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Consumption of Substances of 
Abuse during Pregnancy increases 
Consumption in Offspring: Possible 
Underlying Mechanisms
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Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA

Correlative human observational studies on substances of abuse have been highly 
dependent on the use of rodent models to determine the neuronal and molecular mech-
anisms that control behavioral outcomes. This is particularly true for gestational exposure 
to non-illicit substances of abuse, such as excessive dietary fat, ethanol, and nicotine, 
which are commonly consumed in our society. Exposure to these substances during the 
prenatal period has been shown in offspring to increase their intake of these substances, 
induce other behavioral changes, and affect neurochemical systems in several brain areas 
that are known to control behavior. More importantly, emerging studies are linking the 
function of the immune system to these neurochemicals and ingestion of these abused 
substances. This review article will summarize the prenatal rodent models used to study 
developmental changes in offspring caused by prenatal exposure to dietary fat, ethanol, 
or nicotine. We will discuss the various techniques used for the administration of these 
substances into rodents and summarize the published outcomes induced by prenatal 
exposure to these substances. Finally, this review will cover some of the recent evidence 
for the role of immune factors in causing these behavioral and neuronal changes.

Keywords: prenatal fat, prenatal ethanol, prenatal nicotine, inflammation, ingestive behavior

iNTRODUCTiON

Scientific research has relied heavily on the use of animal models to identify various characteristics 
of diseases and disorders found in humans. These animal models serve an important purpose when 
there is limited ability to ethically evaluate such disorders in humans. Most limiting in human 
research are studies of embryonic development and the effects produced by exposure to substances 
of abuse, such as alcohol, nicotine, and dietary fat, which occur as a result of voluntary maternal 
consumption. In humans, ingestion of alcohol during pregnancy triggers neurological disorders and 
increases the risk of fetal alcohol syndrome in the offspring (1, 2), effects subsequently confirmed 
and characterized using animal models (3–5). Also, smoking during pregnancy increases the risk 
of a decrease in birth weight (6, 7) and multiple behavioral problems (8), including attention deficit 
disorders (9) and increased propensity to abuse drugs (10, 11). In human observational studies, 
increased intake of dietary fats and obesity during pregnancy are found to increase the risk for 
dietary obesity in offspring (12–14).

Further testing of these physiological and behavioral changes using animal models exposed to 
substances of abuse have revealed disturbances in the development of neuronal circuits that modulate 
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both homeostatic and reward pathways (15–17). The main  players 
involved include a variety of neuropeptides that are found in vari-
ous regions of the hypothalamus and forebrain and are shown to 
modulate neuronal function that may ultimately contribute to 
the behavioral changes in offspring. These behavioral changes 
include an increased propensity to ingest these substances of 
abuse (15–18), with a significant crossover effect from one sub-
stance to another (19). Although great strides have been taken to 
characterize these changes in neurochemical systems that control 
behavior, the molecular mechanisms involved in producing these 
disturbances in the brain have yet to be determined.

In addition to these neurochemicals, the field of ingestive 
behavior has recently focused attention on immunology. These 
new studies build on prior research of neurological disorders and 
neurodegenerative diseases, which show the immune system to 
play a large part in the health, function, and development of neu-
rons and other cell types in the central nervous system (20–24), 
along with the development of embryos (25, 26). Recently, both 
human and animal observational studies have demonstrated that 
exposure to these substances of abuse, in addition to altering clas-
sical neuropeptide and neurotransmitter systems, also disturbs 
inflammatory systems in key regions of the brain that control 
ingestion and related behaviors (17, 27, 28). Prenatal inflamma-
tion itself has been shown to increase the risk of developing neu-
rological disorders and diseases, such as autism (29, 30) and other 
psychiatric disorders (31), which the offspring are at a higher risk 
of developing when exposed during gestation to substances of 
abuse (32–35).

