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Peptides released from the small intestine and colon regulate short-term food intake by 
suppressing appetite and inducing satiety. Intake of marine omega-3 (n-3) fatty acids 
(FAs) from fish and fish oils is associated with beneficial health effects, whereas the 
relation between intake of the vegetable n-3 fatty acid α-linolenic acid and diseases 
is less clear. The aim of the present study was to investigate the postprandial effects 
of a single high-fat meal enriched with vegetable n-3 or a combination of vegetable 
and marine n-3 FAs with their different unsaturated fatty acid composition on intestinal 
peptide release and the adipose tissue. Fourteen healthy lean females consumed three 
test meals with different fat quality in a fixed order. The test meal consisted of three cakes 
enriched with coconut fat, linseed oil, and a combination of linseed and cod liver oil. 
The test days were separated by 2 weeks. Fasting and postprandial blood samples at 
3 and 6 h after intake were analyzed. A significant postprandial effect was observed for 
cholecystokinin, peptide YY, glucose-dependent insulinotropic polypeptide, amylin and 
insulin, which increased, while leptin decreased postprandially independent of the fat 
composition in the high-fat meal. In conclusion, in healthy, young, lean females, an intake 
of a high-fat meal enriched with n-3 FAs from different origin stimulates intestinal peptide 
release without any difference between the different fat compositions.

Keywords: high marine and vegetable fat meal, eicosapentaenoic acid, α-linolenic acid, human, intestinal 
peptides, adipokines

Abbreviations: ALA, α-linolenic acid; CCK, cholecystokinin; Ct, cycle threshold; DHA, docosahexaenoic acid; ELISA, 
enzyme-linked immunosorbant assays; EPA, eicosapentaenoic acid; FAs, fatty acids; GIP, glucose-dependent insulinotropic 
polypeptide; GUS β, glucuronidase β; IL, interleukin; mRNA, messenger ribonucleic acid; n-3, Omega-3; NAMPT, nicotinamid 
phosphoribosyl transferase; PBMCs, peripheral blood mononuclear cells; PUFA, polyunsaturated fatty acids; PYY, peptide YY, 
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inTrODUcTiOn

Peptides released from the small intestine and colon such as 
cholecystokinin (CCK), glucose-dependent insulinotropic poly-
peptide (GIP), and peptide YY (PYY) are regulating short-term 
food intake by suppressing appetite and inducing satiety. CCK is 
released in response to nutrients in the duodenal lumen, whereof 
fat and protein produce a greater postprandial release than carbo-
hydrates (1–3). Lipids significantly stimulate CCK release (4, 5), 
and the length of the fatty acids (FAs) determines the amount of 
CCK release (6). FAs with more than 10 carbons in the chain are 
the most potent stimulants for CCK release (5, 6). However, little 
is known about the effect of intake of marine versus vegetable 
omega-3 (n-3) FAs, and whether the release of CCK is influenced 
differently by these FAs in  vivo. GIP potentiates meal-induced 
insulin secretion from pancreas (7), and the release is stimulated 
by nutrients shortly after ingestion. The major stimuli are dietary 
fat and carbohydrates (8–10), and fat quality seems to play a role 
since intake of olive oil has been shown to induce a higher plasma 
concentration of GIP than butter (11). PYY is released in the 
intestine, in response to food intake shortly after ingestion (12). 
The release of PYY is proportional to calorie intake but also the 
macronutrient composition of the meal affects postprandial PYY 
release. Dietary fat, carbohydrates, and protein all stimulate PYY 
release but to different degrees and with different time courses 
(13). In addition, both chain length and degree of saturation 
seem to play a role in fat-induced PYY release (14–16). Insulin 
and amylin are peptides released from the pancreas, which are 
also affecting short-term food regulation. Glucose is the most 
powerful regulator of both insulin and amylin (17); however, less 
is known about the effect of vegetable and marine n-3 FAs on 
amylin release.

