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Mammalianmilk is not only a source of nutrition for the newborn, but also contains various

components that regulate further development. For instance, milk is an abundant source

of microRNAs (miRNAs), which are evolutionary conserved small non-coding RNAs that

are involved in post-transcriptional regulation of targetmRNA.MiRNAs present inmilk can

occur in extracellular vesicles (EVs), which are nanosized membrane vesicles released

by many cell types as a means of intercellular communication. The membrane of EVs

protects enclosed miRNAs from degradation and harbors molecules that allow specific

targeting to recipient cells. Although several studies have investigated the miRNA content

in milk EVs from individual species, little is known about the evolutionary conserved nature

of EV-associated miRNAs among different species. In this study, we profiled the miRNA

content of purified EVs from human and porcine milk. These data were compared to

published studies on EVs from human, cow, porcine, and panda milk to assess the

overlap in the top 20 most abundant miRNAs. Interestingly, several abundant miRNAs

were shared between species (e.g., let-7 family members let-7a, let-7b, let-7f, and

miR-148a). Moreover, these miRNAs have been implicated in immune-related functions

and regulation of cell growth and signal transduction. The conservation of these miRNA

among species, not only in their sequence homology, but also in their incorporation in

milk EVs of several species, suggests that they are evolutionarily selected to regulate cell

function in the newborn.

Keywords: milk, miRNA, extracellular vesicles, exosomes, immune modulation

INTRODUCTION

Mother’s milk provides the newborn with more than only nutrition: it contains various complex
macromolecular structures that carry signaling molecules that are delivered to the newborn. One
of these signaling moieties are extracellular vesicles (EVs). EVs are cell-derived lipid bilayer-
enclosed vesicles containing selectively incorporated proteins, lipids, and nucleic acids (mainly
small RNAs) (1–3), which are in turn selectively delivered to recipient cells to modulate their
functions (4, 5). Hence, the transfer of maternal milk EVs to the newborn allows for cross-organism
communication.
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EVs are generally classified into exosomes and microvesicles,
which have distinct biogenesis pathways and may differ in size
and cargo (1, 2). Currently available methodologies do not allow
discrimination between exosomes and microvesicles as the size,
surface markers, and buoyant densities of these vesicle subtypes
overlap (2). Therefore, we will use the generic term EVs in this
study even though previously published studies attribute their
findings to certain subtypes, mostly exosomes.

EVs have been identified and characterized in humanmilk (6–
9), as well as in milk from other species, such as cow (10, 11),
buffalo (12), pig (13), wallaby (14), horse (15), camel (16), rat
(17), and panda (18). Additionally, extensive miRNA profiling of
milk EVs has been performed in human (8–20), cow (21), pig
(13, 22), and panda (18), and several high abundant miRNAs
have been identified in each of these species. These abundantly
miRNA species might be involved in the specific targeting of
signaling pathways in the newborn. However, the EV isolation
procedures used in these studies only enabled enrichment for
milk EVs but precluded isolation of pure EVs (23). In the current
study, we employed an optimized protocol that we previously
developed for recovery and characterization of EVs from fresh
milk (7, 9) in order to assess which miRNAs were most abundant
in purified EVs from human and porcine milk. Additionally, we
compared the identified miRNA profiles from this study with
the previously reported high abundant EV-associated miRNAs
from human, bovine, porcine, and panda milk. This allowed us
to compare the impact of EV isolation procedures on the analysis
of miRNAs in milk EVs and to examine the conserved nature
of highly abundant miRNAs present in milk EVs from different
species. Furthermore, we speculate on the potential impact on the
newborn’s development via these conserved milk EVs-associated
miRNAs.

METHODS

Milk EVs Isolation
Milk EVs were isolated as previously described (7, 9). Fresh
human milk from a pool of four breast-feeding mothers 3 until
9 months after delivery was obtained after informed consent of
the donors and approval by the local ethics committee. Porcine
milk was obtained from two sows between 2 and 3 weeks after
delivery after approval by the local ethics committee. Raw milk
was centrifuged twice at 3,000 × g (Beckman Coulter Allegra
X-12R, Fullerton, CA) and the milk supernatant was subjected
to differential centrifugation at 5,000 × g and 10,000 × g in
sterilized and new SW40 tubes (Beckman Coulter). The 10,000×
g supernatant was loaded onto a sucrose gradient (ranging from
2.0 to 0.4M sucrose) and ultracentrifuged at 192,000 × g (in a
Beckman Coulter Optima L-90K with a SW40 rotor) for 15–18 h
(k-factor 144.5). EV-containing fractions (1.12–1.18 g/ml) were
harvested, pooled, and centrifuged at 100,000 × g for 65min.
After centrifugation, supernatant was removed and EV pellets
were aliquoted and stored at 80◦C.

