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Background: Serum lutein (L) and zeaxanthin (Z) positively correlate with macular pigment
optical density (MPOD); hence, the latter is a valuable indirect tool for measuring L and
Z content in the macula. L and Z have been attributed antioxidant capacity and protec-
tion from certain retinal diseases but their uptake within the eye is thought to depend on
genetic, age, and environmental factors. In particular, gene variants within beta-carotene
monooxygenase (BCMO1) are thought to modulate MPOD in the macula.

Objectives: To determine the effect of BCMO1 single nucleotide polymorphisms (SNPs)
rs11645428, rs6420424, and rs6564851 on MPOD in a cohort of young healthy participants
of Caucasian origin with normal ocular health.

Design: In this cohort study, MPOD was assessed in 46 healthy participants (22 male and
24 female) with a mean age of 23.8±4.0 years (range 19–33).The three SNPs, rs11645428,
rs6420424, rs6564851 that have established associations with MPOD were determined
using MassEXTEND (hME) Sequenom assay. One-way analysis of variance was performed
on groups segregated into homozygous and heterozygous BCMO1 genotypes. Correla-
tions between body mass index (BMI), iris color, gender, central retinal thickness (CRT),
diet, and MPOD were investigated.

Results: Macular pigment optical density neither significantly varied with BCMO1
rs11645428 (F 2,41=0.70, p=0.503), rs6420424 (F 2,41=0.21, p=0.801) nor rs6464851
homozygous or heterozygous genotypes (F 2,41=0,13, p=0.88), in this young healthy
cohort.The combination of these three SNPs into triple genotypes based on plasma conver-
sion efficiency did not affect MPOD (F 2,41=0.07, p=0.9).There was a significant negative
correlation with MPOD and CRT (r =−0.39, p=0.01) but no significant correlation between
BMI, iris color, gender, and MPOD.

Conclusion: Our results indicate that macular pigment deposition within the central retina
is not dependent on BCMO1 gene variants in young healthy people. We propose that
MPOD is saturated in younger persons and/or other gene variant combinations determine
its deposition.

Keywords: macular pigment optical density, BCMO1, macular carotenoids, lutein, zeaxanthin, macula

INTRODUCTION
Macular pigment is composed of the xanthophyll carotenoids,
lutein (L), zeaxanthin (Z ), and meso-zeaxanthin (MZ ) and has
protective functions including those as an antioxidant and short-
wavelength (blue) light filter within the central retina (1). Macular
pigments cannot be synthesized de novo and must be acquired
via dietary means, whereas MZ is produced as a metabolite of L
within the retina (2). Dietary intake of xanthophylls rich foods,
serum concentration of L and Z, and macular pigment optical
density (MPOD) are all positively correlated in healthy samples
(3). It is widely agreed that accumulation of macular pigment
within the central retina depends on a range of biological processes

including intestinal absorption, transport in serum, and retinal
capture. A complete understanding of these processes, however,
remains elusive (4). Using dietary supplements to influence the
concentration of these carotenoids in the plasma and within the
retina has been extensively studied, but with conflicting results as
to the effect of dietary supplementation on MPOD and protection
from age-related macular degeneration (AMD) (5–9).

Current literature supports the hypothesis that there is no sin-
gle cause for the rate of macular pigment deposition but rather the
interaction of dietary (10), genetic (11), and environmental fac-
tors control macular pigment deposition in an individual (3, 6).
Environmental factors include diet, body mass index (BMI), and
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smoking status. For example, Mares et al. (12) reported that higher
than normal abdominal body fat correlated strongly with lower
MPOD levels. Additional research by Nolan et al. (13) identified
that participants with a family history of AMD, heavy smokers, and
those with a BMI >27 did not show a relationship with serum con-
centrations of L and Z and MPOD whereas participants without
a risk for AMD showed a positive correlation between serum con-
centration and MPOD. The researchers proposed that individuals
at risk for AMD may have compromised function in retinal capture
of macular pigments or macular deposition. Heritable factors such
as iris color and ethnicity may also be important, with a positive
correlation between darker iris colors and higher MPOD (14).