To understand these neurochemical and immune systems 
affected by prenatal substance exposure and their possible role in 
promoting consummatory and other behaviors in the offspring, 
the use of animal models involving prenatal manipulations is 
clearly essential. This review will cover the current techniques 
used to perform prenatal studies using rodent models and their 
general conclusions about the neuronal changes induced by 
embryonic exposure to environmental substances. It will also 
summarize the current research linking these neuronal and 
neurochemical changes to inflammatory systems, focusing on 
the three most commonly abused substances, dietary fat, alcohol, 
and nicotine.

eXPeRiMeNTAL MeTHODS USeD TO 
iNTRODUCe eNviRONMeNTAL FACTORS 
iNTO PReGNANT RATS

There are a few factors that must be taken into consideration 
when designing an experiment using a rodent model. The first 
is to choose the appropriate rodent strain to use in your model, 
with various strains having different preferences for different 
substances. Rat strains with a preference for dietary fats include 
Sprague-Dawley (36), Brattleboro (37, 38), and Zucker (39), with 
the latter having an obese phenotype. In alcohol studies, several 
different strains are used, including outbred rats such as Wistar 
(40) and Long-Evans (41), and also genetically modified rats that 
have increased alcohol intake, such as ALKO alcohol (42), high 
alcohol drinking or HAD (40), and Sardinian preferring (sP) (43) 

rats. In nicotine research, rats have been found to show  differences 
in behavioral effects between different strains (44, 45) that are 
attributed to genetic variability. Some of the rat strains used in 
nicotine studies include Sprague-Dawley (46), Long-Evans (47), 
Lewis (48), Holtzman (49, 50), and Wistar (51).

The second factor is choosing the method for administering 
the substance of abuse. This can be broken down into two main 
paradigms, forced or choice. The forced paradigm does not give 
the animal a choice in intake, with the substance being the only 
option or its administration being forced. This is in contrast to a 
choice paradigm, whereby the animal has one or more competing 
substances to choose from, with one of the options generally being 
a control substance, such as chow or water. Studies on dietary fat 
have used both choice and forced paradigms, with some reports 
using a combination of the two. Generally, a high-fat and a low-fat 
diet are made available to the rat, with intake measured daily (52, 
53). In combination paradigms, rats are exposed to the high-fat 
diet in conjunction with their usual diet for a period of several 
days until acclimation to the new diet is achieved, after which the 
high-fat diet is given as the only choice (52, 53). Under forced 
conditions, rats may be given an oil emulsion via oral gavage 
(54). Studies of ethanol and nicotine, in choice paradigms have 
used both methods of self-administration (55, 56) and two bottle 
conditions (57–59). Generally, the concentration of ethanol or 
nicotine is given in intervals, ranging from a low to high con-
centration, until the desired concentration is reached (60, 61), 
with some groups combining palatable sucrose with ethanol or 
nicotine until voluntary drinking of the drug is established (62). 
Forced exposure methods, in contrast, include oral gavage, direct 
injection into the peritoneal cavity (61, 63), intravenous infusion 
(64), a liquid diet (65), or having the substance as a sole liquid 
source (66–69).

In studies relating inflammation to ingestive behavior, a 
specific inflammatory mediator or an agent that induces inflam-
mation, such as lipopolysaccharide, can be administered to any 
area of the rat through injection. This includes systemic infusion 
(70), intraperitoneal injection (71, 72), or use of an osmotic mini-
pump (73–75).

These methods are only a brief summary, with a wide range 
of models and rodents used to study the effects of prenatal 
exposure. Once a particular model is well established, further 
measurements of behavior in tissues and cells of different type can 
be extensively performed. The sections below will focus on our 
current understanding of how prenatal exposure to substances of 
abuse affect neuronal systems that control behavior in offspring 
and how the inflammatory response may be a factor in promoting 
those changes (Figure 1).

