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Aim: We investigated the kidney morphofunctional consequences of high-fat diet intake

since post-weaning in adult rats.

Main Methods: Male Wistar rats were divided into two groups: ND (normal diet; n= 10)

and HD (high-fat diet; n= 10). The high-fat diet was introduced post-weaned and animals

were followed for 8 weeks.

Key Findings: HD group did not change body weight gain even though food

consumption has decreased with no changes in caloric consumption. The HD group

showed glucose intolerance and insulin resistance. The glomerular filtration rate (GFR)

was decreased in vivo (ND: 2.8 ± 1.01; HD: 1.1 ± 0.14 ml/min) and in the isolated

perfusion method (34% of decrease). Renal histological analysis showed a retraction in

glomeruli and an increase in kidney lipid deposition (ND: 1.5 ± 0.17 HD: 5.9 ± 0.06%).

Furthermore, the high-fat diet consumption increased the pro-inflammatory cytokines

IL-6 (ND: 1,276 ± 203; HD: 1,982 ± 47 pg/mL/mg) and IL-1b (ND: 97 ± 12 HD: 133 ±

5 pg/mL/mg) without changing anti-inflammatory cytokine IL-10.

Significance: Our study provides evidence that high-fat diet consumption leads to

renal lipid accumulation, increases inflammatory cytokines, induces glomeruli retraction,

and renal dysfunction. These damages observed in the kidney could be associated

with an increased risk to advanced CKD in adulthood suggesting that reduction of

high-fat ingestion during an early period of life can prevent metabolic disturbances and

renal lipotoxicity.
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INTRODUCTION

High-fat diets are becoming increasingly common in many
countries and they contribute to the development of chronic non-
communicable diseases (NCDs), such as obesity, hypertension,
and chronic kidney disease (CKD) (1). NCDs kill 41 million
people each year, 71% of the world’s total deaths (2). It is
recommended that fats account for 20–35% of total energy intake
(3), but daily total fat consumption accounts for 50% of total
energy intake in some countries (4).

High-fat diets, in general, are associated with metabolic
disorders, and the type of dietary fat is a determinant risk factor
since saturated fats are more linked to a positive fat balance and
visceral adipose tissue accumulation than to other types of fat
(5). Saturated fat intake is also more associated with increased
serum LDL and total cholesterol than the consumption of other
fatty acids (6). The World Health Organization recommends a
reduction in saturated fat consumption as one of the worldwide
strategies to reduce mortality from chronic NCDs (7).

Children are important targets for food and beverage
companies that use aggressive advertising strategies to generate
a preference for diets with high levels of fat. As a result,
the consumption of high-fat diets typically starts early in life,
especially in developed and developing countries (8). High-fat
diet habits in childhood can predict the development of several
diseases in adulthood, such as obesity, hypertension, metabolic
syndrome, and CKD (9, 10). Our group demonstrated that high-
fat diet ingestion since the early period of life increases white
visceral adipose tissue and induces cardiometabolic damage in
adult rats (11). Te Morenga et al. (12) showed that a reduction of
saturated fat intake was associated with significant reductions in
LDL and total cholesterol and arterial blood pressure of children
and adolescents aged 2–19 years old (12).

High-fat diet affects the energy balance (13) leading to lipid
accumulation in ectopic sites and in intracellular compartments
(14, 15). The renal ectopic accumulation of lipids associated with
insulin resistance has been correlated with a progressive decline
in renal function (14, 16, 17). The deleterious effects exerted by
lipids on cells and tissues is called lipotoxicity (18, 19).

