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Next-generation sequencing technologies have found a widespread use in the study 
of host–microbe interactions due to the increase in their throughput and their ever- 
decreasing costs. The analysis of human-associated microbial communities using a 
marker gene, particularly the 16S rRNA, has been greatly benefited from these tech-
nologies – the human gut microbiome research being a remarkable example of such 
analysis that has greatly expanded our understanding of microbe-mediated human 
health and disease, metabolism, and food absorption. 16S studies go through a series 
of in  vitro and in  silico steps that can greatly influence their outcomes. However, the 
lack of a standardized workflow has led to uncertainties regarding the transparency 
and reproducibility of gut microbiome studies. We, here, discuss the most common 
challenges in the archetypical 16S rRNA workflow, including the extraction of total DNA, 
its use as template in PCR with primers that amplify specific hypervariable regions of 
the gene, amplicon sequencing, the denoising and removal of low-quality reads, the 
detection and removal of chimeric sequences, the clustering of high-quality sequences 
into operational taxonomic units, and their taxonomic classification. We recommend the 
essential technical information that should be conveyed in publications for reproducibility 
of results and encourage non-experts to include procedures and available tools that 
mitigate most of the problems encountered in microbiome analysis.
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iNTRODUCTiON

The gut microbiome, our “second genome,” is the most intimate connection we have with the environ-
ment. During the last decade, the study of the gut microbiome has revolutionized our understanding 
of human health and disease, metabolism, and food absorption. This research field has gone beyond 
being a mere object of study and is now recognized as an object of intervention (1) that may eventu-
ally assist in personalized diagnostic assessment, risk stratification, disease prevention, treatment 
decision-making, and patients’ follow-up (2).

The gut microbiome is the target of therapies for gastrointestinal diseases, such as infection 
by Clostridium difficile or inflammatory bowel disease, metabolic conditions, such as obesity and 
diabetes, and non-gastrointestinal pathologies, like allergy and autism (3–5). Dietary manipulation 
through supplementation with pre- and probiotics, and the modulation of the microbial community 
with antibiotics or fecal matter transplants have been studied (6, 7) and successfully applied (8). In 
vitro models that simulate the gastrointestinal tract and that allow the fine tuning of physicochemical 

http://www.frontiersin.org/Nutrition
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2016.00026&domain=pdf&date_stamp=2016-08-08
http://www.frontiersin.org/Nutrition/archive
http://www.frontiersin.org/Nutrition/editorialboard
http://www.frontiersin.org/Nutrition/editorialboard
http://dx.doi.org/10.3389/fnut.2016.00026
http://www.frontiersin.org/Nutrition
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:jsescobar@serviciosnutresa.com
http://dx.doi.org/10.3389/fnut.2016.00026
http://www.frontiersin.org/Journal/10.3389/fnut.2016.00026/abstract
http://www.frontiersin.org/Journal/10.3389/fnut.2016.00026/abstract
http://www.frontiersin.org/Journal/10.3389/fnut.2016.00026/abstract
http://loop.frontiersin.org/people/348324/overview
http://loop.frontiersin.org/people/358808/overview


FiGURe 1 | Schematic view of the archetypical workflow in 16S rRNA studies, and some of the problems associated with each step. Dotted lines link 
the workflow with steps beyond the scope of the review, and dashed lines represent non-standard steps.
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conditions have been developed to test the effect of different 
substances on particular bacterial species or even the whole 
microbial community (9, 10).

However, understanding how the gut microbiome contributes 
to the pathogenesis of complex disorders or to nutrient absorp-
tion will critically depend upon the accuracy with which we char-
acterize this microbial community. Next-generation sequencing 
(NGS) technologies (11–13) are currently of wide use to this end 
because of their capacity to measure non-cultivable organisms, 
relatively low cost, and high throughput. NGS platforms have 
allowed measuring microbial diversity with an ever-increasing 
throughput and read length (14, 15) and at a constantly decreas-
ing cost (16), which has granted the possibility for a new wave of 
researchers to get involved in projects of considerable size and 
complexity, to carry sophisticated quantitative evaluations and to 

study low-abundance microorganisms. The outstanding increase 
in the number of publications in recent years (2,319 papers 
published in 2015; source: Scopus) is a proof of this. It raises, 
nonetheless, questions about how aware all these researchers are 
about pitfalls in microbiome analyses.

