the D2 receptor
is a presynaptic auto-receptor that regulates dopamine release
in a negative feedback fashion; D1 receptors activate, whereas
dopamine D2 receptors decrease adenylyl-cyclase activity, and
both receptor types are distributed throughout the cortex, sub-
cortical nuclei, and brain stem (16). Importantly, continuous
exposure to dopamine antagonists increases dopamine recep-
tor binding sites, especially of the dopamine D2 receptor, and
prolonged stimulation with dopamine agonists desensitizes and
reduces the number of dopamine receptors (15–17).

A variety of studies indicated altered dopamine function in
anorexia nervosa. In a group ill with anorexia nervosa, cere-
brospinal fluid homovanillic acid, the major dopamine metabolite,
was reduced by about 30% compared to controls (18), and recov-
ered restricting type anorexia nervosa subjects had significantly
reduced cerebrospinal fluid homovanillic acid concentrations
compared to controls (19). In a positron emission tomography
study, a mixed group of recovered restricting type and recovered
binge-eating/purging-type anorexia nervosa women had increased
dopamine D2/D3 receptor binding in the antero-ventral striatum
(20). This suggested that those receptors might be up-regulated
in response to low intrinsic dopamine levels, and such alterations
could be a trait vulnerability or develop over time. A limitation
here is that positron emission tomography studies test available
dopamine receptor profiles, but they cannot test well the function-
ality of those receptors in relation to actual behavior. Others found
increased eye-blink in anorexia nervosa individuals compared to
controls (21), which suggested increased central dopamine activity
(22). In summary, those studies suggest that neuronal or synap-
tic dopamine may be reduced, but that dopamine receptors could
be increased in number or sensitivity in a compensatory or nega-
tive feedback fashion (22). This dynamic could provide clues that
a down-regulation of receptor sensitivity might be an important
therapeutic goal, despite or maybe even consistent with the notion
of low extracellular dopamine in anorexia nervosa.

BRAIN DOPAMINE, REWARD, AND THE REGULATION FOOD
INTAKE
Food intake is driven by a complex interplay between cognitive,
emotional, and energy homeostasis maintaining mechanisms

between brain and body (23). This process has been distinguished
in a cognitive or cephalic phase that involves desire or craving, as
well as a consummatory phase involving the hedonic experience.
These mechanisms were then further described as the dopamine
function associated “wanting” or the drive to approach a reward,
and “liking” or the hedonic experience during food consumption
associated with opioid system activity (24, 25). The overarch-
ing circuitry here is the brain reward system, which integrates
more basic metabolic hunger signals with higher order process-
ing of taste and cognitive–emotional factors that regulate food
approach and eating (26). Important brain regions that regulate
those processes include: (1) the insula as the primary taste cor-
tex and central gateway to (2) the dopaminergic basal ganglia and
midbrain, to (3) higher order brain centers including the pre-
frontal and (4) the cingulate cortex that integrates cognition and
emotions, (5) the orbitofrontal cortex, which determines when to
stop eating a type of food, and (6) the amygdala that associate stim-
uli with emotional experience and that are thought to modulate
dopamine circuitry in midbrain and striatum (27–30).

The dopamine neurotransmitter system plays a central role in
the motivational aspects of food approach (25, 31, 32). Dopamine
neurons respond to novel as well as unexpected stimuli, and pro-
vide a learning signal to “stamp in response–reward and stimulus–
reward associations” to control motivated behavior (31). Recent
research also suggests that the dopamine signal within the reward
circuitry is a composite of quality, quantity, and effort to acquire
the reward (26). Especially important for the study of anorexia
nervosa is research that suggests that extremes of eating behav-
ior can modulate the dopamine system. Animal studies suggested
heightened brain reward response after food restriction, includ-
ing increased ventral striatal dopamine release or lower lever press
threshold to receive a reward stimulus (33, 34). On the contrary,
excessive food intake has been associated with reduced caudate
dopamine receptor availability in rodents, after they were fed with
a high caloric “cafeteria food” diet (35). Those results strengthen
the notion that extremes of food intake might be associated with
opposite dopamine system alterations.

