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Proteolytic Surface-Shaving and
Serotype-Dependent Expression of
SPI-1 Invasion Proteins in Salmonella
enterica Subspecies enterica

Clifton K. Fagerquist* and William J. Zaragoza

Produce Safety & Microbiology Research Unit, Western Regional Research Center, Agricultural Research Service, U.S.
Department of Agriculture, Albany, CA, United States

We performed proteolytic surface-shaving with trypsin on three strains/sevovars
of Salmonella enterica enterica (SEE): Newport, Kentucky, and Thompson.
Surfaced-exposed proteins of live bacterial cells were digested for 15min. A separate
20 h re-digestion was also performed on the supernatant of each shaving experiment to
more completely digest protein fragments into detectable peptides for proteomic analysis
by nano-liquid chromatography-electrospray ionization-Orbitrap mass spectrometry.
Control samples (i.e., no trypsin during surface-shaving step) were also performed in
parallel. We detected peptides of flagella proteins: FliC (filament), FID (cap), and FigL
(hook-filament junction) as well as peptides of FigM (anti-o28 factor), i.e., the negative
regulator of flagella synthesis. For SEE Newport and Thompson, we detected Salmonella
pathogenicity island 1 (SPI-1) secreted effector/invasion proteins: SipA, SipB, SipC,
and SipD, whereas no Sip proteins were detected in control samples. No Sip proteins
were detected for SEE Kentucky (or its control) although sip genes were confirmed to
be present. Our results may suggest a biological response (<15 min) to proteolysis of
live cells for these SEE strains and, in the case of Newport and Thompson, a possible
invasion response.

Keywords: Salmonella enterica enterica, surface-shaving, proteolysis, trypsin, pathogenicity island 1, nano-
electrospray ionization, Orbitrap mass spectrometry, flagella

INTRODUCTION

Bacterial surface-shaving is a technique by which surface-exposed biomolecules (usually proteins)
are cleaved from the surface of live cells with proteolytic enzymes, e.g., trypsin, followed by
detection by liquid chromatography tandem mass spectrometry (LC/MS/MS) (1-3). A majority
of the surface-shaving experiments have been performed on Gram-positive bacteria (1-15).
It was reasoned that the peptidoglycan cell wall of Gram-positive bacteria, having greater
structural rigidity, would be less likely to rupture during proteolysis than the outer (and inner)
membranes of Gram-negative bacteria. Cellular rupture contaminates the sample with cytoplasmic
proteins complicating data analysis making it more difficult to assess which proteins are truly
surface-exposed. As a certain amount of cell lysis is unavoidable during a shaving experiment,
attempts to minimize its occurrence involved primarily reducing the proteolysis time as much as
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possible, e.g., 15min (2). Despite the lack of a cell wall, surface-
shaving has been performed on a number of Gram-negative
bacteria with mixed success (16-21).

In an early work, Grandi and co-workers demonstrated the
surface-shaving technique on group A Streptococcus (a Gram-
positive microorganism) in order to identify new vaccine targets
(1). In addition to proteolytic surface-shaving, this influential
paper used liquid chromatography tandem mass spectrometry
(LC/MS/MS) to detect and identify peptides and their respective
proteins by comparison to a proteomic database derived from a
genomically sequenced S. pyogenes strain (SF370). In addition,
proteins identified as surface or surface-associated were analyzed
with in silico prediction software [e.g., PSORT(22, 23)] to confirm
whether the peptides identified by LC/MS/MS were predicted
to be surface-exposed. By this approach, new potential vaccine
targets were identified.

Trypsin has been the proteolytic enzyme of choice for bottom-
up proteomic experiments because it cleaves on the C-terminal
side of basic residues: arginine (R) and lysine (K). It has been
used to digest proteins in solution as well as in-gel. When
ionized by electrospray ionization (ESI) (24) or nano-ESI, (25)
tryptic-generated peptides will sequester an ionizing proton at
the C-terminal basic residue which, for all practical purposes,
is immobilized. Additional ionizing protons will occupy other
basic residues (if present due to a missed cleavage) or at
the N-terminus or along peptide backbone. During vibrational
excitation, e.g., collision-induced dissociation (CID), (26) these
additional protons “hop” along the peptide backbone causing
fragmentation and resulting in an easily interpretable MS/MS
spectrum (27).