Many studies have demonstrated the link between altered
lipid metabolism and the development of kidney injury in mice
fed a high-fat diet (14, 17, 20, 21). The literature reports an
important association between renal lipid accumulation and
increased renal pro-inflammatorymediators, such as interleukin-
1 (IL-1), interleukin-6 (IL-6), and tumor necrosis factor alpha
(TNFα) (19). Furthermore, excessive renal lipid deposition
can lead to renal tubular cell injury (22), tubulointerstitial
fibrosis (23), podocytes damage, mesangial sclerosis (24), and
structural glomeruli alterations (25, 26). Renal lipotoxicity is
also strongly associated with the development of proteinuria,
glomerulonephritis, and CKD (27). However, the role of renal
lipid accumulation that could lead to kidney damage in a high-fat
diet has not been completely understood.

Abbreviations:MCC,Mesangial cell contraction; HD,High-fat diet; ND, Standard

normal diet.

Although the pathological consequences of a high-fat diet
on the kidneys are well-documented, the repercussions in renal
morphology and function as a result of a high-fat diet from
an early age are not clear. Thus, the aim of this study was to
investigate the effects of high-fat diet intake from weaning on the
morphology and renal function of adult rats. We hypothesized
that the intra-renal lipid accumulation induced by high-fat
diet can be associated with damages in the renal morphology
and function, leading to a higher risk of developing CKD
in adulthood.

MATERIALS AND METHODS

General Procedures
Experiments were performed in male Wistar rats post-weaned
(21 days old), weighing between 50 and 60 g. The animals were
randomly assigned to two groups and followed for 8 weeks:
standard normal diet (ND, n = 10) and high-fat diet (HD, n =

10). The high-fat diet produced contained 30% of fat, 23% of
carbohydrates and 19% of proteins. The fat in HD is composed
mainly of saturated fat. The standard diet contained 3% of fat,
55% of carbohydrate and 22% of proteins (Nuvilab R©, Paraná,
Brazil). Caloric densities of a high-fat diet and standard diet were,
respectively 381 and 257 kcal/100 g. Animals were maintained
in the Central Animal Facility at the Mackenzie Presbyterian
University (Sao Paulo) under the same housing conditions (12-
h light/12-h dark cycle, temperature 23 ± 2◦C) with free access
to tap water and food ad libitum. All procedures were performed
in accordance with the Guide for the Care and Use of Laboratory
Animals published by the US National Institutes of Health (n.
85-23, revised in 1996) and approved by the Ethics Committee
of Mackenzie Presbyterian University (Protocol: 063/02/2010).
Body weight was measured weekly at the same time of the day
using a digital balance (TOLEDO, model 9094c/4). Body weight
gain was calculated as the difference between the body weight
measured at the beginning and at the end of the protocol.

Glucose Tolerance Test (GTT)
GTT was performed after 8-week protocol. After an 8-
h fast, glucose (1.5 g/kg body weight) was injected as
a bolus intraperitoneally. Blood glucose concentration was
determined by using a glucometer (AccuChek Advantage Roche
Diagnostics R©). Blood samples were taken from a cut made on
the tip of the tail at 0, 15, 30, 60, and 90min after glucose
administration. The area under the curve (AUC) was calculated
using GraphPad Prism 5 (GraphPad Software Inc, San Diego,
CA, EUA).

Insulin Tolerance Test (ITT)
Seventy two hours after the GTT test, a similar procedure was
performed for ITT. Briefly, after a 4-h fast, rats were anesthetized
with Pentobarbital (50 mg/kg body weight, i.p.) and an insulin
load (0.75 U/kg body weight) was injected as a bolus in the
caudal vein. Blood glucose levels were determined from a cut
made on the tip of the tail at 0, 4, 8, 12, and 16min after insulin
administration. Constant rate for blood glucose disappearance
(Kitt) was calculated using the formula 0.693/t1/2, and the blood
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glucose half-time (t1/2) was calculated from the slope of the least
squares regression of the blood glucose concentration during the
linear phase of decline (11, 28).