One of the most used ways to examine the gut microbiome 
is to use a marker gene or barcode to identify microorganisms 
and reconstruct their phylogenetic relationships; the 16S rRNA 
gene is the most used for that purpose, although others have been 
proposed and used (17–19). As shown in Figure  1, most 16S 
studies follow a common workflow (20): total DNA is extracted 
from a sample (e.g., feces in the case of the gut microbiome) 
and used as template in PCR with primers that amplify specific 
regions of the 16S rRNA gene; the PCR products are sequenced 
using any technology (formerly Sanger but more recently NGS 
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platforms, such as Roche 454, Illumina, Ion Torrent, PacBio) 
and raw sequences are processed using bioinformatic pipelines 
that include the denoising and removal of low-quality reads, the 
detection and removal of chimeric sequences, the clustering of 
the curated sequences into operational taxonomic units (OTUs), 
and their taxonomic classification. The output data can then 
be used to perform ecological and statistical tests (e.g., α and β 
diversity analyses). A careless execution of any single procedure 
in the workflow and the cumulative effect of the inherent bias of 
each step, which can be reduced but not totally eradicated as we 
shall see, can result in a biased representation of the microbial 
community under study or erroneous estimations of the changes 
induced by interventions.

The unification of analysis procedures and the implementa-
tion of standardized workflows in order to minimize the variation 
introduced to the results have been recurrent topics on symposia 
(21), editorials (22), and opinion papers (23, 24). We, here, go 
over each step in the workflow of an archetypical 16S study, from 
DNA extraction to the generation and classification of OTUs, 
briefly explain their principles, draw attention to their potential 
biases and propose some solutions to (reasonably) mitigate them, 
including available software tools. In addition, we highlight 
instances where direct comparisons between studies are discour-
aged and recommend the essential information that should be 
included when describing a microbiome study for reproducibility 
of results.

While some of the issues discussed here have been separately 
reviewed elsewhere [benefits and problems of barcode sequenc-
ing (36), primer selection (37), DNA extraction and PCR biases 
(38), sequence curation (39), taxonomic classification (40)], they 
have frequently been overlooked in publications of original data-
sets. We wish to encourage newcomer scientists to implement 
rigorous analyses so that they get confident results that better 
represent the microbial communities under scrutiny. Upstream 
and downstream procedures, namely, experimental design and 
sample collection, calculation of diversity indices, rarefaction 
curves, hypothesis testing, and other ecological and statistical 
analyses are of the uttermost importance; however, they vary 
between different kinds of studies and are beyond the scope of 
this paper. They have been reviewed elsewhere (41–45).

DNA extraction
The first step, once the samples are collected, is the extraction 
of total DNA, which will then be used as template for PCR 
amplification of the marker gene. After the DNA is extracted and 
purified, the workflow for most 16S studies becomes roughly the 
same. Fecal samples are composed of microorganisms that differ 
in characteristics, such as size and cell wall composition, and that 
are present in different proportions. This can make the purifi-
cation of a DNA sample that accurately represents the original 
community (i.e., that keeps all species and their abundances at 
the same relative proportions) a challenge, as different sample 
handling and DNA extraction protocols can yield samples with 
different bacterial ratios. It has been shown, for instance, that 
frozen fecal samples yield a higher amount of DNA from Gram-
positive than from Gram-negative bacteria, probably due to the 

effect that the freeze–thaw cycle can have over the Gram-positive 
cell wall (46).

Differences in gut microbial community patterns can also 
arise due to the principles of the genetic material extraction 
protocols, causing the over or underrepresentation of the same 
microbial group in DNA extracted from subsamples of the same 
source (47). Some DNA extraction kits use bead-containing lys-
ing matrices and vigorous shaking steps that contribute to the 
disruption of the cell wall, whereas others rely on chemical lysis 
(48). Several studies have consistently demonstrated that proto-
cols that involve a bead-beating step yield higher quantities of 
bacterial DNA, and, most importantly, these samples tend to be a 
more comprehensive representation of the microbial community, 
regardless of the source material and analysis method (49–51). 
The differences between subsamples extracted with different kits 
can even be statistically significant, which is why it has been sug-
gested that data from studies using different extraction methods 
should not be compared (52). Opportunely, studies are increas-
ingly using similar DNA extraction protocols. For instance, the 
PowerSoil® DNA isolation kit (MoBio) has become popular 
because it performs well in a wide variety of samples, including 
human feces. Although using the same extraction protocol does 
not guarantee accurate representation of the microbial commu-
nity under study, it allows comparison among studies.