Trypsin has been used in many (although not all) surface-
shaving experiments primarily because the analysis is LC-
ESI/MS/MS. However, trypsin has drawbacks for surface-shaving
primarily because the target proteins are often embedded in the
outer membrane or cell wall and may not have cleavage sites that
are easily accessible even for the protein region that is exposed
on the bacterial surface. In consequence, the number of peptides
identified from trypsin surface-shaving may be quite limited.
To address this issue, other proteolytic enzymes have been
utilized that cleave at sites other basic residues, e.g., proteinase
K (cleavage at aliphatic and aromatic residues), chymotrypsin,
etc. However, the difficulty of cleaving at sites other than at
basic residues is that the peptides generated may not fragment
efficiently by CID and generate MS/MS spectra that are as easily
interpretable compared to MS/MS of tryptic-generated peptides.

Another issue that was noted in early surface-shaving
experiments is that the short digestion time (~15-30min)
used in order to minimize cell lysis and contamination with
cytoplasmic proteins may result in large protein fragments that
may not fragment efficiently by MS/MS. In consequence, a
re-digestion step was incorporated in which the supernatant
containing peptides and protein fragments from a surface-
shaving experiment were digested for a much longer period of
time (e.g., 20h). Implementation of this insight increased the
number of identifiable peptides and proteins (3, 12).

Salmonella enterica subspecies enterica (SEE) is a Gram-
negative human pathogen often associated with outbreaks of

TABLE 1 | Strains used in this study.

Strain Description Source

RM1655 Salmonella enterica Greg Inami (CA State Health Lab,
subspecies enterica Berkeley). Strain isolated from alfalfa
serovar Newport seeds responsible for an outbreak of

S. Newport (28, 29).

RM7890 Salmonella enterica Isolated from ground chicken by Food
subspecies enterica Safety & Inspection Service, USDA
serovar Kentucky (Alameda, CA)

RM1987 Salmonella enterica Sharon Abbott (CADHS). Human

subspecies enterica
serovar Thompson

isolate putatively part of an outbreak
due to contaminated cilantro,
epidemiologically linked to Gilantro.

foodborne illness. There are over 2,500 different serovars of
SEE, and pathogenicity and virulence across serovars (and
even strains) can vary considerably. There have been very few
experiments analyzing the surface-exposed biomolecules of SEE
(19). In the current study, we examined three serovars/strains
of SEE (Newport, Kentucky, and Thompson) by surface-shaving
with trypsin. We chose these particular serovars/strains from
our strain collection because each has some relevance to food
safety or were associated with a foodborne outbreak. Although
a number of surface-associated proteins were identified, we also
observed significant proteolytic cleavage of flagella proteins as
well as a secreted protein that is a negative regulator of flagella
biosynthesis as well as SPI-1 invasion/effector proteins in the case
of Newport and Thompson serovars. Our results may suggest
an unusually rapid response (<15min) of these pathogens to
proteolytic damage of their flagella perhaps triggering a virulence
response.

EXPERIMENTAL SECTION

Culture Conditions

Strains utilized in this study are shown in Table1 (28, 29).
Strains were inoculated from glycerol stocks into LB broth
and incubated overnight at 37°C with 200 rpm agitation. The
following morning, 5 pL of overnight culture was sub-cultured
into 5mL of fresh LB broth and incubated until mid-log phase
(ODggp &~ 0.4). Cells were then harvested for the surface-shaving
experiment.

Cell Preparation

Cells were removed from the incubator at mid-log phase and
quenched on ice for 5min. A 1 mL aliquot of cells was transferred
to sterile 1.5mL snap-cap tubes and centrifuged at 1,400 rpm
for 15min at 4°C. The broth media was discarded and the cells
were suspended in 1 mL of sterile, ice-cold 1x phosphate buffered
saline (PBS) and centrifuged at 1,400 rpm for 15 min. The PBS
was discarded and the cells were suspended in 1 mL of 1x PBS
to which was added 2 g of modified, sequencing grade porcine
trypsin (Product # V5111, Promega, Madison,WI). As a control,
a 1 mL aliquot of cells were similarly pelleted by centrifugation,
washed and re-suspended in 1 mL of 1x PBS but without trypsin.
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Cell samples with trypsin and without trypsin (control) were
incubated for 15min at 37°C and 75 rpm. Cells were then
centrifuged at 13,000 rpm for 5 min. The resulting supernatant of
both samples were collected separately, filtered through a 0.2 um
filter (Millipore) to remove cells and partitioned into two equal
0.5mL aliquots. One trypsin surface-shaving aliquot was diluted
with 0.5mL of 1x PBS, filtered through a 10 kDa MWCO spin
filter (VWA) with centrifugation at 14,000 g for 10 min to remove
trypsin. The eluent was transferred to an HPLC vial and stored
at —20°C for subsequent analysis. The other trypsin surface-
shaving aliquot was diluted with 0.5mL in 1x PBS to which was
added 2 g of trypsin, and the sample was incubated for 20h at
37°C at 75 rpm. This re-digested sample was then filtered with a
10 kDa MWCO spin filter to remove trypsin and transferred to
an HPLC vial and stored at —20°C for subsequent analysis.

