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INTRODUCTION

Thomas Seyfried remarked in his book [(1), page 6]: “The definition of ketogenic diet allows for
considerable leeway in food choices as long as the individual has reduced blood glucose and is
producing ketones.” Unfortunately, these parameters are lacking in many if not most of studies
into metabolic effects of macronutrients. Meanwhile, there is a precise way to predict whether or
not a diet will induce ketosis and the aim of this opinion article is to advocate a broader usage of
this way. Why is this so important?

Excess of carbohydrate intake typical for consumers of the Western diet may cause detrimental
effects on metabolism and increase risks of the onset and progression of many neurodegenerative
diseases (2–4). On the other hand, diets high in fat and low in carbohydrates decrease appetite,
probabilities of food addiction and obesity, and are neuroprotective (5, 6). Carbohydrate restriction
induces physiological changes which are very similar to the well documented beneficial effects
of calorie restriction (7, 8). Conversely, the hallmark of high-carbohydrate diets is homeostatic
inadequacy (9), an overproduction of reactive oxygen species and advanced glycation products,
both of which are implicated in neuroinflammation and neurodegeneration (10–12). However,
the meaning of “high” or “low” in diets’ definition has been drifting away from the previously
established quantitative criterion known as ketogenic ratio.

THE KETOGENIC RATIO

Almost a century ago, Woodyatt (13) wrote: “antiketogenesis is an effect due to certain products
which occur in the oxidation of glucose, an interaction between these products on the one hand
and one or more of the acetone bodies on the other.” The ketogenic ratio (KR), as proposed by
Shaffer (14), is a ratio of the sum of ketogenic factors to the sum of antiketogenic factors: KR =

K/AK. The antiketogenic part of the equation invariably equals 1 so the KRs are always expressed
as 2:1, 4:1, etc. For the sake of economy of reading, we leaved out the repeating part not bearing any
information and mention only the informative digit.

Shaffer concluded that the maximal ratio compatible with the oxidation of the “ketogenic”
molecules becomes possible at the KR = 1, making KRs below 1 antiketogenic and KRs above 2
ketogenic. Wilder and Winter (15) described the KR of a food in terms of times the fat content
exceeds the amount of carbohydrate and protein combined, roughly. The reasoning was based on
their own experimental observation that fats are predominantly ketogenic (90%), carbohydrates are
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almost 100% anti-ketogenic, and protein is both ketogenic and
antiketogenic, 46–58% respectively. They arrived, along with
Woodyatt and Sansum (13), at the conclusion that KR for
induction of ketogenesis should be 2 or higher while the upper
limit of antiketogenesis is 1.

In 1980, Withrow (16) modified the equation and since that
time, the equation looked like this:

KR = (0.9 F + 0.46 P): (C + 0.58 P + 0.1 F) where F
is grams of fat; P is grams of protein and C is grams of
carbohydrate. Currently, this equation is rarely used in nutrition
research and less so in dietetic practice, which is regrettable since
properly calculated KRs reveals interesting patterns of diet effects.
Previously (9), using the Withrow’s equation, we calculated KRs
in a number of diets and came to conclusion that the watershed
in the group of effects occurs at KR of about 1.7. Above this value,
metabolic features of diets were characteristic for ketogenesis,
while below this value, they were characteristic for the obesogenic
high-fat diet (oHFD), which, in contrast to the diet resulting
in ketosis (KD), is high in fat but also in carbohydrates. Here,
we analyzed three groups of diets in order to compare our
observation regarding the watershed with the classification of
diets made by the authors of 62 studies, in which it was possible
to calculate KRs.

UNCERTAINTY IN CURRENT DIET
LABELLING

We can see that there is no common criteria in choosing
diet compositions for the “normal control” group to start
with (Figure 1A). The vast majority of “normal control” diets
are clearly anti-ketogenic (KRs below or equal 1). The oHFD
group of diets had broader spectrum of KRs ranging from the
anti-ketogenic 0.456 to clearly ketogenic 2.994. The KRs of
diets, which were considered ketogenic by the authors, ranged
especially broadly: from 0.36 to above 6. The macronutrient
compositions of oHFD diets and KDs overlap although the
obesogenic oHFD is discussed in literature as diametrically
different from the KD. The metabo- and neuroprotective effects
of KD are experimentally and clinically confirmed, however, the
low compliance rate of the strict KD caused mass attempts to
reduce the KR below KR = 2, which for a century used to be the
minimal accepted value to consider a diet ketogenic.