Kidney Function Evaluation
In the 7th week of the protocol, the animals were housed
individually in metabolic cages (Tecniplast, Buguggiate, VA,
Italy). Urine samples were collected during the 24-h period and
used to determine urine creatinine. A blood sample (500 µL) was
also collected at the end of the 24 h-period. Urinary and serum
creatinine levels were quantified using a colorimetric method
(LABTEST Biochemical Kit, Brazil). The creatinine clearance was
used to estimate the Glomerular Filtration Rate (GFR) and was
calculated using the following formula: [(Urine (Creatinine) ×
Urine Vol)/Serum (Creatinine)].

Isolated Perfused Kidney Method
At the end of the 8 weeks, rats were anesthetized with sodium
pentobarbital (50 mg/kg body weight i.p.) and the right renal
artery was cannulated through the mesenteric artery, without
blood flow interruption, and placed into the perfusion system
(29), isolating the kidney from endocrine and neural interference.
The perfusate was a modified Krebs–Henseleit solution with the
following composition (in mM): 147 Na+, 5 K+, 2.5 Ca2+, 2.0
Mg2+, 110 Cl−, 25 HCO3−, 1 SO42−, and 1 PO43−. This was
dialyzed for 48 h after the addition of six grams of bovine serum
albumin (BSA) (29). Immediately before starting the perfusion,
100mg of glucose, 50mg of urea, and 50mg of inulin was
added to the perfusate solution. The pH was then adjusted
to 7.4 and the solution placed in the perfusion system. The
perfused rat kidney model followed the technique previously
described by Bowman and Maack and modified by Fonteles et al.
(29, 30) by the introduction of a silastic membrane oxygenator
into the perfusion line. Prior to each experiment, the system
was calibrated for flow and resistance. Each experiment was
divided into two periods of 30min each, these sample collection
periods were further subdivided into equal intervals of 10min.
During each 10-min period, aliquots of perfusate and urine were
collected to determine creatinine, sodium, and potassium. The
perfusion pressure (PP), renal vascular resistance (RVR), urinary
flow (UF), GFR, and the percentage of tubular transport of
sodium (%TNa+), potassium (%TK+), and chloride (%TCl−)
were determined. The percent of proximal and distal tubular
sodium, potassium, and chloride transport were calculated using
free water and osmolar clearances as described originally by
Martinez-Maldonado and Opava Stitzer (31).

Histological Analysis
The left kidney was used for glomerular injury analysis in H&E
stained (Sigma) sections of the kidney (5µm) embedded in
Paraplast. Digital images from thirty glomeruli per animal were
obtained using a light microscope (Leica) at 400x magnification.
After digitalization, Bowman’s capsule area (BCA), glomerular
tuft area (GTA), and Bowman’s space area (BSA) were traced
and calculated using a computerized morphometric analysis
system (Image Pro-Plus 4.1; Media Cybernetics, Silver Spring,
MD, USA).

Lipid content was measured using quantitative histochemistry
of Oil Red O (Sigma-Aldrich) stained kidneys. Tissue sections
(8µm thickness) obtained in a cryostat were examined by
light microscopy at 200x magnification and analyzed by
a computerized morphometric analysis system (Image Pro-
Plus 4.1; Media Cybernetics, Silver Spring, MD, USA). The
slides were counterstained with hematoxylin to visualize the
nuclei. Lipid accumulation was determined in 12 images per
animal based on the percentage of area occupied by lipid
droplets. Histological analyses were blinded conducted by
RO Pereira.

Cytokine Measurement
In a subgroup of randomly selected rats (ND: n = 6; HD: n
= 6) cytokines were evaluated in the right kidney approved
by the Ethics Committee of Mackenzie Presbyterian University
(Protocol: 108/03/2014).

Measurement of cytokines was performed using the
MILLIPLEXTM cytokine panel (Merck Millipore, Billerica, MA),
a bead-based immunoassay which allowed the simultaneous
quantification of the cytokines IL-1b, IL-6, TNF-α, and IL-10
in kidney samples. The results were normalized by kidney
total protein.