The 0.2um filtered supernatants of cell samples that
underwent “surface-shaving” in the absence of trypsin were also
separated into two equal 0.5 mL aliquots. One aliquot was diluted
with 0.5mL of 1x PBS to which was added 2 pg of trypsin.
The sample was incubated for 15min at 37°C at 75 rpm and
filtered through a 10 kDa MWCO spin filter with centrifugation
at 14,000 g for 10 min. The eluent was transferred to an HPLC vial
and stored at —20°C for subsequent analysis. The other aliquot
was diluted with 0.5mL of 1x PBS to which was added 2 pg
of trypsin. This sample was incubated for 20h at 37°C and 75
rpm and was filtered through a 10 kDa MWCO spin filter with
centrifugation at 14,000 g for 10 min. The eluent was transferred
to an HPLC vial and stored at —20°C for subsequent analysis.

Nano-Liquid Chromatography-Tandem
Mass Spectrometry (nano-LC-MS/MS)

Samples were analyzed using a nano-LC system (Tempo™,
nano MDLC, Applied Biosystems/Eksigent) with a PicoSlide
nano-electrospray (nano-ESI, 3 column set-up) ion source (New
Objective, Woburn, MA) coupled to a hybrid LTQ-Orbitrap
Elite mass spectrometer (Thermo Fisher Scientific, San Jose,
CA). An 8-10 pL aliquot of sample was loaded onto a 20 pnL
stainless steel loop using an Ultra-Plus II autosampler (Micro-
Tech Scientific). The sample slug was then transferred to a one
of the three PicoChip columns (C18-AQ, 3 wm, 120 A, 105 mm,
New Objective) at a flow rate of 400 nL/min using a NanoEasy
n-LC II (Thermo Scientific) HPLC. The loading solution was 5%
acetonitrile, 95% water, and 0.1% formic acid. Sample was eluted
from the column at flow rate of 400 nL/min using the following
gradient: 0.0 to 58.0 min, A: 98 to 70%, respectively, followed by
58.0 to 58.5 min, A: 70 to 98%, respectively, followed by 58.5 to
60.0 min, A: 98 to 98%. Buffer A was 0.1% formic acid in HPLC
grade water (Optima® LC/MS grade, Fisher Chemical). Buffer
B was 0.1% formic acid in HPLC grade acetonitrile (Optima®
LC/MS grade, Fisher Chemical). After column elution, the next
loaded column was automatically moved in-line for elution
and mass spectrometry analysis. The recently eluted column
was automatically moved out of alignment with the mass
spectrometer and was subjected to a series of four fast ramping
sawtooth washing cycles from high-to-low organic (90 to 10%).

ESI voltage was 2.5 kV. A heated metal capillary at 250°C was
used for ESI desolvation. No sheath or auxiliary gas was used. A
data dependent analysis was performed using a FTMS scan range
of m/z 400-2,000 at a resolution 60,000 in profile mode using the
Orbitrap mass analyzer. The top 10 putative peptide ions were
selected from the MS survey scan on the basis of charge state (42,
+3, +4) and signal intensity for collision-induced dissociation
(CID) tandem mass spectrometry (MS/MS) in the linear trap.
MS/MS (Data type: centroid) was performed with a minimum
signal threshold: 30,000; isolation width (m/z): 2.0; normalized
collision energy: 35.0; activation Q: 0.250 and activation time
(ms): 30.

Prior to and after analysis of Salmonella surface-shaving
samples, the retention time of the LC and the mass spectrometry
calibration of the instrument system were tested with a 200 fmol
injection of a bovine serum albumin (BSA) digest. BSA tryptic
peptides started eluting ~12 min. The root-mean-square (rms)
error of the precursor ion m/z was below 10 ppm as calculated
by the search engine. Three technical replicates were performed
on all surface-shaving samples and control samples, and two
biological replicates were performed on different days.

Bioinformatics and Proteomic Analysis
Three databases were constructed for proteomic searches. The
SEE Newport database consists of 347,185 protein sequences
from 148 genomes downloaded from NCBI non-redundant
protein database. The SEE Kentucky database was consists
452,644 protein sequences from 14 genomes. The SEE Thompson
database is comprised 63,971 protein sequences from 8 genomes.