The critical role of gene variants in the determination of MPOD
has only recently received attention among the scientific com-
munity (15–18), with further research being essential to develop
a complete understanding of the pathway to macular pigment
deposition. The main enzyme for vitamin A metabolism is the
enzyme beta-carotene monooxygenase (BCMO1), which cleaves
the non-macular carotenoid beta-carotene (pro-vitamin A) to
produce two identical molecules of retinal (vitamin A) (19). As
such, the cleavage efficiency of BCMO1 is thought to mediate
the competition of macular and non-macular carotenoids for
absorption (20); a high BCMO1 conversion efficiency results in
a lower plasma beta-carotene, hence, higher macular carotenoid
concentration available for deposition within the central retina.
On the other hand, low-BCMO1 conversion efficiency results
in a higher plasma beta-carotene hence less macular carotenoid
available for retinal deposition. Various single nucleotide poly-
morphisms (SNPs) within the BCMO1 gene have been implicated
to modulated BCMO1 action (21, 22) with homozygous geno-
types of either of the three BCMO1 SNPs rs11645428, rs6420424,
and rs6564581 having reduced or increased BCMO1 catalytic
activity, resulting in an increase or decrease in beta-carotene
plasma concentration (22). Homozygous rs6564581 G allele car-
riers have higher beta-carotene but lower lutein and zeaxanthin
plasma levels (21). There is an established association between
BCMO1 SNPs and MPOD (6, 15, 17) but it is not well understood
how genotypes with high- or low-BCMO1 conversion efficiency
affect MPOD, in particular, in persons of different age, gender,
and ethnicity. Feigl et al. (16) provided the initial demonstra-
tion of the effect of the BCMO1 SNPs rs11645428, rs6564851,
and rs6420424 on MPOD variations in a mixed gender group
aged over 50 years. They demonstrated that participants with
rs11645428 GG, rs6564851 GG, and rs6420424 AA genotypes had
lower MPOD compared to the other homozygous and heterozy-
gous BCMO1 genotypes (16). However, this was not evident in
patients with manifest AMD and may also vary with age (23).
The objective of this study was therefore to investigate BCMO1
rs11645428, rs6564851, and rs6420424 genotypes in young healthy
participants (≤35 years) to determine whether the single SNP
genotypes or their combinations can explain the variation in
MPOD in a younger cohort.

MATERIALS AND METHODS
PARTICIPANTS
Participants were recruited in the study according QUT’s human
ethics approval. Participants were included if they were aged

between 19 and 33 years, female or male, of normal general and
ocular health and excluded if they had a color vision deficiency or
were taking supplements containing L or Z. Of the 48 participants
who volunteered, one was excluded due to protanopic congenital
color vision deficiency and one due to zeaxanthin supplemen-
tation. This resulted in a sample of 46 participants eligible for
further testing. All recruitment and experiments were conducted
in accordance with the QUT Human Research Ethics Committee
(QUT ethics approval number 1300000089) and the tenets of the
declaration of Helsinki.

To determine the general health and well-being of the study
cohort the familial and personal medical history was taken
and the BMI was calculated (24). Because dietary intake of
L and Z is positively correlated with MPOD a 7-day food
recall survey, adapted from a validated food frequency ques-
tionnaire (24), was undertaken to determine the consump-
tion frequency of fast foods, fruit, vegetables, and eggs each
week. Scores of 1, 2, or 3 were assigned according to the pub-
lished procedures (24). An ophthalmic examination was per-
formed in all patients including visual acuity, intraocular pres-
sure (i-care, Finland), and optical coherence tomography (OCT)
(FD-OCT, Cirrus, Zeiss Oberkochen, Germany) in accordance
with standard procedures. All participants had normal ocular
health.

A macular pigment densitometer (Macular Metrics II, LLC,
Providence, RI, USA) was used to perform heterochromatic flicker
photometry (HFP). The protocol followed the standardized pro-
tocol for measuring MPOD by HFP (25) and as previously used
in our laboratory (16, 26). All participants were considered naive
to the HFP procedure and underwent brief training and practice
trials before completing the task.