EV-RNA Isolation
Small RNA was isolated using the miRNeasy Micro kit
according to the small RNA enrichment protocol provided

by the manufacturer (Qiagen, Hilden, Germany). RNA
yield and size profile were assessed using Agilent 2100
Bioanalyzer and Pico 6000 RNA chips (Agilent Technologies,
Waldbronn, Germany) (see Table 1 for comparison between
studies).

Preparation of Small RNA Sequencing
Libraries
Eight nanograms of milk EV-derived small RNA was treated
with DNase (Turbo DNA-free kit (Life Technologies, Carlsbad,
CA), pelleted using Pellet Paint (Merck, Darmstadt, Germany),
and subsequently reconstituted in 6 µl milliQ water (human
samples) or 12 µl milliQ water (porcine samples). For the human
samples, cDNA libraries were prepared using the NebNext
small RNA library prep kit for Illumina (New England Biolabs,
Ipswich, MA) with the following adaptations: 3′ adapter ligation
was carried out overnight at 16◦C; Kapa HiFi Readymix 2×
PCR mastermix (Kapa Biosystems, Wilmington, MA) was used
for PCR amplification as follows: 2min at 95◦C; 17 cycles
of 20 s at 98◦C, 30 s at 62◦C, 15 s at 70◦C, and a final
elongation step of 5min at 70◦C. For the porcine samples,
cDNA libraries were prepared as indicated by manufacturer
with the Illumina TruSeq kit (Illumina Inc., San Diego,
CA) with PCR amplification up to 17 cycles. cDNA was
purified using AMPure XP beads (Beckman Coulter, Brea,
CA) and quantified using Agilent 2100 Bioanalyzer and DNA
HiSensitivity chips. Adapter dimers were removed by TBE
gel purification (146–400 nt of which 126 nt derive from
adapters for human, and a size range of 150–175 bp for porcine
samples).

miRNA Profiling
Data quality was checked with FastQC and reads were processed
with cutadapt (v1.8) to remove low quality reads. Sequences
with a minimal length of 15 bp (human) or maximum length
of 25 bp (porcine) after adapter trimming were retained. The
end-trimmed sequences were mapped to the miRNA hairpin
sequences using bowtie (v1.1.1 for human and v1.2.2 for
porcine) with default settings. miRNA sequences were retrieved
from miRbase (v21) and for both human and porcine the
combined number of reads per miRNA was used to find the
top miRNAs. Supplementary File 1 lists all miRNAs identified
in human and porcine milk EV, together with sequencing depth
and mapping rates. Sequencing data were deposited in NCBI’s
Gene Expression Omnibus (GEO) under accession number
GSE118409.

Literature Search Previously Published
Milk EVs miRNA Analysis
To collect published data on miRNA profiling of milk EVs
from different species, studies listed in PubMed up to
March 2018 were selected based on the keywords “milk”
and “microRNA(s),” “miRNA(s),” “extracellular vesicle(s),”
“exosome(s),” or “microvesicles.” Additionally, the bibliographies
from the retrieved articles were searched to find additional
sources. Subsequently, the experimental procedures in
these papers were evaluated. Only those papers in which
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TABLE 1 | Overview of experimental details for isolation and characterization of milk EVs miRNAs in this study and previously published studies.

This study Zhou (8) Simpson

(20)

Liao (19) Izumi (21) This study Gu (13) Chen (22) Ma (18)

Species Human Human Human Human Bovine Porcine Porcine Porcine Panda

Donors Pool of 4

individuals

4 Individuals 54 Individuals 12 Individuals 3 Individuals 2 Individuals 3 Individuals NR 3 Individuals

Time

post-partum

3–9 months 60 days 3 months 1–8 months NR 3–4 weeks 0–28 days 1–5 days 0–30 days

Storage of

whole milk at

−80◦C

No Yes Yes Yes Yes No No Yes No

EV isolation

procedure

Differential

centrifugation;

density

gradient

Differential

centrifugation;

Exoquick

Differential

centrifugation;

Exoquick

Exoquick Differential

centrifugation;

ultra-

centrifugation

Differential

centrifugation;

density

gradient

Exoquick Differential

centrifugation;

ultra-

centrifugation

Differential

centrifugation;