Raw MS and MS/MS data files (Xcalibur) were extracted
and converted to.mgf files using the MSConvert (ProteoWizard).
Database searches were performed with Mascot v2.2.04 (Matrix
Science, London, UK). Searches were conducted using a fragment
mass tolerance of 0.40 Da and peptide mass tolerance of 20.0
ppm. Trypsin was specified as the enzyme. Searches allowed a
maximum of 3 missed cleavages and methionine oxidation was
set as a variable modification.

Supplementary Materials

Raw Mascot proteomic identifications are provided in the
Supplementary Materials file. This data is organized by SEE
serovar, biological and technical replicates of both samples and
their corresponding control samples. For each analysis, protein
identifications that are highlighted in yellow are summarized in
Tables 2—-4 of the manuscript (excluding cytoplasmic proteins
which are the result of cell lysis during surface shaving).

Polymerase Chain Reaction (PCR)

PCR was used to verify the presence of the sip operon and
hilA in SEE Kentucky. PCR was carried out on a Tetrad 2
(Bio-Rad, Hercules, CA) using colonies of SEE Kentucky with
the primers listed in Data Sheet 1 (Supplementary Materials
Kentucky, page 65) under the following conditions: an initial
denaturation step was at 94°C for 10 min followed by 29 cycles
at 94°C for 305, 53°C for 30, and 72°C for 2 min with a final
elongation cycle at 72°C for 7 min. PCR products were analyzed
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CONTROL NEWPORT 15 MIN

Total

CONTROL NEWPORT 20 H
gil392765192|gb|EJA21981.1|

21

196

Phage immunity repressor protein [Salmonella enterica subsp. enterica 21,776

serovar Newport str. CVM 19449]

Total

1

by gel electrophoresis and imaged using a GelDoc XR (Biorad,
Hercules, CA).

RESULTS AND DISCUSSION

Salmonella enterica Subspecies enterica
(SEE) Serovar Newport

Table 2 summarizes the results of 15min surface-shaving
experiment (and 20h re-digestion) of SEE Newport strain
RM1655 and their controls. Both the MASCOT identification
scores and the corresponding number of peptides identified are
reported for three technical replicates. In addition, two biological
replicates were performed on different days. More detailed
proteomic information on peptide/protein identifications
(including any cytoplasmic proteins detected) is provided in
Supplementary Materials Newport (pages 1-64). Table 2 shows
a number of tryptic peptide identifications corresponding to
cleavage of flagella proteins (FliC, FliD, FIgL) in both the 15 min
experiment as well as the 20h re-digestion. We observe an
overall increase in the number of peptides detected in the 20 h re-
digestion (131) compared with the 15 min surface-shaving (104)
as one might expect given the fact that the 15 min experiment
may produce protein fragments too large to be detected by
MS/MS, whereas the 20h re-digestion allows greater time for
large protein fragments to be enzymatically cleaved into smaller,
more detectable peptides.

Phase 1 flagellin (FliC) is the most abundant of the flagella
proteins with approximately 30,000 proteins per flagella (and 5-
10 flagella per cell), and it is the primary structural constituent
of the filament that extends into the extracellular space (30, 31).
As such, this protein is not only abundant but also highly
accessible to proteolytic degradation. Not surprising, we detect
the highest number of peptides for this protein. Figure 1 (top
panel) shows the peptide sequence coverage for FliC. Peptide
sequence coverage is highlighted in bold red. The N-terminal (5-
143) and C-terminal (416-501) helical domains are underlined
and the D3 (196-282) domain is in bold, black. It is interesting
that the D3 domain has a total of eight basic residues (eight
lysines), but no peptides were detected in this domain. Figure 2
shows the 3-D image of FliC of S. enterica based on X-ray
crystallographic structure from Protein Data Bank (Entry: 3A5X)
(32) and viewed in PyMOL. The corresponding peptide sequence
coverage is highlighted in red and specific peptides highlighted
in white. Specific domains (D0, D1, D2, D3) are also indicated.
Although the D3 domain is probably the most accessible of
all the domains of FliC, it has a somewhat globular tertiary
structure which may inhibit proteolysis even as part of a larger
protein fragment. Interestingly, many (although not all) of the
peptides detected appear to be located within secondary helical
structures in the D2, D1, and DO domains. This may suggest
that, in the absence of denaturants, trypsin may favor cleavage
of the polypeptide backbone at basic residues within alpha-
helices. The toll-like receptor 5 region (TLRS5) responsible for the
innate immune response in eukaryotic cells (33, 34) is present
in the upper half of the D1 domain which has three, nearly
parallel alpha-helices (shown in Figure 2). The fact that we
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35,445 332