To determine the SNPs within the BCMO1 gene of each
participant, a 2 mL saliva sample was collected with Ora-
gene™ self-collection kits (OG-500, Genotek, Canada). Sam-
ples were stored at −80°C before manual DNA purification,
which was performed according to the manufacturer’s proto-
col and Australian Genome Research Facility (AGRF) (Bris-
bane, QLD, Australia) guidelines. BCMO1 SNPs rs11645428
(SNP1), rs6420424 (SNP2), and rs6564851 (SNP3) were geno-
typed using a commercial genotyping service provided by the
AGRF. The method used employed matrix-assisted laser des-
orption/ionization time-of-flight mass spectrometry to genotype
using a homogenous MassEXTEND™ assay (Sequenom, San
Diego, CA, USA).

DATA ANALYSIS
All statistical analysis was performed using the software SPSS
version 20 (SPSS Inc., Chicago, IL, USA). Initial screening indi-
cated all data met the assumptions of the statistical tests. To
determine whether there was a significant difference between the
three SNP genotypes, either singly or in combination, and MPOD,
a one-way analysis of variance (ANOVA) and post hoc analysis
where necessary, were performed. In addition, a Pearson cor-
relation was performed to determine the relationship between
MPOD, gender, ethnicity, central retinal thickness (CRT), BMI,
and iris color. A p-value of 0.05 was considered as statistically
significant.
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RESULTS
Genotype frequencies were determined for rs11645428, rs6420424,
and rs6564851 (Table 1). Four samples failed the genotyp-
ing assay, resulting in 42 samples for further analysis. Out of
the 42 participants, 19 were male and 23 were female (mean
age= 23.8 years± 4.0 SD). Thirty-eight participants (91%) were
in a healthy weight range, none were underweight or obese, and
four (9%) were overweight. The average BMI of the cohort was
22.40± 2.4 kg. Ethnicity was identified by self-report; 33 (79%)
participants identified European descent and 9 (21%) identified
Asian descent. Smoking status was self reported; five participants,
or 14% of the cohort, identified as casual or habitual smokers.

For BCMO1 SNP rs11645428, the mean MPOD for the
homozygous G allele was 0.52± 0.2 D.U.; the homozygous A allele
was 0.49± 0.1 D.U.; and the heterozygous AG allele was 0.46± 02
D.U. (Figure 1A). There was no significant difference in MPOD
between rs11645428 AA, AG, and GG genotypes (F 2,41= 0.700,
p= 0.503). For the BCMO1 SNP rs6420424, the mean MPOD
for the homozygous A allele was 0.50± 0.2 D.U., the homozy-
gous G allele was 0.51± 0.2 D.U., and the heterozygous GA allele,
0.47± 0.2 D.U. (Figure 1B). There was no significant differ-
ence in MPOD between rs6420424 AA, GA, and GG genotypes
(F 2,41= 0.210, p= 0.81). The mean MPOD for the homozygous
T, G, and heterozygous GT allele for the BCMO1 SNP rs6564851
were 0.50± 0.2 D.U., 0.49± 0.2 D.U., and 0.47± 0.2 D.U., respec-
tively (Figure 1C) and there was no significant difference between
alleles (F 2,41= 0,13, p= 0.88).

While there was no significant effect of single BCMO1 SNPs on
MPOD, we investigated triple genotype combinations based on
BCMO1 plasma conversion efficiency as it has been investigated
in a mixed cohort of participants over the age of 50 years (16).
The triple genotypes were combined as follows; high conversion

Table 1 | BCMO1 rs11645428, rs6420424, and rs6564851 genotype

frequencies.

rs11645428 (SNP1) rs6420424 (SNP2) rs6564851(SNP3)

GG 16 (38%) AA 10 (24%) GG 8 (19%)

AG 19 (45%) GA 20 (48%) GT 21 (50%)

AA 7 (17%) GG 12 (28%) TT 13 (31%)

(SNP1 AA/SNP2 GG/SNP3 TT), low conversion (SNP1 GG/SNP2
AA/SNP3 GG), and medium conversion (remaining SNP1, SNP2,
and SNP3 genotypes) frequencies are given in Table 2. The mean
MPOD for high, low, and medium triple BCMO1 conversion
genotypes were 0.49± 0.2 D.U., 0.54± 0.2 D.U., and 0.48± 0.1
D.U., respectively (Figure 2), which were not significantly different
(F 2,41= 0.07, p= 0.9).