Exoquick

miRNA

extraction kit

miRNeasy TRIzol-LS miRNeasy TRIzol miRNeasy miRNeasy TRIzol-LS TRIzol TRIzol-LS

Library

preparation

kit

New England

Biolabs,

NebNext

NR Epicentre

Biotechnologies,

ScriptMiner

Illumina

TruSeq

Not

applicable

Illumina

TruSeq

NR NR NR

miRNA

profiling

method

HiSeq 2000

(Illumina)

Genome

Analyzer II

(Illumina)

HiSeq 2000

(Illumina)

HiSeq 2500

(Illumina)

Microarray

(670 bovine

miRNA)

HiSeq 2000

(Illumina)

Genome

Analyzer II

(Illumina)

Solexa

sequencing

Genome

Analyzer II

(Illumina)

To be selected, a study should apply a method for the enrichment of EVs from the milk sample in combination with miRNA profiling by microarray or small RNA sequencing. The selected

papers focused on human, bovine, porcine or panda milk. Variations between sample numbers and time of sample collection are indicated, as well as differences in milk storage,

EVs/miRNA isolation procedures, and miRNA profiling methods. NR, not reported.

extensive miRNA profiling was performed either by deep
sequencing or microarray on milk samples enriched (by
differential centrifugation and/or precipitation) for milk
EVs were selected for further comparison. In total seven
studies were selected to compare the most abundantly
present miRNAs (see Table 1 for comparison of selected
studies).

In silico Analysis
Tarbase (24) was used to screen for validated targets of identified
miRNAs and TargetScan (25) was used to assess conservation of
these target sites. Funrich (26) was used for GO analysis on the
identified targets.

RESULTS

miRNA Profiling of Purified EVs From
Human and Porcine Milk
We show for the first time the miRNA profile of purified
milk EVs isolated after differential centrifugation followed by
density gradient separation. We identified 309 mature miRNAs
in human milk EVs and 218 mature miRNAs in porcine
milk EVs (Supplementary File 1), These numbers are in range
with the miRNAs that were previously identified in milk EV
enriched samples of human [n = 602 (8), n = 125 (20)
and n = 610 (19); average of 446 ± 278 miRNAs] and
porcine [n = 234 (13) and n = 491 (22); average of 363
± 182 miRNAs]. Hence, the number of identified miRNAs

seems not to differ greatly between purified EVs and EV-
enriched samples or the RNA extraction and profiling methods
used.

Milk EVs From Different Species Share
Abundantly Present miRNAs
In order to identify similarities in the miRNA composition
of milk EVs from different species, we compared the top
20 most abundant miRNAs detected in purified milk EVs to
the reported top 20 most abundant miRNAs in the selected
publications. We observed substantial overlap in the top-ranked
miRNAs observed in the different studies, with 19 miRNAs
being abundantly detected in at least four out of nine studies
(Table 2). Interestingly, four miRNAs were identified in high
abundance in all four species examined. These included miRNA
let-7 family members let-7a, let-7b, and let-7f, as well as miR-
148a. These miRNAs were fully conserved at the sequence
level in all species (Supplementary File 1). In addition to
the similarities observed in miRNA content of EV, we also
identified miRNAs that were abundantly present in milk EVs
from all but one species. For example, miR-20a, miR-26a,
and miR-141 were not present in the top 50 most abundant
miRNAs in any of the three porcine studies, while these
miRNAs are in the porcine genome. Additionally, let-7c was
not abundantly present in any of the four human studies
(see Supplementary File 1 for the full Table 2). Furthermore,
we also observed differences in miRNA profiles reported in
studies investigating milk EVs from the same species. Many
factors may underlie these differences, including pre-analytic
variables, differences in milk EVs and RNA isolation protocols,
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TABLE 2 | Overlap in top 20 most abundant miRNAs detected in milk EVs from human, cow, pig, and panda.

Top 20

ranked

This

study

Zhou et

al. (8)

Simpson et

al. (20)

Liao et

al. (19)

Izumi et

al. (21)

This

study

Gu et al.

(13)

Chen et

al. (22)

Ma et al.

(18)