Tail fiber domain protein [Salmonella enterica subsp. enterica serovar

Kentucky str. 29439]
Phase 2 flagellin FIjB
serovar Kentucky]

gi[444820129|gb|ELX47576.1|

39

21

48,340 462

partial [Salmonella enterica subsp. enterica

gil115381392]gb|ABI9B378.1|

39
39

52,225 502

Flagellin FliC [Salmonella enterica subsp. enterica serovar Kentucky]

4il969071361|gb|KUB03511.1]

52,690 506

Flagellin FliC [Salmonella enterica subsp. enterica serovar Kentucky]

4il969072435|gb|KUB04565.1|

10 Total

6

detect peptides in two of the three helices is consistent with the
accessibility of this region.

We also observe a few peptides of FliD (also called HAP2)
which functions as the “cap” of the filament as well as FlgL
(also called HAP3) which is critical at the junction between the
filament and the hook. From a stoichiometric point-of-view,
these proteins are significantly less abundant than FliC, so it is
not surprising that the number of peptides identified are fewer.
However, it is not simply the abundance of the protein but the
accessibility of its trypsin cleavable sites that is critical.

The facile detection of flagellin tryptic peptides from this
strain of SEE Newport suggest a robust number of flagellin
filament structures. Interestingly, we also detected peptides of
the negative regulator of flagellin synthesis or FlgM an anti-
0?8 factor. FIgM is a secreted protein and its secretion is
concomitant with up-regulation of flagellin biosynthesis noted
by other researchers in Salmonella typhimurium, Escherichia coli
and Bacillus subtilis (35-39). The very strong identification of
FlgM (nearly 50% coverage in several analyses) suggests that this
protein is highly abundant.

We also identified a number of effector proteins associated
with pathogen virulence whose genes are located on
pathogenicity island 1 (SPI-1): SipA, SipB, SipC, and SipD.
SipA-D are also secreted proteins, and their abundance is high
and reproducible as evidenced by the number of tryptic peptides
identified in both the 15 min and the 20 h re-digestion analyses.
This result is striking as the secretion of effector proteins is
to facilitate the invasion of eukaryotic cells even though no
eukaryotic cells were present in the sample. The fact that SipA-D
appear to be strongly expressed as a result of trypsin proteolysis
may suggest that, along with secretion of FlgM, genes related to
virulence and invasion may also be activated and their protein
products secreted.

Surface-shaving experiments are often accompanied with a
certain amount of cell lysis caused by degradation of surface
structures that weaken the cell membrane resulting in cell
rupture and contamination of the sample with cytoplasmic
proteins, e.g., ribosomal proteins. We detect some ribosomal and
other cytoplasmic proteins, including one of the most abundant
cytoplasmic proteins, i.e., elongation factor Tu (40) (shown in
Supplementary Materials Newport, pages 1-65) which suggests
a small amount of cell lysis in these experiments.

In parallel, analyses were also performed on control samples,
i.e, no trypsin during the 15 min surface-shaving step (Table 2
and Supplementary Materials Newport). In these samples, we
did not observe any flagella proteins or FIgM or SPI-1 proteins.
In addition, we observed very little evidence of cell lysis
based upon detection of only a few peptides of cytoplasmic
proteins.

The type III secretion system is responsible for flagellin
biosynthesis, (36) but it is not clear the mechanism by which
SEE Newport would “sense” damage to its flagella. It is possible
that tryptic peptides of the flagellin filament are detected
by receptors on its surface that signal to the pathogen the
presence of damaging proteases in the extracellular milieu.
Alternatively, proteolytic damage of the hook-filament junction
(a critical structural junction) may result in impaired flagellin
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FliC Newport

1 MAQVINTNSL SLLTQNNLNK SQSALGTAIE RLSSGLRINS AKDDAAGQAT
51 ANRFTANIKG LTQASRNAND GISIAQTTEG ALNEINNNLQ RVRELAVQSA
101 NSTNSQSDLD SIQAEITQRL NEIDRVSGQT QFNGVKVLAQ DNTLTIQVGA
151 NDGETIDIDL KQINSQTLGL DTLNVQKAYD VSATAAMDPK SFTDGTKNLT
201 APDATAIKAA LGNPAATGDS LSATLSFKDG KYYATVAGYT NAADTSKNGK