Also important is that food restriction affects reward sensitivity
in adolescence differently than in adults as anorexia nervosa typi-
cally has its onset during teenage-years. For instance, rodent stud-
ies showed higher motivation and activity after food restriction in
adolescent animals compared to adults (36). Human brain imag-
ing studies showed both hypo- and hyper-activation of reward
circuits in adolescents (37), but with transition from adolescence
to adulthood striatal activation seems to increase in response to
highly salient stimuli (38).

Those age specific observations could have important impli-
cations, as dopamine circuitry might be particularly vulnerable
to severe food restriction or other extremes of eating behaviors
during adolescence. In support of the notion that adolescence
is a critical period for dopamine receptor development is that
these and other monoamine receptors reach adult levels during
adolescent years (39). Disruptions in this maturational process
could promote specific receptor dysfunction as well as widespread
alterations in proliferation, migration, and differentiation of nor-
mal cortical and striatal neurocircuitry (40). Such developmental
interferences during adolescence could similarly have implications
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for other disorders such as schizophrenia, which typically has
its onset around age 16 and has been associated with dopamine
function (41).

TASTE REWARD PROCESSING IN ANOREXIA NERVOSA
Taste is an important determinant of food intake (42) and sev-
eral studies investigated brain taste reward circuits in anorexia
nervosa. Recovered anorexia nervosa individuals showed reduced
functional brain response to repeated but increased response to
randomly given taste reward stimuli (43, 44), and those results in
opposite directions suggest that unpredictable versus predictable
stimulus presentation may be important when studying anorexia
nervosa. The question remains, whether findings in recovered
anorexia nervosa are predating the disorder as potential traits or
are effects of the illness. Another approach is to pair uncondi-
tioned taste stimuli with conditioned visual or auditory stimuli
and then at times omit an expected taste delivery or deliver a taste
stimulus when none was expected. This leads to a discrepancy
between reward anticipated or predicted and the reward actu-
ally received, the so called prediction error, which is reflected
in dopamine neuronal response (45). Brain dopamine neurons
respond with a phasic burst to unexpected salient or reward stim-
uli, but a dip in tonic neuronal activity when an expected reward
stimulus is not received (46). The presynaptic dopamine D2 recep-
tor has been associated with the response to unexpected stimulus
omission, while the postsynaptic dopamine D1 receptor is thought
to mediate response to unexpected reward stimulus receipt (14).

We have previously applied a prediction error taste reward task
using sugar solution and visual conditioned cues in anorexia ner-
vosa and compared this group with obese individuals. We wanted
to answer the question whether we could detect neurobiological
alterations that lie on opposite ends (47),as suggested by the above-
described animal studies (33, 35). We found that insula and ventral
striatum prediction error response were greater or more sensitive
in anorexia nervosa compared to controls, while obese individ-
uals showed reduced response, supporting the notion that BMI
and extremes of food intake are directly related to prediction error
and thus dopamine brain response in humans. Those alterations
could be due to altered dopamine receptor function. Research in
non-clinical human samples supported this hypothesis, as acute
application of the dopamine reuptake inhibitor amphetamine and
the dopamine D2 antagonist haloperidol could manipulate pre-
diction error related brain response (48), and the dopamine D2
receptor density regulating TaqIA A1 gene variant determined
brain response to food stimuli in the midbrain and orbitofrontal
cortex (49).

This suggested dopamine hyper-sensitivity in anorexia nervosa
is not meant to imply that the so called “reward stimuli” (such
as sugar solution) used in reinforcement learning paradigms are
necessarily a reward in the sense of positive reinforcer or pleasant
experience for individuals with anorexia nervosa. Rather brain
dopamine circuits in anorexia nervosa could be hypersensitive
to salient stimuli in general. Salient stimuli (conditioned and
unconditioned) activate brain dopamine circuits (50), and highly
elevated sensitivity to salient rewarding or punishing stimuli (51)
in anorexia nervosa could be related to elevated dopamine system
activity. Such high sensitivity to salient stimuli could be a trait,

exaggerated when underweight and contributing to intolerance of
uncertainty (52).