Another issue with DNA extraction is that, due to the non-
specificity of marker gene and metagenomic assays, they are 
highly sensitive to contamination with foreign microbial DNA. 
The presence of bacterial DNA from sources other than the 
original sample can alter the outcome of the analysis in a way 
that it no longer mirrors the original community it is supposed 
to reflect. Contamination sources may include the PCR reagents 
(53, 54), ultra pure water (55, 56), and, even, the DNA extrac-
tion reagents (57, 58). The genetic material extracted from 
samples with low biomass is more prone to being drowned by 
contaminant DNA (59, 60), and the contamination profile var-
ies between laboratories, extraction kits, and batches from the 
same kit (60). Procedures to reduce the effect of contamination 
include the maximization of starting biomass from which DNA 
is extracted, the randomization of the order in which samples 
are to be processed, the collection, processing and sequencing 
of technical controls of the reagents to be used (storage media, 
DNA extraction kits, and PCR kits), the recording of the kit lots 
as additional metadata, and the quantification of negative-control 
sequences (60).

Today, there is no standard procedure on how to deal with 
sequences showing up in technical controls. One suggestion 
would be to compare the abundance in real samples and con-
trols: if an OTU has similar relative abundance in samples and 
controls, it is likely a contaminant; otherwise, it probably is not. 
This approach has the drawback that the threshold in which the 
abundance of an OTU is considered a contaminant is subjective 
(61). Another method involves the removal of OTUs whose 
abundance is negatively correlated with amplicon concentration, 
as it is assumed that the signal from contaminant sequences in 
low biomass samples is less likely to be drowned by the signal of 
real data (61). In any case, it is necessary to be aware of taxa that 
are present in negative controls, taxa statistically associated with 
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a particular batch of reagents, and taxa biologically unexpected 
in the treated samples.

Multi-Template PCR
In marker gene studies, total DNA is used as template for the 
PCR amplification of the barcode region. As in single-template 
PCR, the efficiency of multi-template PCR is influenced by the 
GC content of the target region (62), the DNA concentration 
(63), and the thermocycling conditions (64). However, because 
of the multiorganismal origin of the gut microbiome, a series of 
particular difficulties and artifacts, such as primer mismatches, 
gene copy number variation (CNV), chimeras, heteroduplex, 
and skewed template-to-product ratios, are encountered and can 
distort the diversity measures. Primer selection, CNV normaliza-
tion, and chimeric sequence removal are discussed below; for a 
detailed discussion of reagents and PCR conditions in multi-
template assays, see Ref. (65).

16S rRNA Gene Hypervariable Regions
Due to its ubiquity in prokaryotes, low horizontal gene transfer, 
and ability to differentiate closely related organisms, the 16S 
rRNA gene has been used for decades in the study of diversity 
and ecology of microorganisms (66–68). However, most NGS 
platforms are not capable of covering the full length of the gene 
(ca. 1,500 bp) (68). This is why short regions within the gene (e.g., 
hypervariable V1–V9 regions) have been prioritized with the 
advent of these newer technologies (69). Hypervariable regions 
are supposed to act as proxies of the complete gene. Actually, 
there is correlation between the phylogenies generated using 
different hypervariable regions or combinations thereof and the 
phylogenies generated with the whole gene (69), but the strength 
of these correlations varies among regions (70) because their dif-
ferent evolutionary rates limit their capacity to serve as surrogates 
of full-length sequences (71, 72). Because of these disparities, 
the OTU count of different 16S regions can be inconsistent (70, 
73), which, in turn, makes studies using different hypervariable 
regions incomparable (71). Currently, there is no consensus of 
which region best reflects the gut microbial community (69, 74, 
75). While read length increases in newer NGS technologies, one 
empirical way to overcome comparability between studies would 
be to sequence the same hypervariable region. This is, indeed, 
what is seen in many gut microbiome studies today: since the 
Illumina MiSeq platform gives one of the bests value for money 
of all NGS, most microbiome researchers are moving to sequence 
the V4 region since its size (ca. 250 bp) fits well the read size of 
this platform at its current version.

Primer Selection
In order to amplify the selected 16S hypervariable region, a set 
of broad-range primers (so-called “universal primers”) must be 
used. These primers are usually designed to hybridize with the 
conserved regions flanking the sequence of interest. Universal 
primers work under the assumption that the flanking regions 
are conserved among a wide range of microbial groups, which 
allows the correct annealing and amplification of the desired PCR 
product (76). The rationale behind this approach is as good as 

possible but it still has problems, as mutations also occur within 
the flanking regions. The use of primers with a suboptimal cover-
age rate can lead to selective amplification of the template DNA, 
that is, the sub-representation or selection against a given micro-
bial group (77). Thus, the relative content of sequences may be 
modified, resulting in a deviation from the true gut-community 
composition (77–79).