A Pearson correlation showed that MPOD was not signifi-
cant correlated with gender (p= 0.3), BMI (p= 0.7), iris color
(p= 0.8), and smoking status (p= 0.5) whereas CRT was nega-
tively correlated (r =−0.39, p= 0.01). The results of 36 partic-
ipants who completed the dietary questionnaire demonstrated
that participants with the lowest dietary score (score 1; n= 3)
had on average a lower MPOD (0.30 D.U.± 0.21) compared to
those participants with the highest score (score 5; n= 5) who had
an MPOD of 0.55 D.U.± 0.13. The remaining participants with
scores 2 (n= 8), 3 (n= 15), and 4 (n= 5) had an average MPOD of
0.5 D.U.± 0.15, 0.46 D.U.± 0.15, and 0.48 D.U.± 0.1, respectively.

DISCUSSION
The results show that in a mixed cohort of younger partici-
pants (≤33 years of age), there was no significant difference in
MPOD between the three BCMO1 SNPs rs11645428, rs6420424,
and rs6564851 that have been shown to affect MPOD in older per-
sons (16). Our results further demonstrate that MPOD does not
significantly vary between “high-plasma conversion,” “medium,”
and “low conversion” triple BCMO1 genotypes. This suggests that
these BCMO1 SNPs do not play a significant role in determining
MPOD in this young, healthy cohort.

Feigl et al. (16) demonstrated a significant effect of each of
these three SNP genotypes and their combinations on MPOD lev-
els in an older cohort (Mean age: 56± 5 years) in support of the
hypothesis that BCMO1 mediates macular pigment uptake. The
observation that BCMO1 SNP genotypes correlated with MPOD
variation in older healthy participants but not in the younger
cohort in the current study, indicates that age may have an effect
on macular pigment transport and/or deposition mechanisms.

The point of MPOD saturation or maximal MPOD in a given
cohort has been observed in numerous supplementation studies
(5, 27) but remains variable between individuals (28). More-
over, differences between study protocols, especially participant
age, macular pigment supplement formulation, and the length of

FIGURE 1 | (A–C) Macular pigment optical density as a function of (A) BCMO1 rs11645458, (B) BCMO1 rs6450424, and (C) BCMO1 rs6564851 genotypes
(error bars indicate ±SD). There is no significant difference in MPOD between homozygous and heterozygous genotypes.
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Table 2 | BCMO1 triple genotype frequencies and MPOD.

Triple

genotypes

SNP1AA/

SNP2GG/

SNP3TT

SNP1GG/

SNP2AA/

SNP3GG

Remaining

genotypes

Frequency 6 (14%) 7 (16%) 29 (69%)

MPOD D.U.±SD 0.49±0.2 0.54±0.2 0.48±0.1

FIGURE 2 | Macular pigment optical density as a function of high- and
low-BCMO1 plasma conversion triple genotypes and remaining
genotypes. There was no significant difference between MPOD within the
genotypes.

study, may make finding an appropriate mean value for saturated
MPOD difficult to predict. Over the last decade, numerous stud-
ies of MPOD have been carried out in many age groups (Table 3).
Figure 3 plots the MPOD values from these studies listed in Table 3
as a function of the cohort age and the mean MPOD decreases with
age. Our findings support the hypothesis that in younger cohorts,
the macular pigment may be saturated in the macula and there-
fore any competition for absorption would be inconsequential.
On the other hand, older cohorts with lower mean MPOD would
be affected by the rate of competition for macular pigment depo-
sition within the central retina. We postulate that in younger age
groups, BCMO1 may not be the rate determining factor of macu-
lar pigment density. This macular pigment saturation hypothesis
is supported by the results from a study by Yonova-Doing et al. (6).
In their sample of 310 healthy twins, the BCMO1 SNP rs11645428
was correlated with baseline MPOD prior to supplementation.
However, after supplementation of L and Z, this polymorphism
was no longer significantly affecting MPOD. This may indicate
that the threshold for a BCMO1 effect on MPOD had been sur-
passed with the increased levels of L and Z, similar to a young
cohort with a healthy diet as apparent in our current study.