One might argue that if the dopamine system is hypersensitive
in anorexia nervosa, it should promote food seeking instead of
avoidance. There is little research that investigated those phenom-
ena in humans, but starvation in non-eating disordered healthy
individuals lead to difficulties with the modulation of how much
food to eat (53), a phenomenon commonly seen in AN when
restoring weight and not uncommonly resulting in a period of
binge-eating (54). Such dysregulated eating behavior could be
related to altered dopamine receptor and reward system sensi-
tivity (33, 34). What makes the pathophysiology of AN unique
and different compared to any animal model are psychological
factors such as the extreme fear of weight gain, which collides with
the neurobiological drive to eat, which may create a severe inter-
nal conflict and leading to the typical clinical picture of anorexia
nervosa. High trait anxiety, maybe related to serotonin system
alterations (55), may underlie the extreme fear focused on weight
gain, and the dopamine system related drive to eat may not be
strong enough to overcome anxiety that is driven by an opposing
serotonin system function (56).

FEAR OF WEIGHT GAIN AND LEARNED BEHAVIOR
Previous research has shown that anorexia nervosa is associated
with high premorbid and comorbid anxiety disorders (2). Typical
anxiolytic medications such as benzodiazepines have not helped
decrease core features of anorexia nervosa (10). Anxious traits may
make individuals more prone to respond to anxiety provoking
cues from the environment, and the preoccupation with the fear
of being fat could be a particular vulnerability for developing an
eating disorder such anorexia nervosa. High comorbid depression
may also aid in this dynamic (2). The spectrum of anxiety disor-
ders is very broad, but what these disorders share is an attention
bias toward threatening stimuli (57). That is, when an individual
with anxious traits becomes focused on an anxiety-inducing topic,
such as to worry about their weight and shape after comments
from the environment she may not be able to let go but keeps
focusing on it. (58). One direction of research suggested that such
selective attention to negative stimuli be related to less effective
serotonin transporter genotype alleles (59). However, serotonin
reuptake inhibitors did not help in the treatment of the core fea-
tures of anorexia nervosa including the attention bias toward their
own body. Other recent research now finds evidence that atten-
tion bias is modulated by polymorphisms in monoamine oxidase
and dopamine beta-hydroxylase genes (60). Others found that
depletion of the dopamine precursors phenylalanine and tyrosine
resulted in a bias toward immediate monetary reward selection
(as opposed to reward delay) in individuals with the catechol-
O-methyltransferase val/val genotype, a genotype that has been
associated with lower dopamine tone in the frontal cortex (61).
This suggested that dopamine activity may guide bias toward and
processing of salient and potentially anxiety provoking stimuli and
alterations could contribute to food avoidance.

An increasing body of literature is now describing how
dopamine neuron activation across the amygdala, ventral tegmen-
tal area, striatum, and hippocampus is important for fear extinc-
tion acquisition, whereas fear extinction consolidation requires
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prefrontal cortical dopamine D1 and D2 receptor stimulation (58,
62, 63). Particularly important in this context are the effects of
low gonadal hormones in anorexia nervosa. Psychotherapy of
anorexia nervosa is designed to reinstate normal eating behav-
ior and extinguish fears of getting fat by exposure to food stimuli
and eating (64). Research indicates that there is an interaction
between hormonal state and fear extinction, and especially females
in a low-estrogen state may benefit from dopamine receptor stim-
ulation when trying to suppress previous fears after extinction
training (“extinction retrieval”) (65). In that study (65), rodents
underwent cue (tone) induced fear conditioning (mild foot shock)
and then received the dopamine D1 agonist SKF38393 or a sham
injection (vehicle) before extinction learning. During the follow-
ing extinction retrieval phase, the vehicle treated female animals
in the low-estrogen phase showed greater anxiety (freezing) com-
pared to the high-estrogen phase females. However, pretreatment
with the dopamine D1 agonist reversed this deficit in low-estrogen
animals but worsened freezing in high-estrogen females, and there
were no drug effects on males (65). Thus dopamine D1 receptor
stimulation could support anxiety reduction specifically in females
with anorexia nervosa, as the disorder is typically associated with
low gonadal hormone levels.