PReNATAL HFD eXPOSURe

Animal models investigating the effects of excessive HFD intake 
during pregnancy have revealed several changes in both the 
physiology and behavior of offspring. Prenatal exposure to a 
HFD has been shown to induce several effects in offspring. These 
include increased body weight, faster weight gain, and larger 
fat pads (15, 76–78), as well as behavioral changes that include 
increased ingestion (15, 52, 76), autism spectrum disorders (32, 

http://www.frontiersin.org/Nutrition
http://www.frontiersin.org
http://www.frontiersin.org/Nutrition/archive


FiGURe 1 | Cycle of substance exposure. The schematic depicts the 
current hypothesis of a simplified positive feedback loop involving prenatal 
exposure to substances of abuse that stimulate inflammatory systems. This 
inflammation may be involved in stimulating neuropeptides that further 
increase ingestive behavior, thus leading to a cyclical increase in exposure 
during the prenatal period with negative outcomes in the offspring.

FiGURe 2 | effects of prenatal HFD exposure on offspring brain. A schematic summarizing some of the changes that occur in the brains of offspring after 
being exposed to a HFD during gestation. GAL, galanin; ENK, enkephalin; OX, orexin; MCH, melanin-concentrating hormone; DA, dopamine; TH, tyrosine 
hydroxylase; MOR, μ-opioid receptor; CRF, corticotrophin releasing factor; BDNF, brain-derived neurotrophic factor; NGF, nerve growth factor.
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33), depression (79), and attention hyperactive disorders (80) 
along with a decrease in spatial memory acquisition (78,  81). 
Increased understanding of the neuronal systems involved 
in invoking these behavioral changes is made possible by the 
numerous animal models used to study these phenomena. These 
behavioral changes have been attributed to changes in the neu-
rochemistry of various brain regions involved in homeostatic, 
reward, emotional, and memory processes (Figure 2) and, more 
recently, to changes in inflammatory processes.

Prenatal HFD exposure Alters 
Hypothalamic Neurocircuitry
Changes in specific brain areas caused by prenatal HFD 
exposure seem to control different aspects of HFD intake. The 
change in homeostatic processes occurs in the hypothalamus, 
a region important in controlling ingestive behavior. Several 
lines of evidence show prenatal exposure to a HFD to produce 
changes in both the developing embryo and in adolescent and 
adult offspring. These include an increase in the neurogenesis of 

hypothalamic orexigenic peptide neurons (15, 82), with increased 
synthesis of the peptides that further induce HFD intake (15). 
These neuropeptides include galanin and enkephalin in the 
medial paraventricular nucleus (15, 83), orexin and melanin-
concentrating hormone in the perifornical lateral hypothalamus 
(15), and also ghrelin in the midbrain (84).

Prenatal HFD exposure Alters vTA–NA 
System in Offspring
The centers controlling the rewarding aspects of intake consist 
of the ventral tegmental area (VTA) and the nucleus accumbens 
(NA) core and shell, which contain the dopaminergic signaling 
system, μ-opioid receptors, and glutamatergic inputs that are 
activated by rewarding substances (85, 86). Similar to drug addic-
tion (85), prolonged intake of a HFD has been shown to block 
dopamine reuptake and enhance dopaminergic function (87). 
Similarly, exposure to this diet during the prenatal period has 
been found in adult offspring to increase the levels and expres-
sion of dopamine in the NA core and decrease the expression of 
tyrosine hydroxylase in the VTA, thus decreasing the formation 
of dopamine (88, 89). Reduced expression of the μ-opioid recep-
tor (89) and increased levels of enkephalin are also found in the 
VTA and NA regions, with injection of an enkephalin analog into 
the NA shown to increase HFD intake (90, 91). Similar changes 
in dopamine, dopamine transporter, and μ-opioid receptor 
have been found in other studies using maternal junk food or 
obesity-prone offspring (92, 93), in addition to a reduction in 
dopamine release in the nucleus accumbens and other terminal 
sites of dopamine release (92). These studies suggest that prenatal 
HFD exposure markedly alters the reward pathway, inducing a 
compensatory mechanism that leads the offspring to ingest exces-
sive amounts of dietary fat to obtain a rewarding feeling caused 
by the reduced dopamine function (88, 92). Epigenetic changes 
involving hypomethylation are also found for the dopamine 
transporter, μ-opioid receptor, and enkephalin, suggesting long-
term changes and consequences in offspring (89). While studies 
in the VTA–NA system have mostly focused on dopamine and 
agonists of the μ-opioid receptor, other targets are also involved. 
These include ghrelin, a neuropeptide, known to stimulate the 
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FiGURe 3 | Colocalization of CCR2 and enkephalin in hypothalamic 
neurons. Hypothalamic neurons extracted from chow-exposed embryos 
showing CCR2 to colocalize with the orexigenic peptide, enkephalin (orange). 
Scale: 25 μm. Green: enkephalin, red: CCR2, and blue: dapi.
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rewarding effects of food intake (94) and promote the rewarding 
feeling of food intake (95), which is also abundantly expressed in 
the VTA and found to increase HFD feeding after injection into 
the VTA (84).