The carotenoids L and Z accumulate in the macula, serv-
ing as a “sink” (36) to the exception of all other non-macular
carotenoids and their highly selective uptake is indicative of one
or more specific transport and/or binding proteins. It is possible
that a combination of these transporter proteins and receptors
may be responsible for the variation in MPOD seen between
younger and older cohorts. Recent findings on intracellular mac-
ular carotenoid transport mechanisms and selective retinal bind-
ing proteins (36–38) have produced insightful results, suggesting

Table 3 | Studies measuring MPOD (HFP, 1° foveal stimulus), ordered

according to increasing age.

Study Sample

size

Age range and/

or mean ± SD

Mean

MPOD ± SD

Zheng et al. (29)a 94 6–12 years, 9.5±1.63 years 0.56±0.25

Tang et al. (30)b 67 18–23 years 0.48±0.23

Current Study a 42 19–33, 23.8±4 years 0.49±0.16

Nolan et al. (31)a 800 20–60, 41.94±11.62 0.30±0.17

Berendschot and

van Norren (32)b
53 50±16 years 0.30±0.17

Beatty et al. (33)b 46 51±18 years 0.29±0.16

Nolan et al. (34)b 79 18–60, 65±11 years 0.25±0.17

Iannaccone et al.

(35)a
222 79.1±3.2 years 0.34±0.23

aParafoveal stimulus 7°.
bParafoveal stimulus between 4° and 6°.

FIGURE 3 | Mean macular pigment optical density as a function of
mean age ± SD, collated from eight representative studies of
heterochromatic flicker photometry.

numerous locations where MPOD variance may be introduced
between individuals that may be largely genetically determined (4,
11,18,39). Macular carotenoids are believed to share an absorption
pathway with cholesterol and the cholesterol transporter protein,
scavenger receptor class B, member 1 (SCARB1), plays a role
in their intracellular uptake in the intestines (40). In particular,
SNPs within the SCARB1 gene modulate lutein uptake (40). We
also investigated the three SCARB1 SNPs; rs5888, rs10744182, and
rs838879 in a pilot study (unpublished data) that were previously
associated with carotenoid metabolism and MPOD (6, 17, 41). In
this pilot, there was no significant difference in MPOD between
SCARB1 SNP rs5888 and rs10744182 genotypes but in a small
sample size (n= 3) the SNP rs838879 affected MPOD in such way
that participants with the homozygous G allele had on average
higher MPOD compared to the homozygous A and heterozygous
GA allele. The number of participants with the GG genotype, how-
ever, was low and further studies are needed to confirm whether
SCARB1 rs838879 GG is associated with higher MPOD.

We found a significant negative correlation between CRT and
MPOD as previously reported (42) with higher MPOD values
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in persons with thinner CRT. Whether this can be related to a
ring-like structure of MPOD distribution cannot be determined
in this study as MPOD was only measured centrally with a 1°
stimulus. Gender, iris color, and smoking were not found to be
associated with MPOD in the present study. Hammond et al. (43)
found a significant relationship between current smoker frequency
and MPOD in participants aged between 17 and 92 years, suggest-
ing that heavier smoking (>10 cigarettes a day) was related to
lower MPOD. Given this younger cohort had only six smokers, we
do not have sufficient statistical power to draw a conclusion. Over-
all participants with the lowest dietary score had on average lower
MPOD (0.30 D.U.± 0.21) compared to those with higher dietary
scores. However, this survey is limited as there was a low number
of participants with low scores and a larger number of participants
with a healthy balanced diet, supporting the saturation hypothesis.

In summary, this is the initial demonstration that in a mixed
gender cohort of young participants aged≤33 years, BCMO1 SNP
genotypes do not explain variations in MPOD, whereas they have
previously been shown to play a role in MPOD in older par-
ticipants (16). We propose that the rate determining factor of
macular pigment deposition within the retina is dependent on
different genetic factors between young and older cohorts. The
determining factors of MPOD in older participants may be related
to carotenoid uptake whereas for young participants, MPOD may
be determined by transport proteins. Further investigation into
the biochemical pathway of macular pigment deposition and its
genetic determinants are essential to the goal of protecting the
macula from oxidative stress and preventing the onset of AMD
through macular pigment augmentation.
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