Statistical Analyses
The statistical analysis was performed by using GraphPad Prism
5. The results were analyzed using the unpaired Student’s t-
test. The data were reported as mean ± SEM. The p-value for
significant differences was set at p ≤ 0.05.

RESULTS

Body Weight and Food Consumption
No differences in body weight were observed between groups
prior to or after the experimental protocol. In addition to
this, no significant difference in body weight gain was found
between groups. Although the food consumption (g/animal/24-
h) was reduced in the HD group, there was no difference in
caloric intake (Kcal/animal/24-h) when compared to the ND
group (Table 1).

TABLE 1 | Metabolic parameters at the end of the protocol of 8 weeks.

ND HD

Initial body weight (g) 47 ± 0.9 49 ± 0.8

Final body weight (g) 312 ± 7 295 ± 6.3

Weight gain (g) 265 ± 8 246 ± 6

Food consumption (g/animal/24 h) 26 ± 0.3 21 ± 0.7*

Caloric consumption (Kcal/animal/24 h) 79 ± 1 79 ± 2.7

Fasting glucose (mg/dL) 108 ± 5 99 ± 6

AUC (mg/dL/min) 144 ± 6 200 ± 9*

Kitt (mg/dL) 4 ± 0.2 3.3 ± 0.2*

AUC, Area Under the Curve; Kitt, Rate constant for glucose disappearance; ND, Normal

Diet; HD, High-Fat Diet. *p ≤ 0.05 vs. ND.
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Glucose Metabolism
As shown in Table 1, high-fat diet consumption did not change
fasting glucose but promoted an increase in the AUC and a
decrease in Kitt.

Renal Function
Indices of kidney function are shown in Table 2 and Figure 1.
There was a decrease in the in vivoGFR (ND: 1.8± 0.19; HD: 1.1
± 0.14 ml/min), UF (ND: 9.8 ± 0.54 HD: 3.7 ± 0.19 mL/24-h)
and water intake (ND: 26.9 ±1.45; HD: 16.75 ± 1.35 mL/24-h)
in HD group when compared with ND. In addition, the serum
creatinine was increased in HD (ND: 0.55 ± 0.071; HD: 0.71 ±

0.14 mg/dL).
In the isolated perfused kidney, the RVR was increased in

both experimental periods, achieving 47% increase after 60min
perfusion, in the HD group (Figure 1A). UF was augmented at
60min (77%) (Table 2). The GFR showed a decrease (34%) in the
HD group at 60min (Figure 1). Furthermore, the RPF decreased
in both times, and the PP increased at 60min, in HD. However,
the tubular ion transport of Na+, Cl–, K+ have not changed in
the HD (Table 2).

Histological Analysis
The morphometric measurements evaluated demonstrate that
the glomeruli were retracted in the HD kidneys as shown by
the reduction of the BCA (30%), GTA (27%), and BSA (49%)
(Figure 2).

The kidney lipid deposition showed a 3-fold increase in HD
compared to ND (ND: 1.5 ± 0.17%/area; HD: 5.9 ± 0.06%/area)
(Figure 3).

Inflammatory Markers
IL-6, a pro-inflammatory cytokine, was significantly increased in
HD (ND: 1,276 ± 203; HD: 1,982 ± 47 pg/mg of protein). In
addition, IL1b was also increased (ND: 97 ± 12 HD: 133 ± 5

TABLE 2 | Renal functional parameters of Perfusion Pressure, Renal Plasmatic

Flow, and tubular transport of Sodium, Potassium, and Chloride at the end of the

protocol of 8 weeks of isolated perfused kidney method.