Prenatal HFD Has Global effects on Other 
Areas of the Brain in Offspring
Other brain regions also show permanent changes that affect 
behavior. In the hippocampus, prenatal HFD exposure in offspring 
decreases expression and levels of proteins that are involved in 
memory function, such as brain-derived neurotrophic factor, 
nerve growth factor, and synaptophysin, suggesting a delay in 
memory acquisition (78, 81). The transcription of genes control-
ling executive function in the prefrontal cortex is also markedly 
increased by dietary fat in offspring (96). The emotional aspect 
of feeding, controlled by the amygdala, has been found in adult 
rats to evoke several changes in neurochemical pathways (97, 98) 
that in turn may induce changes in anxiety as well as feeding. 
Although there are only a few studies of prenatal HFD exposure 
that have examined the amygdala, there is some evidence that 
altered functioning of this brain region is involved in emotional 
changes in offspring that may further promote consumption. 
Exposure to a fat-rich diet during the prenatal period causes in 
offspring an increase in corticosteroid receptors in the amygdala 
(99). This exposure also increases anxiety in an open field, an 
elevated plus maze, and during light–dark transition tasks, while 
increasing corticosteroid levels in response to stress (99), sug-
gesting an overall increase in the stress response and thus anxiety. 
These responses have been reported to increase ingestive behavior 
in attempt to reduce stress (100–102). These global brain changes 
affecting decision-making may be involved in both the impulsive 
and rational choice to overeat.

Prenatal HFD induces epigenetic Changes 
in Offspring
The effect of a HFD during the prenatal period on gene expression 
in developing neurons is thought to be attributed to epigenetic 
changes. In human adults, several studies in peripheral tissue 
reveal alterations in histone modification at promoters of proteins 
that are affected by dietary fat (103) and in methylation in specific 
tissue such as skeletal muscle (104). Prenatal exposure to a HFD 
has also been shown to alter methylation or microRNA expres-
sion in placental tissue (105) and adipose tissue (106, 107). That 
epigenetic changes may be transmitted to offspring is indicated 
by studies showing a generational effect on specific genes during 
dietary protein restriction (108, 109). While there is little evidence 
on the epigenetic effects of prenatal HFD exposure in neurons 
of embryos and postnatal offspring, several reviews exist that 
describe global metabolic epigenetic changes in the periphery 
(110, 111), indicating the need for more such studies in the brain.

Relationship between Dietary Fat and 
inflammation
While several studies examining the effects of acute and chronic 
inflammatory mediators in adult obese animals have revealed 
an increase in fat intake and weight gain (112), evidence from 

prenatal inflammatory studies is more limited. Early findings 
show chronic HFD intake to induce a systemic low-grade inflam-
mation characterized by an increase in cytokines and chemokines 
(113, 114). This HFD intake also increases the activation of several 
inflammatory signaling pathways, such as jun amino-terminal 
kinases, nuclear factor kappa light-chain enhancer, inhibitor of 
nuclear factor kappa-B kinase subunit beta, peroxisome prolifera-
tor-activator receptor, and toll-like receptors (115–118). Chronic 
treatment with an agent, such as lipopolysaccharide, that induces 
inflammation can increase body fat mass and caloric intake, and 
these effects are exacerbated by a HFD (119), suggesting a strong 
link between HFD and inflammation. More recent studies have 
uncovered a major role for chemokines, specifically CCL2, which 
is affected by a HFD and may also mediate neuronal function. 
This chemokine has been found early on to be increased in obese 
animals and during HFD intake (120) and, along with its recep-
tor CCR2, is found in all of the key brain areas involved in HFD 
ingestion (121, 122). Furthermore, blocking the CCR2 receptor 
with an antagonist is shown to improve symptoms of obesity and 
decrease food intake (123, 124). In limited studies, prenatal HFD 
exposure has been found to increase CCL2 in peripheral organs, 
such as the liver, in offspring (125).