The adipose tissue is constituted by a variety of cells, e.g., 
adipocytes and macrophages, which secrete adipokines (18). 
Adipokines are the endocrine mediators of the adipose tissue 
and include leptin, adiponectin, resistin, and nicotinamid 
phosphoribosyl transferase (NAMPT)/visfatin (19). Leptin has 
previously been shown to regulate food intake (20), and inges-
tion of a high-fat meal or carbohydrate-rich meal has been shown 
to reduce postprandial levels of adiponectin (21). NAMPT has 
previously been shown to be suppressed after an oral glucose tol-
erance test (22); however, little is known about the postprandial 
effects after ingestion of n-3 enriched high-fat meals on these 
adipokines. A link between gut peptides and adipocytes has 
previously been described, and GIP has been shown to enhance 
insulin-stimulated glucose transport and stimulation of fatty acid 
synthesis and incorporation into triglycerides (23).

Intake of marine n-3 FAs, eicosapentaenoic acid (EPA; 20:5), 
and docosahexaenoic acid (DHA; 22:6), from fish and fish oils 
is associated with beneficial cardiovascular health effects (24, 
25). Vegetable oils such as linseed oil and rapeseed oil are 
the main dietary sources of the vegetable n-3 FA α-linolenic 
acid (ALA; 18:3). The association between intake of ALA and 
diseases is less clear since it has been studied less extensively 
than the marine n-3 FAs (26, 27). Animal studies and studies 
in humans have suggested that n-3 FAs potentially elicit a num-
ber of beneficial health effects including weight reduction via 

suppression of appetite (28). We  hypothesized that vegetable 
n-3 or a combination of vegetable and marine n-3 FAs have a 
different effect on intestinal peptides and adipokines compared 
with saturated FAs (SFAs).

The aim of the present study was, therefore, to investigate 
the postprandial effects of a single high-fat meal enriched with 
vegetable n-3 or a combination of vegetable and marine n-3 FAs 
on intestinal peptides and adipokines in lean, healthy females.

sUBJecTs anD MeThODs

subjects
Sixteen healthy, normal weight young women were recruited 
among students at Akershus University College, Oslo, Norway, in 
October 2008. Of the 16 females, 2 discontinued after the first test 
day due to events unrelated to the study, and they were, therefore, 
not included in the analysis. Three subjects performed only two 
out of the three test days. This study was conducted according 
to the guidelines laid down in the Declaration of Helsinki, and 
all procedures involving human subjects were approved by the 
Regional Committee of Medical Ethics, south-east region of 
Norway. Written informed consent was obtained from all subjects.

study Design and Test Meal
Study design and test meals have been described in details previ-
ously (29). Participant characteristics are given below. Briefly, the 
participants consumed three different test meals in a fixed order, 
and all test days were separated by 2 weeks. Postprandial blood 
samples were taken at 3 and 6 h after the beginning of the test 
meals (0 h). The three test meals consisted of a 150 g chocolate cake 
containing the same amount of energy (1923–1977 kJ/100 g) and 
similar % of energy (E%) from protein (14 E%), total fat (67–70 
E%), and carbohydrates (16–19 E%) but contained different fatty 
acid composition (29). Coconut fat was used as a source for SFA 
and was the most dominant fat type in all the cakes. The coconut 
cake contained 43 E% saturated fat and 11 E% polyunsaturated 
FAs (PUFAs) of which only 1 E% was n-3 FA (ALA; 18:3). In the 
linseed cake, some of the coconut fat was replaced by fat from 
linseed oil as a source of vegetable n-3 PUFA where ALA is the 
primary FA. The linseed cake contained 30 E% of SFA and 22 
E% of PUFA, of which n-3 FAs contributed with 14 E% (ALA). 
In the cod liver cake, some of the coconut fat was replaced by 
cod liver oil as a source of marine n-3 FAs and linseed oil as a 
source of vegetable n-3 FAs to give a distinct n-3 PUFA profile 
from the linseed cake (29). This cake contained 31 E% SFA and 
14 E% PUFA of which 10 E% was n-3 FAs (5 E% ALA, 2 E% EPA, 
and 3 E% DHA). The fatty acid composition of the three different 
cakes is shown in Table 1.