An example is the Modified Atkins Diet (MAD) first tried
at The Johns Hopkins Hospital. It is a protocol replicating the
induction phase of the original Atkins diet. MAD is composed
of approximately 10% energy from carbohydrates, 30% from
protein, and 60% from fat, no calorie restriction (55–58). The
MAD became an intervention for treating a number of diseases,
first of all in cases of intractable childhood epilepsy but also
in pharmacoresistant epilepsy in adults and in pathologies of
glucose utilization (58). MAD is labeled “ketogenic” while its
KR = 1.3 (calculated basing on 11). However, its efficiency is
limited: although 70% of epilepsy patients on MAD experienced
a 50% reduction in seizures, after switching to the strict
clinical KD (KR = 4) the patients benefited from an additional
37% improvement and 18.5% became seizure-free (13, 59, 60)

indicating that the KR is indeed an important predictor of diet
effectiveness.

EFFECTS OF KD VS. OHFD

Basing on our review of KR-dependent effects of diets (6), here
we compiled a brief overview in order to demonstrate the critical
differences between KD and oHFD.

1. The risks of pathologies caused by brain hypometabolism (e.g.,
due to hypoxia, hypoglycemia, brain trauma) is reduced in
diets capable of inducing ketogenesis; the opposite is shown
for the oHFD diets (39, 61–69).

2. Inflammation, e.g., neuroinflammation is shown to be induced
by oHFD but decreased by KD (70–78) among other things
resulting in improved or impaired cognitive function (76, 78–
82).

3. Neuronal hyperactivity and epilepsy is attenuated by KD but
exacerbated by oHFD (75, 83–85, 85–88).

4. Inhibition of growth of tumor and metastasis as well as
tumor neo-angiogenesis is demonstrated for KD while oHFD
increases the risk of cancerogenesis (8, 89–92).

5. KD decreased cardiovascular risks while oHFD increases them
(93, 94).

6. KD lowered the type 2 diabetes risks, improves management
of complications and glucose control while oHFD increases
the risks, exacerbates complications and induced glucose
intolerance (95–99).

BELOW THE KETOGENIC THRESHOLD

In the ragne of KRs between 1 and 2 lays the area of
metabolic uncertainty where the effects are poorly predictable,
the definitions are vague and outcomes even more so. The most
critical value in this area is 1.5, the experimentally reached
threshold of anti-ketogenesis (100). Here we report the result
of our analysis of non-ketogenic diets (Figures 1B,C) using data
extracted from the studies:

• Very low carbohydrate diet [VLCD, (51)];
• The Atkins diet - induction and maintaining phases, the Zone

diet and very low fat diet, [VLFD, (52, 53)];
• MAD, Zone, Weight Watchers diet (WW) and VLFD (54);
• Ketogenic low carbohydrate diet (KLC) and non-ketogenic

low carbohydrate diet (NLC) (25).

The common feature of these diets was that none of them reached
the threshold of ketogenesis defined as KR= 1.5 (100). The diets
were roughly isocaloric (1,412 ± 35.5 Kcal/day; caloric intake of
WW varied averaging 1,400 Kcal), with main outcome a body-
mass loss. Beyond the strictly utilitarian standpoint, body-mass
loss is an indicator of lipolysis and thus of ketogenesis likelihood.

In diets ranging from KR = 1.413 to KR = 0.06
(Figure 1B), the metabolic outcome did not depend on KR as
directly as it does above the ketogenic threshold (Figure 1C)
indicating that mechanisms other than the ketogenesis-glycolysis
counterbalancing seem to be predominant. Indeed, in the study
of Johnston et al. (25) the inverse relationship has been observed:
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FIGURE 1 | (A) Green line, theoretical threshold of ketogenesis; dashed green line, empirical threshold of ketogenesis. Red line, theoretical threshold of

anti-ketogenesis; dashed red line KR = 0.5. Vertical axis, ketogenic ratios. Horizontal axix, original studies, first author and year (17–50). (B) Ketogenic ratios of diets

below the ketogenic threshold. Calculated basing on data extracting from the studies (25, 51–54). Gray curves in (B,C) trendlines. (C) Body-mass loss on diets below

the ketogenic threshold. VLCD, very low carbohydrate diet; MAD, modified Atkins diet; Zone, the Zone diet; KLC, ketogenic low carbohydrate diet; WW, Weight

Watchers diet; VLFD, very low fat diet; NLC, non-ketogenic low carbohydrate diet.

the KLC diet having six times higher KR than NLC (0.35 vs. 0.06)
had almost twice lower effect (4 vs. 7 kg) leading the authors
to conclusion they even used as the article title: “Ketogenic low-
carbohydrate diets have no metabolic advantage over nonketogenic
low-carbohydrate diets”—although both diets were undoubtedly
anti-ketogenic.