Recent studies from our lab have found a positive relation-
ship between CCL2 and both the migration and expression of 
orexigenic peptide neurons in primary hypothalamic neurons 
(126). Exposing cultured embryonic hypothalamic neurons to 
increasing levels of CCL2 revealed a dose-dependent increase 
in migration as well as expression of the orexigenic peptides, 
enkephalin, and galanin in neurons (126). These hypothalamic 
enkephalin-expressing neurons are found to co-express the 
receptor, CCR2 (Figure 3), with CCL2 treatment increasing the 
number of colocalized neurons (126), suggesting an important 
role for this chemokine in neuronal growth during the prenatal 
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FiGURe 4 | effects of prenatal ethanol exposure on offspring brain. A schematic summarizing some of the changes that occur in the brains of offspring after 
being exposed to low levels of ethanol during gestation. GAL, galanin; ENK, enkephalin; OX, orexin; MCH, melanin-concentrating hormone; CRF, corticotrophin 
releasing factor; ACTH, adrenocorticotropic hormone; DA, dopamine; GABA, γ-aminobutyric acid.
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period. In addition, in rats exposed to a HFD during gestation, this 
chemokine system is found to be greatly altered (127). Prenatal 
HFD exposure decreases expression of CCL2 while increasing the 
expression of its receptors, CCR2 and CCR4, in the hypothalamus, 
and these HFD-exposed neurons are found to exhibit markedly 
reduced sensitivity to the actions of CCL2 on neuronal migra-
tion and peptide expression. With this limited evidence raising 
new but interesting questions, future studies using the prenatal 
HFD and prenatal inflammation models should shed light on the 
molecular mechanisms leading to the neuronal changes and, in 
turn, altering ingestive behavior in the offspring.

PReNATAL eTHANOL eXPOSURe

Original ethanol studies have shown that exposure during the 
prenatal period to high levels of alcohol is associated with develop-
ing fetal alcohol spectrum disorder in offspring (1–5), with many 
negative developmental, behavioral, and physiological outcomes 
(128, 129). These high levels of alcohol, within 20–30% or 6 g/kg/
day range, decrease the development of neurons in several brain 
areas (40, 130–132) and additionally induce epigenetic changes in 
fetal DNA (133–135). Currently unknown are the effects of low 
levels of alcohol consumption, within 5% or 1–2 g/kg/day range 
(16, 136–138), on fetal development and ultimately on offspring 
behavior. Recent studies have demonstrated that low levels of 
ethanol exposure during gestation induce several behavioral, 
neurochemical, and developmental effects, similar to prenatal 
HFD exposure that are caused by changes in brain regions 
involved in homeostasis, reward, emotional, memory, and inflam-
matory processes. These changes are thought to induce excessive 
drinking (16, 137–139), increased preference (17, 139, 140), and 
reinforcement (141, 142) for ethanol in offspring during the 
adolescent period to adulthood. These low levels have also been 
linked to other behavioral changes, such as hyperactivity (74). 
While ethanol has several targets in many brain regions, studies 
of low ethanol levels are lacking. This review will summarize 
some of the current findings in the field (Figure 4).