Blood sampling and analysis
Blood samples taken from the antecubital veins in heparinized 
tubes were immediately centrifuged at 4°C, and the plasma 
stored at −80° until peptide determination. Appropriate lab 
biosafety procedures were followed when handling the human 
specimens. Plasma CCK levels were analyzed via an radioim-
munoassay (RIA) kit (Euro-Diagnostica AB, Malmö, Sweden) 
after solid phase extraction, as previously described (30, 31). 
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TaBle 1 | Fatty acid composition of the three different cakes.

coconut cake  
g/100 g

linseed cake
g/100 g

cod liver cake
g/100 g

C10:0 1.1 0.64 0.61
C12:0 9.4 5.4 5.2
C14:0 3.6 2 2.3
C16:0 4.8 3.7 4
C16:1, n-7 0.1 0.1 0.1
C18:0 4.2 3.8 3.5
C18:1, n-7 0.2 18 0.58
C18:1, n-9 5.1 6.7 5.7
C18:2, n-6 5.4 3.9 1.8
C18:3, n-3 0.6 7.6 2.7
C20:0 0.1 0.1 0.08
C20:1, n-9 <0.1 <0.07 1.3
C20:4, n-6 <0.1 <0.07 0.08
C20:5, n-3 <0.1 <0.07 0.93
C22:1, n-11 <0.1 <0.07 0.7
C22:5, n-3 <0.1 <0.07 0.13
C22:6, n-3 <0.1 <0.07 1.3
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The plasma samples were extracted with a SepPac C18 cartridge 
preconditioned with 1.5 mL of 2-propanol and 1.5 mL of 0.1% 
trifluoroacetic acid (TFA; Waters, Milford, AM, USA) in an 
automated Gilson Aspec XL system (Gilson, Middleton, WI, 
USA). Plasma samples were acidified with 1M HCl containing 
1.6% glycine. After loading the sample, the cartridge was washed 
with 2  mL of 0.1% TFA, and samples were eluted with 2  mL 
of 80% acetonitrile in 0.1% TFA. Samples were evaporated into 
dryness overnight. Dry residue was dissolved in 500 μL of RIA 
buffer, and RIA was conducted according to manufacturer’s 
instructions. Briefly, samples were incubated with the primary 
antibody for 48  h at 4°C and I-125 labeled CCK-8 was added 
before 96 h incubation at 4°C. Double antibody solid phase was 
added, and samples were incubated for 60 min at 4°C. Before, 
the measurement samples were centrifuged 15 min × 1700 g in 
4°C. The supernatant was decanted, and the activity of aliquot 
was measured with gammacounter (Wallac 1272 Clinigamma, 
PerkinElmer, Waltham, MA, USA). The intra-assay variation 
for the CCK measurement was 3.6%. For CCK measurements, 
several samples were below detection level and were, therefore, 
set to the lowest detection level [coconut group n = 12, n = 3, 
and n  =  8; linseed group n  =  11, n  =  2, and n  =  1; cod liver 
group n = 10, n = 3, and n = 1, for each time point (0, 3, and 
6  h), respectively]. PYY, GIP, amylin, and insulin were deter-
mined using a Milliplex human gut hormone panel (#HGT-68K, 
Millipore, MA, USA) and measured in Bio-Plex 200 system 
based on Luminex xMAP technology (Bio-Rad Laboratories 
Inc., CA, USA). The kit was performed according to manufac-
turer’s instructions. The intra-assay and the inter-assay variations 
were <11 and <19%, respectively. The results were calculated 
with Bio-PlexManager Software 6.0 with five-parameter logisti-
cal equation. The instrument was set for high sensitivity range. 
Concentration of leptin, total adiponectin, and resistin were 
measured by enzyme-linked immunosorbant assays (ELISA) 
from R&D Systems (Minneapolis, MN, USA). Concentration of 
NAMPT was measured by ELISA from Phoenix Pharmaceuticals 
(Burlingame, CA, USA). The intra- and inter-assay CVs was 
<10% for all assays. The analyses were performed in autumn 

2010 and spring 2011. The samples had not been defrosted prior 
to the analyses.