In short, studies evaluating biases introduced by primer 
selection have demonstrated that there is no such thing as a truly 
“universal primer,” since there is no single pair of primers that 
can be used to amplify all prokaryotic or even bacterial groups. 
Genome evolution being what it is, the practical way to overcome 
this limitation and compare results among studies is to use similar 
pairs of primers and allow for degenerate sites in them. This is the 
preferred approach in some recent studies that make extensive 
use of modified 515F (5′ GTGYCAGCMGCCGCGGTAA 3′) 
and 806R (5′ GGACTACNVGGGTWTCTAAT 3′) primers that 
amplify the V4 region (80–82).

Amplicon Sequencing by NGS
Next-generation sequencing technologies refer to various 
strategies that rely on a combination of template preparation, 
sequencing and imaging, and genome alignment and assembly 
methods (83). The major advance offered by NGS is the ability 
to produce an enormous volume of data cheaply and fast. The 
transition from Sanger to NGS has opened new horizons in the 
gut-microbiome field by making it possible to collect millions of 
sequences, spanning hundreds of samples (80). A good example 
of this is the Human Microbiome Project, which used NGS to 
characterize the diversity of bacteria, archaea, and viruses that 
inhabit various areas of the human body in several hundreds 
healthy individuals (84). In the last decade, the throughput of 
NGS technologies has dramatically increased, and the operation 
cost has reduced, which, in turn, has boosted its use in microbial 
studies. However, the major drawback of all NGS technologies is 
that they raise concerns regarding the quality of data.

When sequencing genomes, multiple reads are used to con-
struct a consensus and the error rate, defined as the number of 
errors per total base call (25), is, thus, reduced since each nucleo-
tide in the original sequence is called several times by different 
reads. Such approach cannot be used when sequencing marker 
gene amplicons, such as the 16S rRNA, because each individual 
read is considered an identifier of an independent organism (e.g., 
a bacterium), and it is not possible to assemble the amplicon 
sequences (34); hence, the reduction of the error rate by other 
means becomes imperative.

One strategy to determine how many errors are introduced 
at each NGS run consists of sequencing a synthetic mixture of 
genomic DNA (mock community), comprising several known 
bacterial species, along with the samples. Reads are compared 
with a reference database of the marker gene, and errors are iden-
tified in pairwise alignments of each experimentally generated 
sequence relative to the closest reference sequence (25, 32, 34). 
Sequencing mock communities to assess the error rate of each 
individual amplicon sequencing run should become a standard 
step in microbial community analysis (see http://www.hmpdacc.
org/HMMC/) (25, 29).
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TAble 1 | Specifications of the most commonly used sequencing platforms in microbial community characterization studies.

Platform Raw eRa 
(%)

eR after 
denoisea (%)

Read length 
(bp)

Throughput 
(Gb/run)

Cost/Gb  
(USD)

Known problems Reference

454 FLX 
Titanium

1.0–2.0 <0.02 450 0.4 15,500 High error rate in homopolymer regions. Sequence quality 
decreases in a lengthwise fashion. Soon to be phased out

(16, 25–28)

Illumina 
MiSeq v2

0.8–1.0 <0.02 2 × 250 7.5 142 Sequence quality decreases in a lengthwise fashion. The second 
read has a higher error rate than the first read. Increased single-
base errors in association with GGC motifs

(16, 26, 
29–31)

Ion 
Torrent 
PGM 316 
chip

1.5 NAb 400 1 674 Premature sequence truncation caused by organism- and 
orientation-dependent biases. Low accuracy in homopolymer 
regions

(16, 31–33)

PacBio 
RS II

1.8 0.3 10,000 0.1 1,100 Systematic and non-random errors; G and C are more likely to be 
deleted than A and C. Preferential loading of shorter sequences 
into zero-mode waveguides

(16, 27, 31, 
34, 35)

aError rate calculated by sequencing of 16S amplicons from mock bacterial communities.
bTo the best of our knowledge, there are no available studies assessing the error rate of Ion Torrent sequences after bioinformatic curation.
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Currently, Roche 454 GS-FLX, Illumina MiSeq, Ion Torrent 
PGM, and PacBio SMRT are the most used platforms for the 
study of the gut microbiome (35, 85–87). However, each technol-
ogy performs differently in the trade-off between read length, 
sequence throughput, and error rate (Table  1). As mentioned 
above, since hypervariable regions correlate differently with the 
whole 16S rRNA gene (88, 89), it is arguably better to sequence 
shorter reads at greater depths and with lower error rates (e.g., 
Illumina, Ion Torrent) than longer reads with higher error rates 
(e.g., PacBio) (34). The former allows the detection of low-abun-
dance microorganisms (90, 91) and the avoidance of unnecessary 
greater computing times due to the description of non-existent 
organisms caused by artifactual sequences. Although increased 
read length usually improves classification, platforms such as 
PacBio are currently limited by their high sequencing error and 
low yield of sequencing data relative to the other platforms (34).