251 YEVNVDSATG AVTFNAAPTK ATVTGDTTVT KVQVNAPVAV STDVKKALED
301 GGVSNADATA AKLVKMSYTD KNGKSIDGGY ALEAGGKYYA ATYDEGTGKI
351 TANVTTYTDS TGVTKTAANQ LGGVDGKTEV VTIDGKTYNA SKAAGHDFKA
401 QPELAEAAAK TTENPLAKID AALAQVDALR SDLGAVONRE NSAITNLGNT
451 VNNLSEARSR IEDSDYATEV SNMSRAQILQ QAGTSVLAQA NQVPQNVLSL
501 LR

FliC Kentucky

1 MAQVINTNSL SLLTQNNLNK SQSALGTAIE RLSSGLRINS AKDDAAGQAI
51 ANRFTANIKG LTQASRNAND GISIAQTTEG ALNEINNNLQ RVRELAVQSA
101 NSTNSQSDLD SIQAEITQRL NEIDRVSGQT QFNGVKVLAQ DNTLTIQVGA
151 NDGETIDIDL KQINSQTLGL DTLNVQKAYD VSATAAMDPK SFTDGTKNLT
201 APDATAIKAA LGNPTATGDS LSATLSFKDG KYYATVAGYT NAADTSKNGK
251 YEVNVDSATG AVTFNAAPTK ATVTGDTTVT KVQVNAPVAV STDVKKALED
301 GGVSNADATA AKLVKMSYTD KNGKSIDGGY ALEAGGKYYA ATYDEGTGKI
351 TANVTTYTDS TGATKTAANQ LGGVDGKTEV VTIDGKTYNA SKAAGHDFKA
401 QPELAEAAAK TTENPLAKID AALAQVDALR SDLGAVQNRF NSAITNLGNT
451 VNNLSEARSR IEDSDYATEV SNMSRAQILQ QAGTSVLAQA NOVPONVLSL
501 LR

FliC Thompson

1 MAQVINTNSL SLLTONNLNK SQSALGTAIE RLSSGLRINS AKDDAAGQAI
51 ANRFTANIKG LTQASRNAND GISIAQTTEG ALNEINNNLQ RVRELAVQSA
101 NSTNSQSDLD SIQAEITQRL NEIDRVSGQT QFNGVKVLAQ DNTLTIQVGA
151 NDGETIDIDL KQINSQTLGL DSLNVQKAYD VKDTAVTTKA YADNGTTLDA
201 SGLDDAAIKA AIGGTTGTAA VTGGTVKFDA DNNKYFVTIG GFTGADAAKN
251 GDYEVNVATD GKVTLAAGAT KTTMPAGAAT KTEVQELKDT PAVVSADAKN

301 ALTAGGVDAT DANGAELVKM SYTDKNGKTI EGGYALKAGD KYYAADYDEA
351 TGAIKAKTTS YTAADGTTKT AANQLGGVDG KTEVVTIDGK TYNASKAAGH
401 DFKAQPELAE AAAKTTENPL QKIDAALAQV DALRSDLGAV QNRFNSAITN
451 IL.GNTVNNLSE ARSRIEDSDY ATEVSNMSRA QILQQAGTSV LAQANQVPQON

501 VLSLLR

FIGURE 1 | Top panel. Phase 1 flagellin (FIliC) sequence of Salmonella enterica subsp. enterica (SEE) serovar Newport strain SGSC2493. Bold red denotes the
highest sequence coverage obtained for a single analysis of SEE Newport strain RM1655 (Table 2, 20 h, Day 1, 2nd analysis). Underlined residues are the N-terminal
(Continued)
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FIGURE 1 | (5-143) and C-terminal (416-501) helical regions, respectively. Bold black residues denotes the D3 domain (196-282). Middle Panel. Flagellin (FliC)
sequence from SEE serovar Kentucky strain CVM N38870. Bold red denotes highest sequence coverage obtained for a single analysis of SEE Kentucky strain
RM7890 (Table 3, 20 h, Day 2, 2nd analysis). Underlined residues are the N-terminal (5-143) and C-terminal (416-501) helical regions, respectively. Bold black
residues denotes the D3 domain (196-282). Bottom panel. Flagellin (FIiC) sequence for SEE serovar Thompson str. RM6836. Bold red denotes highest sequence
coverage obtained for a single analysis SEE Thompson strain RM1987 (Table 4, 20h, Day 1, 1st analysis). Underlined residues are the N-terminal (5-143) and
C-terminal (420-505) helical regions, respectively. Bold black residues denotes the D3 domain (197-284).