Peripheral Blood Mononuclear cells 
isolation and mrna analysis
After blood collection, PBMCs were isolated using the BD 
Vacutainer Cell Preparation tubes according to the manufac-
turer’s instructions (Becton, Dickinson and Company, Franklin 
Lakes, NJ, USA). Pellets were frozen and stored at −80°C for 
further RNA isolation.

Total RNA isolation and mRNA analysis were performed as 
previously described (29). From two subjects in the postpran-
dial study, PBMCs could not be retrieved during the three test 
days. Therefore, the number of subjects in the gene expression 
analyses are n = 12, n = 11, and n = 10 for the coconut, linseed, 
and cod liver cakes, respectively. Briefly, for reverse transcrip-
tion quantitative polymerase chain reaction (RT-qPCR), we 
used TaqMan Array Custom Micro Fluidic cards for leptin 
receptor (Hs00174497_m1, Applied Biosystems, Foster City, 
CA, USA) and inventoried TaqMan gene expression assay for 
NAMPT (Hs00237184_m1, Applied Biosystems). The target 
genes were normalized to the following endogenous controls 
glucuronidase β (GUSβ) and TATA box-binding protein (TBP) 
(both TaqMan Array Custom Micro Fluidic cards and invento-
ried TaqMan gene expression assays cat# Hs99999908_m1 and 
Hs00427620_m1, respectively, Applied Biosystems). The relative 
mRNA level for each transcript was calculated by the ΔΔ cycle 
threshold (Ct) method (32). Briefly, the Ct values for each target 
gene was normalized against the mean of the Ct values for the 
two endogenous controls GUSβ and TBP (=ΔCt). ΔΔCt was 
then calculated as ΔCt at 3 or 6 h after meal intake minus ΔCt 
at fasting level (0 h). The fold change in mRNA expression was 
calculated as 2−ΔΔCt.

statistical analysis
Each subject consumed three test meals and was used as their 
own reference. Non-parametric statistics were used throughout 
the study due to the low number of participants. Data are given 
as median (interquartile range). The significance of the differ-
ence between the meals at 3 and 6 h and between time points for 
each test meals were assessed with Friedman’s Anova, followed 
by Wilcoxon matched-pairs test at significant values using exact 
serum/plasma values (between time points) or delta serum/
plasma changes from fasting (between meals), and regarding 
mRNA fold change from endogenous controls (between time 
points) or fold change from fasting values (between meals). 
Probability values (exact, two-tailed) were considered significant 
at values of P < 0.05. All calculations were performed using SPSS 
(version 19.0). Missing values in the Wilcoxon matched-pairs test 
analysis were excluded test-by-test.

resUlTs

characteristics of the Participants
The participants in the postprandial study were healthy without 
infectious diseases, normal weight, young women, with an 
age of 24  years (22–25  years), body mass index of 22  kg/m2 
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FigUre 1 | Plasma levels of ccK (a), PYY (B), giP (c), amylin (D), and insulin (e) at 0, and 3 and 6 h after the consumption of three test meals 
enriched with coconut oil [n = 14 for PYY, giP, insulin, and ccK (3 h), n = 13 for ccK (0 and 6 h), n = 8 for amylin], linseed oil [n = 13 for PYY, giP, 
insulin (0 and 3 h), and ccK (0 and 3 h), n = 12 for insulin (6 h) and ccK (6 h), n = 8 for amylin], and cod liver oil [n = 12 for PYY, giP, insulin (0 and 
3 h), and ccK, n = 11 for insulin (6 h), n = 8 for amylin]. *Median values are significant different from that for 0 h, P < 0.05. †Median values are significant 
different from that for 3 h, P < 0.05. ¤Baseline is significant different from that for linseed and cod liver P < 0.05. Data are shown as median (interquartile range: 
25–75th percentiles).
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(21–25 kg/m2), total cholesterol 4.8 mmol/L (3.6–5.2 mmol/L), 
fasting triglycerides 0.8 mmol/L (0.7–1.1 mmol/L), and fasting 
glucose 4.6 mmol/L (4.3–4.9 mmol/L) (29).