Other studies have implicated the dopamine D2 receptor in
conditioned fear response. For instance, the dopamine D2 agonist
quinpirol applied to the midbrain ventral tegmental area reduced
expression of conditioned fear response in rodents and it was
hypothesized that this was mediated by presynaptic dopamine
release modulation and specifically via the dopamine D2 receptor,
as dopamine D1 stimulation did not produce this effect (66). How-
ever, regional specific blockade of the dopamine D2 receptor in the
amygdala also reduced fear response and it appears that a balance
between stimulation and activation of the dopamine D2 receptor
within the mesolimbic pathway is needed to reduce fear expres-
sion (66). In another study, the D2 receptor agonist quinpirol
reduced amygdala dopamine levels and associated fear response.
That study further implicated mesolimbic terminals between the
midbrain and amygdala in fear response (67). An additional inter-
esting effect of the dopamine D2 agonist quinpirol was to block
conditioned fear memories, which affected both fear conditioning
as well as extinction (68).

Taken together, the dopamine D1 and D2 receptors appear to be
potential targets for treatment of anxiety and modulation of con-
ditioned fear. Receptor stimulation could be promising although
systemic application of dopamine D2 blockade facilitated fear
extinction as well (69). Most studies generally used acute, short-
term designs though. Chronic dopamine D2 receptor antagonist
application rather enhances this receptor system over time, while
chronic agonists decrease dopamine receptor activity (15, 17).
Thus, the effects of dopamine D1 and D2 agonists and antago-
nists have to be studied over longer periods and in relation to
weight state. The dopamine D2 receptor partial agonist aripipra-
zole showed anxiolytic effects during a fear conditioning paradigm
in animals (70) and reduced distress around eating in individuals
with anorexia nervosa (71). Those results support the hypothesis
that dopamine receptor activation might be particularly beneficial
in anorexia nervosa treatment. However, any positive effects are
speculative at this point and require careful study.

BODY IMAGE DISTORTION
One of the most puzzling symptoms in anorexia nervosa is body
image distortion, which drives pathologic eating behavior as well
as suicide (72). The discrepancy between objective body weight
and subjectively perceived “being fat” has already long ago raised
the suspicion whether this is a psychotic process and whether
antipsychotic medication could be beneficial (73). More recently,
an interesting distinction was found. That is, while individuals
with both restricting as well as with binge-eating/purging-type
anorexia nervosa display this symptom, primarily the anorexia
nervosa restrictor type group shows a true psychotic quality (4).
The available literature is mixed on potential etiologies of this
symptom, but self-perceived hyper-sensitivity to sensory stimuli
and altered interoceptive awareness could contribute aside from
primary brain dysfunction mediated fixed false believes (74, 75).
There are various reasons why dopaminergic substances could
be helpful in the treatment of body image distortion. Dopamine
receptor stimulation has been shown to decrease the representa-
tion of one’s own body parts in the rubber hand illusion paradigm
(76), and perhaps an overactive representation of one’s body in
anorexia nervosa could be reduced. Second, dopamine D1 and
D2 receptors can be found in the human skin (77). That opens
the possibility that alterations in the dopamine receptor system
in the periphery could also contribute to sending false signals
about one’s body size to the brain. While body image distor-
tion has been largely studied in relation to visual perception and
conditioned fear, I believe that further investigation of somatic-
perceptual alterations in anorexia nervosa could be fruitful. It is
uncertain however, whether excessive or inadequate stimulation of
dopaminergic pathways contribute to delusional body experiences
(4, 78), but those questions warrant further study.