Culling of Dubious Sequences
Up to this point, procedures in the archetypical workflow 
described in Figure 1 take place in vitro. Hereafter, treatment of 
raw DNA sequences occurs in silico. To reduce sequencing error 
rates, it has become mandatory to apply stringent sequence cura-
tion and denoising algorithms. Inadequate cleaning of reads can 
have many negative effects including limited ability to identify 
chimeras and inflation of α and β diversity metrics (92). Low-
quality sequences, artifacts, and contamination can compromise 
the downstream analyses and, thus, must be removed from the 
dataset.

The first step is the removal of reads with ambiguous base calls 
(N) in the barcode or in the marker gene amplicon, as it is not 
possible to determine the true nucleotide sequence (93). On the 
other hand, mismatches in the primers and barcodes are usually 
allowed up to a certain number; the removal of sequences with 
less than three mismatches has little effect on the reduction of 
the error rate (93). Emulsion-PCR-based platforms (e.g., 454, 
Ion Torrent) are known for producing homopolymer-associated 
indel errors (33); these artifacts have been shown to account for 
a large proportion of errors in benchmark studies using mock 
communities and to be associated with low-quality scores (92). 

Therefore, reads with homopolymers longer than eight nucleo-
tides should be culled (25).

In addition, in most sequencing platforms (e.g., 454, Illumina, 
Ion Torrent), quality scores reduce in a lengthwise fashion, and 
it is possible to identify breakpoints where the quality criteria 
are not met. Sequences can be trimmed to those breakpoints 
to reduce the overall error rate. Two trimming approaches have 
been widely used: a “hard cutoff ” method trims the sequences at 
the first nucleotide with a quality score below a given threshold 
(94); this minimizes the error rate but also reduces the average 
sequence length. Another method, called “sliding window,” 
calculates the average quality score within a sequence window 
(or substring) and trims when the average quality score within 
that window drops below a threshold; the latter method has the 
advantage that reduces the overall error rate without reducing the 
average sequence length (25). Reads with anomalous lengths (well 
above or below the expected value for a given technology) are also 
removed, as they likely represent PCR or sequencing errors, or 
become not informative as a result of the quality trimming (93).

The use of a pre-clustering algorithm has also been shown to 
reduce the number of sequences that are the result of sequenc-
ing errors and to predict with higher accuracy the number of 
expected OTUs in template preparations of known taxonomic 
composition (95). It assumes that rare sequences are more likely 
to derive from abundant sequences and can, therefore, be merged 
if they are within a specified similarity threshold. This threshold 
must always be lower than the value used for OTU clustering, 
usually 1% (25).

Also, contaminant sequences must be removed from the 
dataset. Due to the nature of the 16S rRNA gene, mitochondria, 
chloroplast (96), and other eukaryotic sequences are likely to be 
amplified and should be identified and discarded, along with 
sequences unclassified at the domain level; according to the scope 
of the study and the primers used, bacterial or archaeal sequences 
would also be needed to get removed.

Chimera Removal
Sequences composed of two or more parents are named 
chimeras. Chimeras are a serious concern in studies of the 
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gut microbiome because they can lead to the description of 
non-existent organisms and inflate diversity metrics. This kind 
of artifact arises from errors during PCR, and several factors 
influence its appearance, such as DNA damage (97), the amplifi-
cation of highly similar sequences (98), a high number of cycles, 
and short elongation times (99). This suggests that prematurely 
terminated amplicons that anneal to a homologous template to 
prime the next PCR cycle are likely to be the major cause of 
chimera formation.

The detection of chimeras in libraries of 16S amplicons is 
particularly challenging, as sequences are short and highly 
similar. There are multiple algorithms designed to detect and 
remove chimeric sequences (100–107), which follow the same 
basic principle: substrings or fragments of the query sequence 
are compared to a set of reference sequences in order to establish 
if the said substrings match different references. Once a chimera 
is identified, it is removed from the dataset. Some algorithms 
use allegedly chimera-free 16S sequence databases as reference, 
including Chimera Slayer (105) and DECIPHER (108). Others 
[e.g., Perseus (106), UCHIME (107)] use a database-free 
approach that assumes that the most abundant sequences from 
the query dataset are unlikely to be chimeric and can, therefore, 
be used as reference. Database dependency influences the ability 
of different algorithms to identify and remove chimeras (109). 
Database-independent algorithms have the advantage of being 
able to detect them even if the studied community is poorly 
described (25). In contrast, database-dependent algorithms rely 
on reference collections that only contain gene sequences from 
cultured bacteria and are not expected to perform as well on 
samples that contain sequences from yet uncultured organisms 
(24), something very common in studies of the gut microbiome. 
Thus, the use of algorithms that do not rely on databases should 
be preferred in order to minimize the inflation of diversity caused 
by chimeras, especially when dealing with poorly characterized 
gut microbial communities.