Isolated perfused

kidney

parameters

ND HD ND HD

30 min 60 min

PP 114.7 ± 3.9 130.0 ± 6.7 112 ± 3.5 130 ± 7*

RPF 26 ± 2.1 19.2 ± 1.3* 26 ± 2 20 ± 1.4*

UF 0.14 ± 0.014 0.15 ± 0.03 0.14 ± 0.01 0.23 ± 0.04*

%T Na 83.6 ± 0.9 83.7 ± 3.2 80 ± 3 72 ± 5

%T K 61.3 ± 5.3 69.0 ± 5.6 61 ± 5 65 ± 3

%T Cl 89.9 ± 3.7 79.8 ± 4.0 81 ± 3 76 ± 4

Perfusion Pressure (PP, mmHg), RPF (Renal Plasmatic Flow, mL.g−1.min−1), UF (Urinary

Flow, mL.g−1.min−1 ), Percentage of Sodium tubular transport (%T Na+), Percentage of

Potassium tubular transport (%T K+) and Percentage of Chloride Tubular transport (%T

Cl−). ND, Normal Diet; HD, High-Fat Diet. *p ≤ 0.05 vs. ND.

pg/mg of protein), with no remarkable changes in the TNF-α and
IL-10 levels (Figure 4).

Correlations Analysis
We observed a strong negative correlation between intra-renal
lipid content and GFR (R = −0.84, p = 0.0097). Furthermore,
there was a positive correlation between intrarenal lipid content
and IL-6 (R= 0.79. p= 0.02).

DISCUSSION

In the present study, we investigated the morphological
and functional kidney responses in adult rats, exposed to a
high-fat diet after weaning. Our findings provide evidence
that the consumption of this diet during this critical
developmental period induces renal lipid accumulation,
increases pro-inflammatory cytokines content and loss of
renal function.

After 8 weeks of high-fat diet, the HD group presented no
difference in weight gain, and a reduction in food but not at
caloric consumption compared to the ND group. These data
corroborate our previous demonstration that rats fed a high-
fat diet consume less food and have no increase in body weight
gain, but have significantly higher adiposity (11). In addition,
this animal model of metabolic syndrome is characterized by
increased leptin and triglycerides levels, but lower adiponectin
and normal insulin levels (11). In this context, we decided to
investigate the potential renal complications associated with the
current model.

We observed that HD animals did not increase the fasting
blood glucose, but presented an increase in AUC and a decreased
Kitt. These results demonstrate that these animals developed
glucose intolerance and insulin resistance. These results were
similar to those of who demonstrated the same response in mice
fed a cafeteria diet (32).

The high-fat diet intake induced in vivo changes in
renal function, as observed by the decrease in GFR and
serum creatinine accumulation (33, 34). Moreover, in the
isolated perfused kidney we also observed a decrease in GFR.
Interestingly, the animals fed a high-fat diet had an increased
intra-renal lipid content. Our study corroborates Muller et al.
(20) which observed a higher kidney lipid content in mice
fed a cafeteria diet. Similarly, Bobulescu et al. (27) showed in
humans, a direct association between body mass index and
kidney lipid deposition. Kidney lipid accumulation has been
associated with renal function injury and can be a risk factor in
CKD (19). However, little is known about how this pathogenic
process occurs in the kidneys, especially when compared to the
knowledge base regarding the deleterious effects of lipids on
other organs such as the heart, liver, and skeletal muscle (35).

The intrarenal lipid accumulation is correlated to the GFR
reduction in the HD group and can be the cause of morphological
alteration in the glomeruli observed by a decrease in the
Bowman’s capsule, Bowman’s space and GTAs demonstrating a
glomeruli retraction. In a previous study from our group, Muller
and coworkers showed that mice fed a cafeteria diet presented
similar morphological kidney damage (20). These glomeruli
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FIGURE 1 | Isolated perfused kidney. Renal Vascular Resistance (A; RVR), and Glomerular Filtration Rate (B; GFR) of isolated perfused kidneys from ND, Normal Diet;

HD, High-Fat Diet. The results are expressed as mean ± SEM *p ≤ 0.05 vs. ND.

FIGURE 2 | Glomerular morphological parameters. (A) Morphologic parameters of renal histology. (B) Representative glomeruli. Lowercase letters show: a.