Low Levels of ethanol exposure Alters 
Hypothalamic Neurocircuitry in Offspring
In the hypothalamus, the same orexigenic neuropeptides 
known to stimulate HFD intake, namely enkephalin, galanin, 
orexin, and melanin-concentrating hormone, are also found to 
stimulate ethanol intake [for review, see Ref. (143); (17)]. While 
different neurochemical systems in the brain are known to be 
altered by prenatal exposure to ethanol (144–146), the stimula-
tory effects of prenatal ethanol on these specific neuropeptides 
are particularly notable, given the potency of their effects on 
behavior and the sensitivity of the peptide neurons to low doses 
of ethanol (16, 147). A study from our group has also found 
low levels of ethanol to increase the genesis of hypothalamic 
neurons containing enkephalin, orexin, galanin, and melanin-
concentrating hormone (16, 17). Additionally, prenatal ethanol 
exposure is shown to affect stress hormones in the hypothala-
mus, causing in adolescent and adult offspring an increase in 
the expression of corticotropin-releasing factor (CRF) in the 
hypothalamic paraventricular nucleus (144, 148–149) along 
with levels of corticosterone (144) and also adrenocorticotropic 
hormone in this same region (144, 150). Prenatal ethanol also 
increases the levels of these peptides and hormones in response 
to stress (151–154), with increased stress linked to further 
consummatory behavior (155–157). Not surprisingly, the CRF 
system has been linked to addiction of other substances of abuse 
(158), including dietary fat.

Low Levels of ethanol exposure Alters 
vTA–NA Center in Offspring
Several studies have linked low levels of ethanol during the prenatal 
period to changes in the mesolimbic area. Increased neurogenesis 
of enkephalin neurons is found in the NA shell (16), with overall 
increased levels of enkephalin in both the VTA (159) and NA 
core (147, 160). These changes may significantly increase ethanol 
intake in offspring, as high levels of enkephalin have been shown 
to activate dopamine terminals in the NA (161, 162). The effects 
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of prenatal ethanol on the dopaminergic system in these brain 
regions are also significant, with the VTA having an increased 
response to dopaminergic agonists and the NA having increased 
sensitivity to the stimulatory effects of alcohol in offspring (137, 
163, 164). Although ghrelin has been found to be involved in the 
rewarding feeling of alcohol (165), there are currently no studies 
on how low ethanol levels during the prenatal period affects this 
peptide and other neurochemical systems in these brain regions 
of offspring.

Prenatal ethanol Has Global effects on 
Other Areas of the Brain in Offspring
While there exists plenty of research describing the effects of high 
gestational ethanol exposure on the developing brain, there are 
only a few studies measuring the effects of low ethanol exposure 
on other brain areas not discussed above. Some of the findings 
include an ethanol-induced increase in progenitor cell prolifera-
tion in the basal ganglia (166) and a decrease in neural activity 
in the infralimbic cortex (164). They also include increased 
neurogenesis in regions of the hippocampus (167). The amygdala 
has been suggested to be affected by low levels of ethanol during 
the prenatal period. Offspring exposed to low ethanol display 
anxiety-like behavior when exposed to stressful conditions, and 
this behavior has been related to both an increase in synaptic 
connectivity in the basolateral amygdala (168) and a decrease in 
GABA inhibition (169), both of which stimulate the excitability 
of the amygdala (168, 169). Further studies on the effects of low 
ethanol concentrations in these other brain regions are needed 
to determine the extent of ethanol’s action on neuronal develop-
ment throughout the brain.

Prenatal ethanol induces epigenetic 
Changes in Offspring
There are several studies that reveal high ethanol exposure dur-
ing the prenatal period to induce dramatic epigenetic changes 
in offspring. The adult liver provides a clear example, with high 
levels of ethanol exposure found to alter DNA methylation related 
to alcoholic liver disease (170–172). Also, chronic maternal etha-
nol exposure is shown to decrease methylation at a gene called 
agouti viable yellow, which affects the color of their coat, that is 
passed down to offspring (173), while acute prenatal exposure to 
high levels of ethanol globally causes hypomethylation of DNA 
in embryos (133). Long-term prenatal exposure to high ethanol 
levels also induces changes in methylation and microRNA in 
hippocampal neurons (174). In light of these studies of high 
ethanol exposure, further investigations of epigenetic effects are 
clearly needed involving low concentrations of ethanol, which 
as described above have strong, stimulatory effects on neuronal 
development in the brain.