OTU Clustering and Taxonomy 
Assignment
Sequence Grouping
In order to describe and compare gut microbiomes or shifts 
in the gut microbiome following intervention, diversity 
metrics should be estimated (e.g., Chao-1, UniFrac), which 
requires information about the composition and abundance 
of organisms in said communities. Currently, two approaches 
are used to characterize microbial communities: taxonomic-
dependent (also called phylotype analysis) and OTU-based 
methods (110).

The taxonomic-dependent methods rely on reference data-
bases of full-length 16S rRNA gene sequences from cultured 
microorganisms (i.e., with a known taxonomy). Some popular 
reference databases are Greengenes (111), SILVA (112), and 
RDP (113). Query sequences are compared against the refer-
ence database and assigned to the organism of the best-matched 
reference (114). While this approach is computationally fast 

and allows the straightforward taxonomic labeling of a query 
sequence, indicating its relationship to previously characterized 
microorganisms, it is hindered by the lack of well-annotated or 
incomplete databases (115). This is exacerbated when working 
with genes other than the 16S rRNA or with sequences from 
hard-to-culture or yet uncultured organisms, as is usually the 
case of colonic microbes, making them inherently limited 
(116).

On the other hand, OTU-based methods do not rely on refer-
ence databases; they calculate a distance matrix among all query 
sequences and group them based on their similarity at a given 
threshold. Since grouping does not require previous taxonomic 
information, these OTU-based methods perform very well with 
poorly characterized microorganisms. OTU-based methods are 
not without faults, however. They are usually computationally 
exigent and prone to overestimation due to low-quality sequences, 
contamination, chimeras, etc. (117).

In turn, most OTU-clustering algorithms fall into two broad 
categories, hierarchical clustering (HC) and greedy heuristic 
clustering (GHC). HC and GHC differ in the methods for 
comparison of sequences and clustering into OTUs, their 
computational requirements, and the accuracy of the result. HC 
methods start by generating distance matrices that measure the 
distance between each pair of sequences in the dataset, either 
by multiple [e.g., Mothur (118)] or pairwise [e.g., ESPRIT 
(119)] sequence alignments, and then apply standard HC 
(single, complete or average linkage clustering) to group OTUs 
at a given threshold (usually, 97%). While debated (120), the 
use of multiple sequence alignment is preferred over pairwise 
alignments because it preserves positional homology across all 
sequences (121). The incorporation of the secondary structure of 
the 16S rRNA molecule into the alignment provides additional 
biological information that strengthens the confidence that 
positional homology is being conserved (122, 123). HC methods 
are computationally complex; however, several approaches have 
been devised to reduce their complexity and computer memory 
requirements (116, 119, 121), and software such as Mothur 
(from version 1.27.0) performs well with reasonable computer 
capacities.

Yet, computational requirements of HC algorithms can be 
a real headache in the analysis of many fecal samples; GHC 
algorithms have been developed to this end. They process input 
sequences one at a time, hence, avoiding the comparison of all 
pairs of sequences and the construction of a distance matrix 
(115). In GHC, the query sequence is compared against a set of 
seed sequences (or centroids) that are representative of existing 
clusters; if the similarity of the query and the seed sequences is 
above a given threshold (usually, 97%), the query sequence is 
assigned to the existing cluster, otherwise it becomes the seed 
of a new cluster or it is discarded. The seed sequences can be 
obtained either by generating them de novo [e.g., CD-HIT (124) 
or UCLUST (125)] or from a database of predefined centroids 
[e.g., UCLUST as implemented by QIIME (126, 127)]; the latter 
approach has the same limitations of other database-dependent 
methods, as discussed above. Furthermore, the centroid databases 
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are constructed by clustering full-length sequences at a defined 
threshold; when used to cluster partial sequences, problems may 
arise. Some taxa may have identical sequences within a specific 
16S sub-region, yet, they can be below the predefined threshold 
when the full-length sequence is considered; the opposite would 
also be true.