COGNITIVE FLEXIBILITY
Set-shifting is a neurocognitive concept that refers to the ability
to switch between tasks and behaviors flexibly. In other words,
set-shifting is the mental ability to change behavior in relation
to changing rules and demands. Several studies found that adults
with anorexia nervosa have set-shifting deficits in that they tend
to perseverate on previously applicable rules (79, 80). Such find-
ings are consistent with the clinical observation that these patients
tend to be cognitively rigid and persistent. Reduced set-shifting
has also been found in anorexia nervosa individuals who had
restored weight as well as unaffected relatives of anorexia ner-
vosa patients (81). Individuals who have maintained long-term
recovery from anorexia nervosa (i.e., maintained a stable weight
and resumed menses for one year) have also shown set-shifting
impairments compared to age-matched healthy controls (82, 83).
However, set-shifting in adolescents with anorexia nervosa is nor-
mal (84), raising the possibility that set-shifting alterations may
become prominent and important for illness prognosis in late
adolescence or early adulthood. Given that set-shifting has been
associated with brain dopamine function (85) in anorexia nervosa
(19, 20), it is possible that set-shifting inefficiencies in anorexia
nervosa represent alterations in the dopamine system.

The literature on dopamine receptor manipulation and its
effects on set-shifting and cognitive flexibility in humans are small,
but available studies suggest that D1 and D2 manipulation affects
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cognitive flexibility (86). Cognitive flexibility can be described and
tested in terms of: (1) reversal learning or the ability to adapt
behavior in response to a reversal of reinforcement contingen-
cies, (2) attentional set-shifting or the adaptation of behavior
following changes in the relevance of perceptual categories or
dimensions, (3) task switching or the rapid switching between
stimulus-response sets that have been acquired previously, as well
as (4) the ability to behave flexibly in conditions that previously
allowed automatic or habitual performance but now the indi-
vidual has to override this automatism with new behavior (86).
Pharmacologic challenge studies indicated that for the regulation
of cognitive flexibility a balance between dopamine D1 and D2
receptors in the prefrontal cortex is necessary (85). Importantly,
effects of receptor stimulation may vary depending on an indi-
vidual’s baseline dopamine level. For instance, the dopamine D2
agonist bromocriptine impaired reversal learning in individuals
with high, but improved reversal learning in individuals with low
dopamine synthesis capacity (87). This could have specific impli-
cation for anorexia nervosa, which is thought to be associated with
low intrinsic dopamine (18). Further, dopamine D2 stimulation
in individuals with low dopamine synthesis capacity improved
cognitive flexibility as tested in the Wisconsin Card Sorting Test
(88). In another study, dopamine D2 stimulation improved task
switching in low dopamine synthesis capacity subjects (89). All in
all, there is evidence that dopamine receptor manipulation may
aid in improving cognitive flexibility and especially D2 agonists
may help with this behavior during a low dopamine state as it is
hypothesized for anorexia nervosa.

DOPAMINERGIC DRUGS IN THE TREATMENT OF ANOREXIA
NERVOSA
The above-described research suggests that there are distinct
dopamine functions that are associated with feeding, reward pro-
cessing, body perception, as well as learning and cognitive func-
tions, which suggests that this system may be involved in the
pathophysiology of anorexia nervosa.

Various dopaminergic drugs have been shown to affect eating
and body weight. For instance stimulants such as the dopamine
reuptake inhibitor methylphenidate or the dopamine reuptake
inhibiting antidepressant bupropion frequently attenuate food
intake and promote weight loss (90). Relevant in the context
of the above mentioned temporal difference model studies is
that acute application of the stimulant and dopamine reuptake
inhibitor amphetamine increased, while the dopamine D2 antag-
onist haloperidol decreased brain response in a human prediction
error paradigm (48), This suggested that modulation of dopamine
receptor function could indeed alter brain behavior in anorexia
nervosa. That study used a one-time drug application design while
chronic application of those agonists or antagonists may have
different effects, such as receptor desensitization in response to
long-term agonist exposure (16).