Bowman’s Space; b. glomerular tuft; c. Bowman’s capsule; t: tubules. Magnification: X400. ND, Normal Diet; HD, High-Fat Diet. *p ≤ 0.05 vs. ND.

retraction could be at least in part induced by mesangial cell
contraction (MCC). It was demonstrated that MCC could be
induced by release of vasoactive hormones such as angiotensin
II, that decrease the capillary surface area and consequently
reducing the GFR (36–40).

To support this idea, recently our group showed in isolated
perfused kidneys obtained from rats under high fructose
diet, another experimental metabolic syndrome model, a
progressive fall in the GFR associated by an increase in the

renal concentrations of angiotensin I and angiotensin II (41).
Moreover, unpublished data from our laboratory showed that
angiotensin II blockade by losartan in the isolated perfused
kidneymethod determine a higher RVR decrease more in the HD
group than the ND group suggesting that the angiotensin II has
an important contribution to the RVR rise in the HD.

In the present study, the isolated perfused kidney also
demonstrated that in HD group there is an increase in RVR
with no changes in tubular sodium and potassium transport
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FIGURE 3 | Kidney lipid deposition. (A) Estimated percentage of lipids in the kidney. (B) Lipid deposition in ND and HD, arrows show lipids droplets. Magnification

200X. ND, Normal Diet; HD, High-Fat Diet. *p ≤ 0.05 vs. ND.

FIGURE 4 | Inflammatory cytokines. Effects of high-fat diet on cytokines (pg/mg of protein): (A) Interleukin 6 (IL-6), (B) Interleukin 1b (IL-1b), (C) Interleukin 10 (IL-10),

and (D) Tumor Necrosis Factor-alpha (TNF-α). ND, Normal Diet; HD, High-Fat Diet. *p ≤ 0.05 vs. ND.

suggesting that changes in renal function are associated with
glomerular alterations.

We have also shown that the inflammatory markers were
changed by the high-fat diet consumption, as observed by the
increase in the kidney pro-inflammatory cytokines IL-6 and
IL-1b. Interestingly there was no change in the amount of
the anti-inflammatory cytokine IL-10. Considering that we did

not measure macrophages infiltration in the kidney, we cannot
affirm if the source of cytokine production is local or from
other tissues, such as adipose tissue. Despite this limitation,
it is important to consider that the increased concentration
of pro-inflammatory cytokines in the kidney reveals that this
tissue is exposed to the deleterious effects typically generated by
chronic inflammation, and therefore, may increase the risk of
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development of lipotoxicity and CKD. Additionally, we observed
a positive correlation between kidney lipid accumulation and the
IL-6 content in this organ. Saja et al. (42) have demonstrated
that animals with dyslipidemia developed inflammation that
played a key role in mediating the deleterious changes in
kidney function. Previous experiments have also shown a strong
association between renal lipid accumulation and increased
renal pro-inflammatory mediators, such as interleukin-1 (IL-1),
interleukin-6 (IL-6), and TNFα (19). The renal lipotoxicity is
also strongly associated with the development of proteinuria,
glomerulonephritis and CKD (27). Moreover, Chung et al. (43)
have demonstrated that hypertensive animals fed a high-fat diet
have increased the angiotensin II, which is associated with kidney
lipid deposition, lipotoxicity, and inflammation (43). In this
context, our results suggest that the loss of renal function in
the HD group can be caused by a lipotoxicity process however
more experiments are necessary for the future to support
this idea.

CONCLUSION

Our study provides evidence that high-fat diet consumption leads
to renal lipid accumulation, increases inflammatory cytokines,
induces glomeruli retraction, and renal dysfunction. These
damages observed in the kidney could be associated with an
increased risk to advanced CKD in adulthood suggesting that

reduction of high-fat ingestion during an early period of life can
prevent metabolic disturbances and renal lipotoxicity.
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