As with other steps in the workflow discussed here, there is 
a trade-off between complexity and accuracy. Different cluster-
ing methods can yield different results from identical datasets; 
their performance varies according to the complexity and the 
abundance ratio of the sequences in the dataset and the selected 
similarity threshold (117). Benchmark studies have consistently 
shown that methods such as complete linkage (HC), average 
linkage (HC), and CD-HIT (GHC) are robust to changing OTU 
thresholds and produce consistent clusters. On the other hand, 
single linkage (HC) produces OTUs that are not homogeneous 
and together with UCLUST (GHC) and UPARSE (GHC) have 
been shown to be very sensitive to threshold definitions and to 
have reproducibility issues, thus, in our opinion, their use should 
be less encouraged (115, 128, 129).

Taxonomic Assignment
In order to establish the biological significance of any inter-
vention on the gut microbiome, it is usually desired to give 
a taxonomic classification to the previously detected OTUs. 
Several methods for the taxonomic assignment of 16S rRNA 
gene sequences are available and are based on different princi-
ples, such as k-mer count [SINA (130), RDP Bayesian classifier 
(88)], multiple sequence alignment [NAST (131)], BLAST 
[TUIT (132)], and machine learning algorithms [16S classifier 
(133)], among others. Although new algorithms continue to 
be developed, the RDP Bayesian classifier remains the most 
widely used tool for taxonomic assignment of 16S sequences; 
it provides taxonomic assignments from domain to genus, with 
confidence estimates for each assignment. The misclassification 
rate of short sequences varies approximately from 16 to 20% 
according to the dataset used to train the algorithm and the 16S 
rRNA gene region (114). As with others database-dependent 
methods, flaws in the databases will unavoidably lead to flaws 
in classification; fortunately, the approach used to label OTUs 
can reduce the error.

Regardless of the algorithm, OTUs can be classified either by 
assigning them the taxonomy of a representative sequence (127) 
or by classifying every sequence in the OTU and assigning the 
taxonomy by majority consensus (116). The former method 
can yield a less robust classification; if an OTU is composed of 
related sequences but with divergent taxonomies, the classifica-
tion of a single sequence can lead to an erroneous classification 
of the entire OTU. Therefore, we recommended using majority-
consensus taxonomy to the cost of a less detailed classification 
(genus, species).

Copy Number variation
A problem that arises when studying the gut microbiome is the 
difference in the number of copies of the 16S rRNA gene among 
species, which can range from a single copy up to 15 (134). 

This  variation can lead to erroneous abundance assessment; at 
equal number of cells, taxa with few copies of the 16S rRNA gene 
have lower amplicon counts than taxa with more copies of the 
gene. Therefore, CNV can result in over or underestimation of 
microbial abundance. CNV has not deserved full attention; yet, it 
is of utmost importance since it can result in a biased description 
of the microbial community. Indeed, it has been suggested that 
bacterial diversity could be overestimated by a factor of 3 due to 
16S CNV (135).

In microorganisms with known 16S rRNA gene copy num-
ber, CNV could be corrected by weighting read counts by the 
inverse of its gene copy number. However, the problem is more 
difficult to deal with in cases where the gene copy number is 
unknown. A possible solution in these cases is to use the value 
of a closely related organism (136). Another possibility is to 
place 16S reads on a phylogenetic tree and calculate gene copy 
number using phylogenetically independent contrasts (137, 
138). While these methods have been shown to improve the 
measures of diversity and abundance of microbial communities, 
they rely on databases of 16S and sequenced genomes, which, 
as with phylotype-based clustering, lack information of uncul-
tured and poorly cultured organisms. In cases of poorly studied 
deep evolutionary lineages (say, rare phyla), CNV correction is 
definitely an unsolved issue.

Although CNV can move away estimates of diversity from 
reality, it must be noted that researchers usually want to compare 
these estimates between treatments (e.g., obese vs. lean, vaginal 
delivery vs. C-section, probiotic vs. placebo). In other words, we 
look for relative changes in the abundance of OTUs A, B, and C; 
even if they would be badly estimated due to the assumption that 
they only have one 16S rRNA gene each, what is important is 
to see how populations change under different tested conditions. 
The take-home message from CNV is that we should emphasize 
more comparisons of the same OTU among samples than com-
parisons among OTUs within samples.