D2 Domain
D3 Domain
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FIGURE 2 | The 3-D image of FliC of S. enterica based on X-ray crystallographic structure from Protein Data Bank (Entry: 3A5X) (32) and viewed in PyMOL. The
corresponding peptide sequence coverage of SEE Newport is highlighted in red and specific peptides highlighted in white. Specific domains (DO, D1, D2, D3) are also

indicated.
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movement/operation leading to release FlgM that may re-activate
flagellin biosynthesis. It is also possible that damage to the
hook-filament junction may lead to detachment of the filament
altogether allowing secretion of FigM.

SEE Serovar Kentucky

Table 3 summarizes the results of the 15min surface-shaving
experiment and 20h re-digestion of SEE Kentucky strain
RM7890 and their controls. As with the SEE Newport strain,
the number of peptides detected/identified is significantly
increased for the 20 h re-digest compared to the 15 min shaving

experiment which supports the usefulness of this secondary
digestion step. Once again, peptides from proteins of the filament
and hook/filament junction are detected: FliC, FljB, and FlgL.
Figure 1 (middle panel) shows sequence coverage obtained for
FliC. Peptides from the DO, D1, and D2 domains are detected
but not the D3 domain which suggests that this domain appears
resistant to proteolysis under the experimental conditions of
our experiment. This is not entirely surprising as most bottom-
up proteomic analyses incorporate denaturation of the protein
prior to digestion to facilitate access to cleavable sites (basic
residues). However, denaturation is contrary to the objective of
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a surface-shaving experiment which is to sample only the most
surface-exposed protein structures.

The negative regulator of flagellin synthesis, FlIgM, was once
again detected and, given the number of peptides detected,
appears to be highly abundant. The appearance of FIgM under
conditions of very brief exposure to trypsin (15min) suggests
a very rapid biological response to flagellin damage by the SEE
Kentucky strain. Interestingly, we detected no peptides of the
secreted effector/invasion proteins: SipA, SipB, SipC or SipD. The
absence of detection suggested that perhaps their genes may not
be present in this strain. In consequence, PCR was performed
on the sip operon and hilA [a transcriptional activator of SPI1
regulation (41, 42)], and both were found to be present in this
strain. The absence of sip expression may contribute to a lack of
pathogenicity in this strain. This finding may be consistent with
an assessment by the USDA in 2002 that, although the Kentucky
serovar is prevalent in the food supply environment, it is not
generally considered a successful human pathogen (43).

We detected only fleeting evidence of peptides of a few
outer membrane proteins as shown in Table3. However,
reproducibility was an issue as these peptides were not detected
in both biological replicates or with every analysis of a triplicate.
This is probably due to their relatively low abundance as well as a
portion of the protein being embedded in the membrane.

Control samples for SEE Kentucky showed detection of a
few cytoplasmic proteins (Supplementary Materials Kentucky,
pages 65-107). However, unlike the first biological replicate,
the second biological replicate revealed detection of several
cytoplasmic proteins (ribosomal, ef-Tu, etc.) and even flagellin
(Table 3 and Supplementary Materials Kentucky). This is likely
the result of cell lysis releasing of cytoplasmic proteins as well as
breakage of flagellin during processing.

SEE Serovar Thompson

Table 4 summarizes the results of the 15min surface-shaving
experiment and the 20h re-digestion on SEE Thompson
strain  RM1987 and their controls (excluding cytoplasmic
proteins detected which are shown in Supplementary Materials
Thompson, pages 108-185). Consistent with SEE Newport and
SEE Kentucky strains, we observe a significant increase in the
number of peptides detected for the 20 h re-digestion (120) vs.
that obtained for the 15min surface-shaving experiment (64).
Once again, peptides from FliC filament digestion were detected
as well as FIgL of the hook-filament junction. The Figure 1
(bottom panel) shows the sequence coverage obtained for FliC
sequence of SEE Thompson. Peptides from the D0, D1, and D2
domains (but not the D3) are detected consistent with results
from the other two SEE serovars. In addition to this apparent
flagellin proteolysis, we observe weak detection of the anti-o%8
factor: FlgM.