Relationship between ethanol and 
inflammation
Although only a few studies exist, ethanol intake has also been 
linked to inflammatory systems. The most commonly studied 
peripheral organ is the liver, with excessive drinking linked to 

alcoholic liver disease that increases inflammatory mediators 
(175, 176). More recent studies in adult animals have also shown 
ethanol exposure to stimulate inflammatory systems in the central 
nervous system. Endotoxin treatment after ethanol exposure has 
been found to induce a long-term inflammatory state in the brain 
(177) and increase nitric oxide synthase and cyclooxygenase, 
which lead to inflammation (178). This increase in inflamma-
tion has also been detected in offspring after prenatal exposure. 
Similar to prenatal HFD exposure, our lab recently found prenatal 
ethanol to induce several changes in the CCL2 chemokine system. 
We found low levels of ethanol during gestation to increase in 
the offspring the genesis of neurons that co-express CCR2 and 
melanin-concentrating hormone in the lateral hypothalamus (17), 
a neuropeptide implicated in excessive ethanol drinking (179). 
With current research showing low levels of ethanol exposure to 
increase drinking in offspring and produce changes in the immune 
system that ultimately affects neuronal function, future research on 
inflammatory systems could be very informative and important.

PReNATAL NiCOTiNe eXPOSURe

The effects of prenatal nicotine exposure are broad in nature, 
affecting both behavioral and neuronal development in several 
regions of offspring brain. Human studies show that children 
exposed to tobacco during gestation exhibit an increased risk for 
tobacco use, craving, and withdrawal (180), as well as depend-
ence (181). Animal studies similarly reveal increased nicotine 
self-administration and consumption in adolescent and adult 
offspring (182–185), along with increased ingestion of other 
substances including fat and ethanol (18). Additional behavioral 
problems include an increased risk of hyperactivity (186), impul-
sivity (185), and anxiety (34, 35). High levels of nicotine exposure 
are also associated with detrimental effects, such as growth retar-
dation (187). While these nicotine studies lead one to question 
whether these changes are attributed to certain chemicals from 
the tobacco (188, 189) rather than to nicotine itself and result 
from social smoking as well as chronic smoking, the overall 
evidence clearly demonstrates that prenatal nicotine exposure 
negatively affects offspring. Similar to prenatal HFD and ethanol 
exposure, these changes in physiology and behavior induced by 
nicotine or smoking may be attributed to neuronal changes in the 
offspring brain (Figure 5).

Prenatal Nicotine exposure Alters 
Hypothalamic Neurocircuitry
Similar to dietary fat and ethanol, prenatal nicotine exposure has 
been found to affect the neuronal architecture and function of 
the hypothalamus. Several neuropeptides have been found to be 
altered in offspring during exposure to both low and high levels of 
nicotine. Some of the findings include a decrease in CRF and an 
increase in glucocorticoid receptors in the hypothalamus (190). 
They also show an increase in several orexigenic peptides, includ-
ing neuropeptide Y, agouti-related peptide, and proopiomelano-
cortin in the arcuate nucleus (191), enkephalin in the medial 
hypothalamic paraventricular nucleus, and orexin and melanin-
concentrating hormone in the perifornical lateral hypothalamus 
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(18, 192). One of the more important findings from our lab shows 
that exposure to nicotine actually stimulates the genesis of neu-
rons that express enkephalin, orexin, and melanin-concentrating 
hormone in the offspring hypothalamus (18), with these peptides 
positively related to the intake of nicotine (193). A small number 
of epigenetic studies also show changes in DNA methylation of 
the gene encoding brain-derived neurotrophic factor in human 
studies (194, 195), revealing the need for further epigenetic stud-
ies of specific cell types.