effects on Plasma appetite- and  
glucose-regulating hormones
Plasma levels of CCK increased 3  h after intake of all three 
test meals compared with fasting levels and 6 h after intake in 
the coconut group and cod liver group whereas plasma levels 
of GIP and PYY were increased both at 3 and 6 h after intake 

of all three test meals compared with the respective baseline 
values (Figures  1A–C). Plasma levels of GIP declined at 6  h 
compared with the corresponding 3  h for each of the three 
test meals, whereas CCK declined at 6  h compared with 3  h 
after intake of the linseed and cod liver meal (Figures  1A,C). 
However, there were no significant differences in the postprandial 
change of CCK, PYY, and GIP between the test meals at any 
time point (Figures 1A–C). There was no difference in baseline 
values of any of the peptides except for plasma levels of CCK, 
which at baseline in the coconut group differed significantly 
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FigUre 2 | serum levels of leptin (a), adiponectin (B), naMPT (c), and resistin (D) at 0, and 3 and 6 h after the consumption of three test meals 
enriched with coconut oil (n = 14 for all), linseed oil [n = 13 for adiponectin, resistin, naMPT (0 and 3 h), and leptin (0 and 6 h), n = 12 for leptin (3 h), 
naMPT (6 h)], and cod liver oil [n = 12 for leptin, adiponectin, naMPT, and resistin (0 and 3 h), n = 11 for resistin (6 h)]. *Median values are significant 
different from that for 0 h, P < 0.05. †Median values are significant different from that for 3 h, P < 0.05. ¤Baseline is significant different from that for coconut and cod 
liver P < 0.05. Data are shown as median (interquartile range: 25–75th percentiles).
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from the respective values in the linseed and cod liver group 
(Figures 1A–E).

To further investigate the postprandial response of a high-fat 
meal, plasma levels of amylin and insulin were measured. We 
observed a significant increase in plasma amylin levels from 
baseline to corresponding 3 h, which declined 6 h after intake of 
all the test meals, respectively (Figure 1D). Plasma insulin levels 
increased significantly from baseline to 3  h and then declined 
6 h after intake of both coconut and linseed cakes. However, no 
significant differences in insulin levels were observed after intake 
of the cod liver cake (Figure 1E). Postprandial amylin and insulin 
levels were not different between the three different test meals 
(Figures 1D,E).

effects of the Different Test Meals on 
adipokine levels
Adipokines, in particular leptin, have been shown to be involved 
in the regulation of gut peptides, and we, therefore, investigated 
the postprandial effects after intake of the three high-fat test 
meals on serum levels of leptin, adiponectin, resistin, and 
NAMPT.

Serum levels of leptin decreased significantly at 3 and 6  h 
after intake of all the three test meals compared with respective 
baseline values (Figure 2A). Furthermore, serum levels of leptin 
increased at 6 h after intake of the linseed meal compared with 
the corresponding 3 h (Figure 2A). Serum adiponectin, NAMPT, 
and resistin levels did not change after any of the meals except 
for adiponectin, which declined 6  h after intake of the linseed 
meal (Figures 2B–D). There was no baseline change in any of the 
adipokines except for baseline serum adiponectin levels in the 
linseed group (Figures 2A–D).