essential information That Should be 
included when Describing a  
Microbiome Study
In order to guarantee reproducibility of results, we encourage 
researchers and journals to explicitly include and require the 
following technical information in microbiome publications: (I) 
DNA extraction method, including the type of extraction kit if one 
was used and modifications to the standard protocol proposed by 
the manufacturer; (II) description of how DNA  contamination 
was controlled for (e.g., DNA extraction of negative controls); 
(III) 16S rRNA hypervariable region targeted including the 
nucleotide sequences of the primers used; (IV) sequencing 
technology employed; (V) description of sequencing error-rate 
assessment (e.g., was a mock community sequenced in parallel 
with the samples?); and (VI) description of in silico analyses (cull-
ing of dubious sequences, removal of chimeras, OTU clustering 
and taxonomy assignment, copy number variation correction), 
including the code or command lines with parameters used if 
appropriate.
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TAble 2 | Recommendations to reduce the impact of biases introduced in the different steps of the analysis of microbial communities using the 16S 
rRNA gene.

Step Main challenge Possible solution importance

DNA 
extraction

Uneven representation of the microbial 
community under scrutiny.

The use of a DNA extraction method that includes a bead-beating step results in a more 
comprehensive representation of the microbial community.

Moderate

Differential representation of microbial 
communities due to differences in DNA 
extraction kits.

Direct comparisons should be carried only between studies using the same DNA 
extraction kit.

Moderate

Contamination by microbial DNA from the 
DNA extraction and PCR reagents.

In order to reduce the risk of contamination, the starting biomass should be maximized. 
To control it, the samples must be processed in random order, the kit lots must be 
included as metadata and technical controls from the reagents must be sequenced.

Moderate

Multi-
template 
PCR

Differences in the estimated phylogenetic 
diversity between hypervariable regions of the 
16S rRNA gene.

The region that best approximates the phylogenetic diversity given by the whole gene 
should be selected. The V4 region has been shown to approximate the phylogenetic 
diversity given by the whole gene and to result in best taxonomy labeling.

Moderate

Uneven coverage of different microbial taxa 
by the PCR primers.

Bioinformatic tools, such as SILVA TestPrime, allow the evaluation of primers, and the 
ones with the highest coverage rate for the taxa known to be present in the microbial 
community of interest should be selected.

Moderate

The microbial coverage is maximized by using degenerate primers. High
Direct comparisons should be carried only between studies using the same set of 
primers.

Moderate

Amplicon 
sequencing 
by NGS

Sequencing platform selection. The selection of the sequencing platform should be made prioritizing error rate over 
sequencing depth and read length.

High

Assessment of the quality of the sequencing 
run.

The sequencing of a mock community allows the quality assessment of each individual 
amplicon sequencing run.

High

Culling of 
dubious 
sequences

Overestimation of diversity caused by 
spurious sequences.

Apply a stringent sequence denoising and curation procedures and assess their 
effectiveness by determining the final error rate using a sequenced mock community.

High

Chimera 
removal

Overestimation of diversity caused by non-
existent organisms (chimeric sequences).

The use of database-free approaches, especially when studying poorly characterized 
environments, is encouraged.

Moderate

OTU 
clustering 
and 
taxonomy 
assignment

Overestimation of diversity caused by 
clustering algorithms.

Database-free OTU-based methods should be preferred over taxonomic-dependent 
(phylotyping) approaches.

Moderate

If computationally possible, the use of hierarchical methods such as average or complete 
linkage should be used, otherwise, a heuristic method such as CD-HIT is suggested.

Moderate

Erroneous taxonomic classification of OTUs. The taxonomic assignment should be carried by majority consensus of the sequences 
within the OTU.

Moderate

Copy 
number 
variation

Over- or underestimation of diversity caused 
by erroneous abundance assessment.

While algorithms that correct CNV exist, they depend on whole genome sequence data, 
which may not be available for poorly described microorganisms, thus, their use is not 
encouraged

Low
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CONClUSiON

The study of the gut microbiome is revolutionizing medicine and 
science by allowing understanding how microbes are intimately 
involved in many physiological processes. The gut microbiome 
is shifting from an appealing object of study to a precision 
medicine target. NGS have enabled the possibility to gather the 
most impressive amount of microbiome data at costs and speeds 
that were unthinkable a decade ago. However, these technologies 
have introduced new challenges in data analysis that researchers 
must take care of. We have, here, discussed some of these chal-
lenges and suggested ways to control them using available tools 
(see Table 2 for our recommendations to reduce the impact of 
these pitfalls). Our hope is that, while a minimum information 
standard that unifies the procedures of microbiome studies is 
established, researchers implement rigorous analyses so that 
their results better represent the microbial communities under 
scrutiny. Only by making as stringent as possible analyses and by 

guaranteeing the transparency and reproducibility of microbi-
ome analyses (139) we will give the field its first dose of “healthy 
skepticism” (140).
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