Times

identified

in top 20

miRNA Human Human Human Human Bovine Porcine Porcine Porcine Panda

let-7a-5p 5 6 6 17 8 1 10 8 5 9

miR-148a-

3p

2 1 1 2 14 1 • 2 7

miR-30a-5p 10 NR 13 11 • 2 2 13 8 7

let-7f-5p 9 3 7 • 17 6 NR 9 13 7

miR-30d-5p 1 NR 3 4 • 5 5 • 17 6

let-7b-5p 8 NR 4 15 4 NR • 1 5

miR-21-5p 7 NR 10 • 4 12 • 15 5

miR-22-3p 18 NR 2 1 • NR 17 16 5

miR-320a-3p 17 NR • 20 15 10 NR 3 • 5

miR-191-5p • NR • 13 3 9 7 • 4

miR-200a-3p 3 9 5 16 • NR • 4

miR-181a-5p • NR • 3 20 NR 4 10 4

miR-92a-3p • NR • 8 13 NR 14 3 4

miR-182-5p • 8 10 19 4 4

miR-141-3p 7 20 5 10 NR • 4

let-7g-5p 11 NR • 14 • 9 NR • 9 4

let-7c NR 13 7 NR 10 19 4

miR-375-3p 14 NR 17 9 • 13 4

miR-26a-5p • NR 18 6 20 NR 20 4

miR-200c-3p 4 NR • • 9 8 NR • 3

The top 20 most abundant miRNA (this study) were compared to the top 20 miRNA reported in the indicated publications on milk EVs (see Supplementary File 1 for all data; Table

shows the 20 most abundant miRNA ranked according to their presence in the top 20 of the selected studies). If a miRNA was present in the top 20, their ranking is stated and if their

position is 21–50, this is depicted with •. NR, not reported (these two studies only reported the top 10 or the top 13 most abundant miRNA). Red shading indicates a high ranking

(position 1–10), while blue indicates a low ranking (position 11-20). Those miRNA that were identified within the top 20 of all species (in at least one human or porcine study, and in the

bovine and panda study) are depicted in bold.

time in lactation period, and inter-individual differences in milk
composition.

Conserved Milk EV-Associated miRNAs
Have Immune-Related Functions
Milk EVs have been indicated to modulate immune cells (6) and
promote epithelial cell growth (27). Importantly, milk-derived
miRNAs have been shown to survive harsh conditions including
RNase digestion (8, 13, 14, 18), low pH (13, 14, 18), and in
vitro gastro-intestinal digestion (19, 28). This indicates that milk
EVs resist gastro-intestinal conditions and therefore presumably
remain intact in the newborn gastro-intestinal tract. Even though
no strong direct in vivo evidence exists, milk EVs can be taken up
in vitro by intestinal epithelial cells (19, 29, 30), vascular epithelial
cells (31), and macrophages (11, 21, 32). This suggests that EV
cargo can reach the cells at the mucosa of the newborn.

In order to link the conserved milk EV miRNAs to
relevant physiological processes, we identified 24 validated
target (Supplementary File 1) and used GO analysis to
determine that these targets are involved in “cell growth
and/or maintenance,” “cell communication” and “signal
transduction” (Supplementary File 1). In fact, let-7a/b/f-5p and
miR-148-3p have been shown to regulate signal transduction

by downregulating the transcription factor NF-κB resulting
in a dampened immune response (33–35). Collectively, these
data suggest that milk EVs harbor evolutionary miRNAs with
immunomodulatory functions that can regulate the newborns
development.

DISCUSSION

In this study, we isolated EVs from human and porcine milk and
determined the presence and abundance of miRNAs. The top 20
of most abundantly present miRNAs from the purified human
or porcine milk EVs were compared to previously reported
miRNAs that were profiled from EV-enriched samples from
human, bovine, porcine, and panda milk. Four specific miRNAs
appeared to be highly abundant and conserved not only in their
sequence, but also in their presence in milk of several species.

At first glance the number of isolated miRNA species does
not seem to differ greatly between purified and EV-enriched
milk samples and the four conserved miRNAs were identified
irrespective of further EV purification and disparate RNA
isolation and profiling methods. However, we also observed
clear differences along the line reported earlier by van Deun
et al. (36). For instance, miR-100-5p was only detected in
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high abundance in the purified human milk EVs from this
study and was not present in the top 50 of other human
studies. In contrast, miR-30b-5p was not abundantly present
in purified human milk EV, while it was detected in the three
other human studies. For porcine milk EVs there were many
discrepancies between the identification of miRNAs between
purified EVs compared to the other isolation methods. This
could also be caused by a divergence in RNA isolation, library
preparations, and sequencing method, which was different for
this study compared to Gu et al. and Chen et al. A first step
would be to standardize milk collection, milk storage, milk EV
isolation, miRNA extraction, miRNA profiling, and data analysis.
Finally, adequate reporting of experimental details should be a
priority in the EV field to increase rigor and reproducibility
(37).

In conclusion, the evolutionary conserved character of a
selected set of miRNAs in milk EVs is remarkable. Their presence
in EVs suggests a possible conserved role in maternal to newborn
cross-organism communication. By targeting a variety of genes,
including those that are involved in the regulation of the
newborn’s epithelial barrier and immune system these maternal
milk EV-associated miRNAs might contribute to the guided
further development of the newborn.
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