effects on mrna levels of adipokine-
related genes in PBMcs
Circulating PBMCs may alter their gene expression as a response 
to an acute change in the environment (33). We analyzed the gene 
expression levels of leptin receptor and NAMPT in PBMCs. There 
were no differences in the mRNA levels in neither leptin recep-
tor nor NAMPT at any time point between the three test meals 
(Figures 3A,B). We found no postprandial effects in the mRNA 
level of neither leptin receptor nor NAMPT, except for a signifi-
cant decline in NAMPT at 3 h compared with baseline after intake 
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FigUre 3 | mrna levels of leptin receptor (a) and naMPT (B) in PBMcs at 0 h, and 3 and 6 h after the consumption of three test meals enriched 
with coconut oil (n = 12 for naMPT and n = 7 for leptin receptor), linseed oil [n = 11 for naMPT (0 and 6 h), n = 10 for naMPT (3 h), n = 7 for leptin 
receptor (0 and 6 h), and n = 6 for leptin receptor (3 h)], and cod liver oil (n = 10 for naMPT and n = 7 for leptin receptor). *Median values are significant 
different from that for 0 h, P < 0.05. †Median values are significant different from that for 3 h, P < 0.05. Data are shown as median (interquartile range: 25–75th 
percentiles).
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of the coconut cake (Figures  3A,B). This postprandial decline 
increased at 6 h compared with 3 h after meal intake (Figure 3B).

DiscUssiOn

In healthy, normal weight, and young females, a single high-fat 
meal exerts significant postprandial effects on plasma levels of 
CCK, PYY, GIP, amylin, and insulin, which increased while leptin 
decreased. These findings were independent of the fat composi-
tion in the single high-fat meal. No postprandial effects were 
observed in plasma levels of NAMPT and resistin. Furthermore, 
we observed a postprandial effect in the mRNA level of NAMPT, 
but not for leptin receptor in PBMCs. The difference in the amount 
of FAs in the three different cakes might have contributed to the 
variation seen in the different gastrointestinal peptide responses 
especially [CCK; Ref. (34)] or adipokines (leptin).

High-fat intake has been shown to induce long-lasting effect 
on CCK release (35, 36). Accordingly, we observed an increase 
in the release of CCK, which was elevated up to 6 h after intake. 
With regard to fat quality, release of CCK has been shown to be 
stimulated after intake of meals rich in linoleate, whereas meals 
containing medium-chain triacylglycerols inhibited CCK release 
(37). Furthermore, Robertson and coworkers reported that the 
CCK response after a high-fat n-3 meal was significantly delayed 
compared with intake of saturated fat (35). In the present study, 
however, we found no difference in the postprandial release of 
CCK after intake of a single high-fat meal enriched with coconut 
oil, linseed oil, or cod liver oil. In accordance with our results, no 
difference was observed in postprandial CCK levels after intake 
of meals enriched with olive oil or sunflower oil (37). The lack of 
response could be due to the amount of fats given in the test cakes. 
The amounts were chosen to have an edible cake.

During fasting, the circulating levels of GIP are low; however, 
GIP is released in response to ingestion of nutrients. The release 
of GIP is dependent on the size of the meal, and ingestion of large 
meals has been shown to mediate secretion of higher amounts of 
GIP when compared with smaller meals. The major stimuli of 
GIP release are dietary fat and proteins. Olive oil has been shown 

to induce GIP to a larger extent than butter (11, 37); however, 
others found no difference in the GIP release after ingestion of a 
meal rich in SFA, n-6 FAs, or marine FAs (38). In our study, we 
observed no difference in the release of GIP induced after intake 
of a high-fat meal rich in SFA or meals rich in vegetable n-3 or 
a combination of vegetable and marine n-3 FAs. Previously, GIP 
has been linked to adipose tissue. GIP induced mRNA expression 
of inflammatory markers such as interleukin (IL)-6 and IL-1β in 
human adipocytes (23).

The release of PYY is induced shortly after food intake and 
decrease in a fasting state. Although all macronutrients induce 
PYY release, intake of fat has been shown to elicit a larger PYY 
response compared with both intake of protein and carbohydrate 
(12). Different types of fat have also been shown to induce release 
differently with medium-chain length FAs inducing little or no 
response (14). Plasma PYY was higher after intake of an oleic 
acid-enriched meal than after a linoleic acid-enriched meal (16). 
We found no difference in the response of PYY elicited by a high-
fat meal enriched with vegetable or a combination of vegetable 
and marine n-3 FAs compared with a high-fat meal enriched with 
saturated fat. To our knowledge, few, if any study has previously 
investigated the effect of intake of meals rich in n-3 FAs on PYY 
release.