It has been shown before (26) that the prevalence of
carbohydrates in an otherwise equally high-protein diets
increased energy intake in the ad libitum consumption mode
initiating the vicious cycle of non-homeostatic processes,
including reward seeking and food addiction (101) and the
prevalence of energy-conserving metabolic mode over the
homeostatically balanced mode (9). Theoretically, below the
KR = 1.5, glucocentric metabolic mode prevails while above
KR = 1.5 the dominant metabolic mode is adipocentric with
the important consequence being initiation of lipolysis (102).
This is why the body-mass loss of diets is a convenient
parameter indirectly indicating that lipolytic processes take
place. It has been measured empirically (100) that ketosis is
not observed in KRs below 1.5—however, the “ketogenic” label
has been assigned to MAD (KR = 1.021) and even to KLC
(KR= 0.36).

There is a turning point in the KR-effect interaction curve at
KR = 0.5 (Figure 1C), the diet nearest to this point being at KR
= 0.438 [the Zone diet, (52–54)]. Further decrease of KRs up to
the value of 0.06 resulted in an inverted U-shaped dose-response
relationship under the threshold of ketogenesis.

DISCUSSION

Currently the classification of diets is rather unsatisfactory and
diet labels offered by the authors (quite arbitrarily) “normal”,
“oHFD,” or “ketogenic” oftentimes do not correspond to their
respective diets’ macronutrient compositions. Description based
on percentages of energy from each of the macronutrients does
not make it easy to qualify diet type and unify the categorization.
The macronutrient ratio in terms of ketogenicity is often ignored
in qualification of metabolic effects. The most striking example of
this is the oHFD diet, which in fact is also high in carbohydrates.
As we briefly discussed above, its effects are diametrically
opposing those of the ketogenic diet which is also high in fat
but low in carbohydrates, resulting in striking differences in diets’
physiological effects (see Effects of KD vs. oHFD).
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The ad libitum access to food is the standard protocol in
animal experiments although the validity of it is rightfully
questioned since the subjects become “sedentary, obese, glucose
intolerant, and on a trajectory to premature death” [(103), page
6,127]. On the other hand, the low-carbohydrate diets that
are high in fat have a number of metabolic advantages: for
instance, they facilitate increase energy expenditure by increasing
thermogenic effects and excretion of ketone bodies (104).

Greater carbohydrate intake was associated with poorer
performance in patients with Alzheimer’s disease (105), while KD
improved cognition independent of weight loss in healthy human
subjects (80). KD improved verbal vocabulary and reaction time
in children with epilepsy and attention (4), concentration, and
memory in adults with multiple sclerosis (106). Diets limiting
carbohydrate intake mimic the effects of fasting or caloric
restriction (102). In fact, calorie restriction is not even required
on a very low carbohydrate diet to achieve the desired goals,
while on a low-fat, high-carbohydrate diet calorie restriction is
the principal requirement (107).

The metabolic effects of dietary fat on energy homeostasis
differs from the effects of carbohydrates in two key features.
One is the ability to store energy in depots - fat is exceptionally

good at it, but carbohydrates are limited in this ability. The

other is the ability to increase the drive to consume energy.
Carbohydrates have a characteristic ability to elicit positive
reward and thus addiction (5, 101, 108–110) while significant
carbohydrate restriction in VLCD caused not only energy intake
decrease but also energy expenditure increase in both resting
and active states (51). In spite of these non-homeostatic features,
these mechanisms are evolutionarily appropriate in wild nature,
but as soon as the living conditions change the hard-wired
pursuit to maximize the energy store becomes a metabolic trap
(9s), resulting in non-homeostatic overconsumption and all the
negative metabolic consequences it causes.

To conclude, the current classification of diets results in
terminological confusion.We suggest that rethinking the existing
descriptive approach and reanimating the century-old qualitative
and clear-cut criterionmay facilitate the use of common language
and substantive discussion in nutrition and metabolism.
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