Various studies investigated in anorexia nervosa dopaminergic
drugs, typically neuroleptics, but the results yielded mixed results
at best, and especially controlled studies are rare (91). The medica-
tion that was studied most frequently is olanzapine, a dopamine
D2 receptor antagonist and an inverse agonist on the serotonin
2A, 2B, and 2C receptors with also antagonistic action on many

other receptors, including adrenergic, histaminic, and muscarinic
receptor types (15). Two studies in adults with anorexia nervosa
found greater weight gain with olanzapine compared to placebo
(92, 93), but another study contrasting olanzapine with placebo
in adolescents and young adults found not greater weight increase
(94) and a study that compared in adults with anorexia nervosa
olanzapine plus cognitive behavioral therapy with placebo plus
cognitive behavioral therapy did not find any benefits on weight
gain from olanzapine (95). A study that compared olanzapine
with the antipsychotic chlorpromazine, a strong antagonist on
dopamine D1 and D2 as well as an antagonist on serotonin 1A
and 2A, adrenergic, muscarinic, and histaminic receptors, did not
show benefits from olanzapine on weight gain (96). Another med-
ication, the dopamine D2 and D4 and alpha 1 adrenergic receptor
antagonist and serotonin 2A inverse agonist risperidone, studied
in adolescents did not show benefits over placebo (97), nor did
the dopamine D2, D3, and D4 antagonist pimozide (98), or the
relatively selective dopamine D2 and D3 antagonist sulpiride (99).
In summary, dopamine antagonists did not prove to be effective
in the long run in anorexia nervosa, despite some promising case
reports (91, 100).

DOPAMINE RECEPTOR AGONISTS AS POTENTIAL
PHARMACOLOGIC INTERVENTION FOR ANOREXIA NERVOSA
A recent study showed that a dopaminergic challenge using the
drug amphetamine lead to anxiety in anorexia nervosa as opposed
to euphoria in healthy controls (101). This further supported the
above-described hypothesis that the dopamine system is hyper-
sensitive in the disorder. Importantly, as described above, while
absolute dopamine levels may be low, there may be an under-
and malnutrition associated up-regulation of dopamine receptors
(102) and potentially a hyper-sensitivity of reward responsiveness
(103). If in fact there is a hyper-sensitivity of the dopamine D1
and D2 receptors in anorexia nervosa then long-term application
of dopamine receptor antagonists could further increase receptor
availability and system activity (15–17). On the contrary, cautious
application of dopamine receptor agonists could be beneficial in
anorexia nervosa as it would result in a net decrease in dopamine
binding sites and desensitization over time and possibly reduced
response sensitivity (15, 104–107). Such dopamine receptor down-
regulation then might attenuate reward system responsiveness,
aid in habituation to re-feeding and fear extinction especially in
females with anorexia nervosa in a low-estrogen state (65), reduce
conditioned fear response (66, 68), and reduce cognitive rigid-
ity (86) and body image distortion (4). All in all long-term use of
dopamine system antagonistic medications is not supported by the
available studies, but whether long-term use of dopamine agonists
may in fact down-regulate this system and ameliorate anorexia
nervosa core symptoms and outcome warrants specific study.

POTENTIAL DOPAMINE–SEROTONIN INTERACTIONS IN
ANOREXIA NERVOSA
This review is primarily focused on dopamine function and its
role in anorexia nervosa. However, brain neurotransmitter systems
obviously do not act independently, which may have direct impact
on eating disorder pathology. For instance, one study found that
the interaction between serotonin transporter and dopamine D2/3
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receptor binding was related to anxiety in anorexia nervosa (108).
Above I especially argue for the importance of learning in the con-
text of treatment for anorexia nervosa and how this may relate
to salient stimuli and neurotransmitter receptors. Recent stud-
ies have started to develop models how dopamine and serotonin
may be related in reward learning, avoiding punishment, behav-
ior activation as well as inhibition, suggesting opposite effects of
those systems (56, 109). Problematic, however, is the complex-
ity of especially the serotonin system with more the 14 receptor
types and a lack of models how those receptors are functionally
involved in behavior. There has been recent work done trying to
specifically model serotonin and dopamine interaction in reward
prediction, learning from punishment and how those experiences
shape behavior (110), but those studies are still very theoretical.
While speculative, it is important though to start a discussion of
the potentially opposing functions of dopamine and serotonin in
the pathophysiology and treatment in anorexia nervosa. Further,
above I also speculated that the possibly serotonin driven anx-
ious temperament and body focused anxiety in anorexia nervosa
(55) may be too strong to be overcome by a dopamine related
drive to eat (56), especially at the begin of the illness. With food
restriction, the dopamine system could get then sensitized and its
stimulation might in fact contribute to higher anxiety (101) and
more food avoidance. One could then argue that stimulating the
dopamine system could be counterproductive, as it would only
stimulate anxiety. This is possible, yet on the other hand, if the
hypothesized hypersensitive dopamine receptors are not desensi-
tized then they would always lead to overestimation and potential
food avoidance. Re-feeding probably desensitizes those receptors,
but a pharmacologic intervention could accelerate that process.
It is possible that in order to treat anorexia nervosa with a med-
ication regimen one would need to target dopamine D1 and D2
receptors but possibly also the serotonin system to reduce anxiety.
It is conceivable that SSRIs could be helpful to reduce anxiety, but
hypersensitive dopamine receptors could trigger especially food
related anxiety and defeat benefits from the SSRI medication.
A similar argument could be made for cognitive flexibility and