Amylin is an anorexigenic peptide released by the pancreatic 
β-cells, regulated in a manner similar to insulin. Poppitt and 
coworkers showed that the intake of a high-fat meal rich in 
saturated fat or with an improved saturated:unsaturated fatty acid 
ratio had no effect on postprandial plasma amylin levels (39). We 
observe a postprandial increase in amylin levels after ingestion 
of a high-fat meal. This postprandial response did not seem to be 
affected by the FA composition of the meal. Furthermore, plasma 
insulin levels were not elevated postprandially by the cod liver 
cake but only by the linseed and coconut group, which may imply 
a different response of vegetable compared with marine n-3 FAs. 
This is in accordance with our previously reported postprandial 
effects on plasma glucose levels (29) and may potentially indicate 
a favorable effect of marine compared with vegetable n-3 FAs. 
Delarue and coworkers have previously shown a decreasing 
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effect of fish oil capsules compared with non-fish oil capsules on 
insulin response after oral glucose tolerance test in subjects of 
both genders with type 2 diabetes aged 40–75 (40). Leptin reduces 
food intake and increase energy expenditure (20), and fasting and 
re-feeding elicits a decline and a rise in serum leptin, respectively 
(41, 42). We found that levels of leptin decreased postprandially 
after intake of a high-fat meal independent of FA composition. 
Previously, it was shown that a carbohydrate meal induced higher 
postprandial leptin levels than an isoenergetic fat meal (43). Our 
results and earlier studies show a decrease in leptin levels after a 
high-fat meal (44, 45), which was not affected by the saturation 
of fat in the meal (44).

Ingestion of a high-fat meal or carbohydrate-rich meal reduces 
postprandial levels of adiponectin (20, 46). Derosa and coworkers 
reported that adiponectin levels were reduced to 6 and 9 h after an 
oral fat load (47). In our study, we found no effect on adiponectin 
levels, 3 h after the intake; however, 6 h after intake of the test 
meal enriched with linseed oil, we observed a decrease in serum 
adiponectin levels. Since adiponectin is released from the adipose 
tissue, our follow-up time of 3 and 6 h after the ingestion of the 
high-fat meal may be too short to observe effects on circulating 
adiponectin levels.

A link between gut peptides and adipose tissue has previously 
been described. Unniappan and coworkers suggested a prolong-
ing effect of leptin on PYY (48). Furthermore, deficiency of leptin 
has been shown to impair the satiety response of CCK (49), 
suggesting that gastric leptin also may be involved in early CCK-
mediated effects activated by food intake, further underscoring 
this potential network. We found no indication that intake of 
meals enriched with marine or vegetable n-3 FAs modulates 
gastrointestinal peptide and adipokine secretion differently than 
intake of meals enriched with saturated fat.

The limitations of the present study are a relatively low 
number of participants and few time points for the postprandial 
blood samples and the relative small difference in n-3 fatty acid 
content between the linseed and cod liver group. The amounts 
were chosen to make the cake edible. Only lean females, students 

of Akershus University College, Oslo, participated in the study 
making the extrapolation of the results to other subjects (male, 
obese) limited. The postprandial response of CCK, PYY, and 
ghrelin to a high-fat meal seems to be similar in obese and lean 
male subjects (50). Gender differences are so far not sufficiently 
addressed and would therefore need to be investigated in further 
studies. The strength of the study is the controlled study design 
with a homogenous study population and excellent compliance 
of the participants. Each subject consumed three test meals and 
served as their own reference.

In conclusion, the present study shows that, in healthy, young, 
and lean females, an intake of a high-fat meal enriched with n-3 
FAs from different origin elicits the same postprandial response 
in plasma levels of intestinal peptides with minor effects on 
adipokine levels compared with intake of a meal enriched with 
saturated fat.
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