Prenatal Nicotine exposure Alters  
vTA–NA Center in Offspring
Prenatal nicotine exposure has been found to varying degrees to 
change neurons in the VTA and NA in offspring. With regards 
to the mesolimbic dopamine system, prenatal nicotine exposure 
decreases the number of dopaminergic neurons in the VTA 
(196), dopamine release from the NA (197, 198), and the number 
of dopamine binding sites in the striatum (199), altering the 
rewarding effects of nicotine in offspring. Neuronal connections 
to the VTA are also affected, with orexin innervation from the 
lateral hypothalamus to the VTA found to be increased (192). 
Additionally, prenatal nicotine reduces the number of nicotinic 
cholinergic receptor expression in both the VTA and NA core 
(196). Similar to the neurogenesis effect in the hypothalamus, 
prenatal nicotine increases cell survival in the NA and inhibits 
cell death related pathways (200), with this increase in cell sur-
vival consistent with the finding that prenatal nicotine exposure 
increases the nerve growth factor, BDNF (201). Further studies 
on this reward region in offspring will shed more light on how 
prenatal exposure reprograms offspring to become more prone 
to abusing nicotine.

Prenatal Nicotine Has Global effects on 
Other Areas of the Brain in Offspring
Prenatal nicotine exposure has been found to affect several other 
brain regions in offspring. In the hippocampus, this exposure 

decreases the number of neurons (202) while increasing the 
number of astrocytes (202), and it also decreases the neuronal 
area and cell size (203, 204), suggesting decreased hippocampal 
function. Similar effects are also found in the cortex of early 
postnatal rats (205), pre-weaned rats (204), and embryos (206), 
with studies revealing fewer glutamatergic neurons (207). These 
changes in the cortex induced by prenatal exposure have been 
linked to cognitive deficits and impaired executive control, caus-
ing rats to be more impulsive (208). Similar to the VTA and NA, 
dopamine levels are also decreased in the cortex of postnatal 
offspring (209). In the amygdala, one study found nicotine 
exposure to reduce the size of the amygdala in adolescent off-
spring (210), while a recent study from our lab has described an 
increase in neurogenesis and expression of enkephalin neurons 
in the central amygdala (18). With nicotine intake shown to 
generally reduce anxiety, future studies with prenatal exposure 
that relate behavior to amygdaloid function in offspring, as well 
as to other brain regions involved in decision making, would be 
interesting.

Prenatal Nicotine induces epigenetic 
Changes in Offspring
Several studies show prenatal nicotine exposure to have epigenetic 
effects on peripheral organs in offspring. Prenatal nicotine has 
been found to decrease methylation on the promoter-expressing 
angiotensin receptor type 1a (211) and increase histone acetyla-
tion of the protein and fatty acid synthase in liver (212). Human 
studies have also reveal global changes in DNA methylation in 
offspring (213, 214). Evidence of a generational effect has also 
been shown in rat models, with maternal nicotine use and 
exposure during the prenatal period found to induce asthma and 
epigenetic changes in lungs of offspring that are two generations 
past the original exposure (215). This evidence suggests that the 
changes induced by prenatal nicotine exposure on brain neuro-
chemical systems may be related to epigenetic changes occurring 
during development.
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Relationship between Nicotine and 
inflammation
While reports of pure nicotine on adult systems generally reveal a 
reduction in inflammation (216, 217), several studies in humans 
show cigarette smoking to cause an increase in inflammation 
(218). Also, in a rat model, exposure to pure nicotine during the 
gestational period is found to increase the inflammatory media-
tors, IL-6 and TNF-alpha, in newborn blood serum (219). While 
this evidence is limited, it suggests the possibility that prenatal 
nicotine may have similar effects to HFD and ethanol exposure 
on inflammatory mediators, including CCL2.

GeNeRAL CONCLUSiON

The current knowledge of the neural control of ingestive behavior 
in offspring that are prenatally exposed to substances of abuse has 
come a long way from observational human studies. We are now 
only beginning to piece together how these changes in specific 

brain regions affect the overall neuronal communication within 
the brain. In addition, other systems of the central nervous system, 
such as glial cells, astrocytes, and oligodendrocytes, may also play 
a major role in this disturbed communication. More importantly 
is the emerging function of the immune system in the develop-
ment of these neuronal systems in offspring and how substances 
of abuse disturb its actions. Future studies using these prenatal 
animal models will provide much insight in both the molecular 
and neuronal network changes as well as the mechanisms leading 
to these changes.
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