SEE Thompson shows significant expression of SipA, SipB,
SipC and SipD in both the 15min and the 20h re-digested
samples which suggests, like the SEE Newport strain, a possible
response to proteolysis including secretion of effector/invasion
proteins. In addition, we detect enterohemolysin which was
not detected in the SEE Newport and SEE Kentucky strains.
A number of bacteriophage proteins were also detected. SEE

Thompson (Supplementary Materials) shows a large number
of cytoplasmic proteins detected in the surface-shaving samples
(and even in the control samples) suggesting extensive lysis of
the inner and outer membranes. It would seem that trypsin
significantly weakens the integrity of the SEE Thompson
envelope far more than for SEE Newport and SEE Kentucky
strains. Another explanation could be that cell lysis is caused
by activation of a lytic cycle of a bacteriophage in the
host genome resulting in expression of bacteriophage-encoded
proteins. Activation of the bacteriophage lytic cycle may be
triggered by proteolytic surface-shaving.

The SEE Thompson control samples revealed a significant
amount of cell lysis as evident from detection of cytoplasmic
proteins in both the 15min surface-shaving sample as well as
the 20h re-digested of the control samples. As no trypsin was
used during the surface-shaving step of control samples, we can
only conclude that the cellular membranes of this SEE Thompson
strain were more susceptible to rupture. Cell lysis may be due
to inability to respond to rapid changes in osmolarity, i.e., from
broth to PBS, or membrane fragility during washing with PBS
and centrifugation. In any case, the control samples showed no
tryptic peptides of flagellin-associated proteins or Sip proteins
(and other virulence factors) or bacteriophage proteins.

For this SEE Thompson strain, we conclude the following. The
inner and outer membranes of this strain appear to be unusually
susceptible to rupture and surface-shaving may exacerbate this
tendency resulting in the release of a large number of cytoplasmic
proteins. Surface-shaving with trypsin results in proteolytic
cleavage of flagellin-associated proteins (FliC and FlgL) and
the secreted FlgM and SPI-1 proteins. In addition, peptides of
enterohemolysin and bacteriophage-encoded proteins were also
detected. The latter may contribute to host cell lysis. Control
samples were comprised of almost entirely cytoplasmic proteins.

Although sample contamination by cytoplasmic proteins is
a common problem associated with proteolytic surface-shaving
experiments, the amount of cell lysis observed for each strain
in our study varied significantly and appeared to be strain
dependent. SEE Newport was the most resistant to lysis followed
by SEE Kentucky and lastly SEE Thompson which showed
extensive cell lysis as evident from the number of cytoplasmic
proteins detected. The use of PBS as the medium to perform all
microbiological manipulations reduced the likelihood of cell lysis
by maintaining mild osmotic conditions although it may have
reduced the efficiency of trypsin digestion.

CONCLUSIONS

Proteolytic surface-shaving with trypsin of live SEE bacterial cells
resulted in significant cleavage of flagella filament and hook-
associated proteins and secretion of the negative regulator of
flagellin biosynthesis: FlgM which may suggest up-regulation of
flagellin biosynthesis. In addition, invasion/effector Sip proteins
were also expressed in the Newport and Thompson strains. In the
absence of trypsin during the shaving-shaving step, no significant
flagella proteolysis occurred and FIgM and Sip were not detected.
The Kentucky serovar/strain, although possessing sip genes, did
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not express Sip proteins (at least not at levels detectable by our
measurement).

For all three SEE strains/serovars, tryptic-generated peptides
from proteolytic cleavage of the flagellin filament, FliC, were
detected. Interestingly, no peptides were detected in the most
accessible domain of FliC (i.e., D3) though the domain possessed
seven or eight lysine residues. It is possible that the tertiary
structure of the D3 domain (globular) may thwart efficient
proteolysis in contrast to peptides that possess alpha-helical
secondary structures.

Cell lysis can be a confounding problem of proteolytic surface-
shaving experiments as it contaminates the sample with non-
surface-exposed proteins (i.e., cytoplasmic proteins). In our
experiments, cell lysis appeared to be serovar/strain dependent
that may reflect the general robustness of the outer and inner
membranes during sample processing. The greatest amount of
lysis occurred with SEE Thompson which was accompanied by
detection of many bacteriophage and cytoplasmic proteins that
may suggest activation of a bacteriophage lytic cycle and that
cell rupture may not have been entirely due to the intrinsic
stability of the cell membrane. Our results suggest that brief
proteolytic surface-shaving may be a useful technique to assess
the potential virulence and robustness of SEE strains/serovars
in vitro. Other techniques for assessing potential SEE virulence
would be mice model, mammalian cells in vitro invasion assay
(e.g., Caco2 cell line) or perhaps whole genome sequencing (44).
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