whether improved cognitive flexibility due to dopamine receptor
stimulation could result in higher anxiety. These are important
questions to be tested, as it is well possible and probably likely
that dopamine receptor stimulation alone may not be sufficient
to treat the complex state and trait related alterations in anorexia
nervosa.

CONCLUSION
Anorexia nervosa continues to be an incredibly difficult-to-treat
disorder with high mortality and limited treatment options. This
review presents a theoretical approach to this problem and pro-
vides evidence that the dopamine D1 and D2 receptors could be
involved in core and associated symptoms of anorexia nervosa.
Figure 1 summarizes how this neurotransmitter receptor system
could be related to anorexia nervosa core behaviors. Those recep-
tors might be particular sensitive to environmental influence such
as food restriction already early in life in individuals who will
develop anorexia nervosa (102). Dopamine receptor sensitivity
then could be related to heightened sensitivity to salient stimuli
in anorexia nervosa (51), interfere with normal fear conditioning
and extinction, as well as alter food approach. Thus, a premorbid
vulnerability in dopaminergic function could then become a cen-
tral factor in the pathophysiology of anorexia nervosa. If such an
individual is in addition highly preoccupied with the desire to lose
weight perhaps because of low self esteem and high anxiety, then
the combination of cognitive and fear driven behaviors together
with a biological sensitivity and adaptation to food restriction
might lead to the development of anorexia nervosa.

Several dopaminergic medications have been tested in treating
anorexia nervosa but they were for the most part dopamine recep-
tor antagonists, which could in fact make a hyper-sensitivity of
the system worse. On the contrary, as described above dopamine
receptor stimulation could reduce such receptor sensitivity and
promote behavior change. It is unlikely that such medication
reduces core symptoms such as drive for thinness and body image
distortion “by itself” as for instance an antidepressant resolves
depressed mood and anhedonia in major depression. Much rather

FIGURE 1 | Schematic description how dopamine D1 and D2 receptors could be involved in the pathophysiology and treatment of anorexia nervosa.
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dopamine receptor stimulation may aid in fear extinction in the
context of psychotherapy and learning, as well as reduce a hyper-
sensitive or hyperactive dopamine receptor system over time.
Further, dopamine receptor manipulation might also work best
in conjunction with a serotonin system specific agent, as both sys-
tems interact and are altered in anorexia nervosa. It may also be
necessary to develop pharmacological strategies that are specific
for the underweight state and such a regimen may then need to
be adjusted when the individual with anorexia nervosa reaches
normal weight and normalization of gonadal hormones.

In summary, there is evidence from basic science and some
indication from human studies that dopamine D1 and D2 receptor
stimulation could be a helpful pharmacological intervention for
anorexia nervosa. Future research will need to test those hypothe-
ses and also whether there is a difference in effectiveness in children
and adolescents compared to adults, or whether the effects may be
generalizable to the majority of anorexia nervosa patients.
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