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Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related

death worldwide. Current treatment options for inoperable HCCs have decreased

therapeutic efficacy and are associated with systemic toxicity and chemoresistance.

Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide–dependent enzyme that is

frequently overexpressed in HCC, where it promotes tumorigenicity, metastasis, and

chemoresistance. SIRT1 also maintains the tumorigenic and self-renewal proprieties

of liver cancer stem cells. Multiple tumor-suppressive microRNAs (miRNAs) are

downregulated in HCC and, as a consequence, permit SIRT1-induced tumorigenicity.

However, either directly targeting SIRT1, combining conventional chemotherapy with

SIRT1 inhibitors, or upregulating tumor-suppressive miRNAs may improve therapeutic

efficacy and patient outcomes. Here, we present the interaction between SIRT1,

miRNAs, and liver cancer stem cells and discuss the consequences of their interplay

for the development and treatment of HCC.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the most frequent primary liver malignancy and among the
most common causes of cancer-related death worldwide (1, 2). The majority of cases occur due
to HCV or alcoholic cirrhosis (3). However, HCC can also develop in obese individuals with
non-alcoholic steatohepatitis (NASH) (4–7). The increasing incidence in diet-induced NASH is
estimated to upsurge the number of patients with NASH-related HCC (3). The main therapeutic
options for HCC include liver transplantation, surgical resection, and chemotherapy (8). However,
most patients present with advanced-stage, unresectable HCC. Moreover, first-line treatment
compounds such as sorafenib have low response rates (9) and are associated with systemic toxicity
and chemoresistance (10, 11). Therefore, a better understanding of the underlying mechanisms
that promote HCC development, chemoresistance, and metastases is vital for improving patient
outcomes (12).
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Mammalian sirtuins (SIRT1-7) are NAD+-dependent
deacetylases that are involved in a wide variety of biological
processes including energy metabolism and lifespan and health
span regulation (13). Mammalian sirtuins possess histone
deacetylase, mono-ADP-ribosyltransferase, desuccinylase,
demalonylase, demyristoylase, and depalmitoylase activity (14).
SIRT1 is chiefly localized in the nucleus and plays a role in
genomic stability, telomere maintenance, and cell survival
(15, 16). SIRT1 regulates both histones and multiple downstream
non-histone targets such as estrogen receptor-alpha (17), PPARγ

(18), PGC-1α (19), androgen receptor (20), FOXO transcription
factors (21), p53 (22), NF-κB (23), and Survivin (24). SIRT1
can also upregulate oncogenes: β-catenin (25), c-Myc (26), and
HIF-1α (27) increasing their activity as a result.

SIRT1 is vital for the physiological function of healthy
tissues. For instance, SIRT1 null mice have defects in hepatocyte
metabolism and a shortened life span (28). SIRT1 deletion
in mice hepatocytes results in hepatitis and hepatic steatosis
(29). Oppositely, inducing SIRT1 activity in healthy tissues
with synthetic activators or transgenic expression provided a
plethora of benefits. SIRT1 overexpression reduced the release
of pro-inflammatory cytokines and increased cell viability (23,
30, 31). SIRT1 also preserved the functions of hepatocytes and
adipocytes against obesity (32). Overall, SIRT1 can be called a
“Master Metabolic Regulator” (33), which is essential for normal
hepatic function.

THE EXPRESSION AND FUNCTION OF
SIRT1 IN HCC

SIRT1 has a multifaceted relationship with oncogenesis. SIRT1
is overexpressed in multiple malignancies, including human
myeloid leukemia (34), colon cancer (35), prostate cancer
(36), and squamous cell carcinomas (37). Conversely, SIRT1
expression is reduced in ovarian cancers and glioblastoma (38)
when compared to corresponding normal tissues. Overall, SIRT1
may function as both an oncogene and tumor suppressor
depending on subcellular localization, age, type of tissue, and
concomitant mutations in related signaling pathways.

In HCC, SIRT1 was the only member of the Sirtuin
family consistently overexpressed (39) and deemed vital for all
stages of HCC tumorigenesis (39). Moreover, it was repeatedly
demonstrated that SIRT1 was frequently overexpressed in
HCC biopsies when compared to corresponding adjacent non-
cancerous liver parenchyma (40–42) and its expression was
necessary for the maintenance of HCC tumorigenesis (15,
43–45). Generally, SIRT1 mRNA levels are similar in HCC
and non-malignant adjacent tissue, suggesting that SIRT1 is
increased in HCC via a post-transcriptional mechanism (15).
Hypermethylated in cancer 1 (HIC1) and p53 negatively
regulate SIRT1 mRNA transcription and are often mutated
or dysfunctional in HCC. Thus, SIRT1 overexpression may
be partly accounted for by the decreased inhibition of its
transcription. However, SIRT1 protein levels are also preserved
post-translationally via reduced degradation and increased
stability (15, 46).

Additionally, SIRT1 was overexpressed in a multitude of
humanHCC cell lines such as HKC1-4, SNU-423, HKC1-2, PLC5
SNU-449, SK-Hep-1, Huh-7, HepG2, and Hep3B (15, 45), when
compared to normal liver cell lines (47).

However, there is still some controversy regarding SIRT1’s role
in HCC, as some reports showed that SIRT1 was downregulated
in human HCC samples and hypothesized it had tumor-
suppressive roles (38). The multifaceted role of SIRT1 in
carcinogenesis suggests (48) that its function is dependent on
cancer type and the state of downstream or upstream molecules
that influence its oncogenicity (49). The role of SIRT1 in HCC
may also depend on its subcellular localization. Although, in
HCC cells, SIRT1 had a predominant nuclear localization where
its expression promotes tumorigenesis, it was reported that
cytoplasmatic SIRT1 may have tumor-suppressive roles (50).

Multiple lines of evidence suggest that SIRT1 expression has
survival-promoting effects in both normal hepatocytes and in
HCC cells. In healthy mice, SIRT1 overexpression protected
against malignancies (51) and basal SIRT1 expression was vital
for maintaining physiologic hepatic morphology and normal
lifespan (44). However, basal SIRT1 levels were lower in mouse
livers compared to other viscera, indicating that the hepatocytes
may be more sensitive to the under- or overexpression of
SIRT1 (44).

Similarly, SIRT1 expression is vital for the proliferation
and survival of HCC cells (44). Malignant cells were shown
to enhance their function by hijacking survival signaling
pathways of non-malignant cells (52, 53). Therefore, SIRT1
activity may promote cellular function and survival and inhibit
cancerous transformation in normal hepatocytes; after malignant
transformation, SIRT1’s functionality may be employed in
promoting tumorigenesis and sustainingHCC survival (15). That
is, SIRT1’s activity may promote cellular survival independent of
the cancerous or non-cancerous state of the hepatocytes. As of
yet, there are no reports of experimentally induced oncogenesis
via SIRT1 overexpression. Finally, SIRT1 overexpression does not
appear to be a cancer-initiating event but rather a cancer-induced
adaptive mechanism that promotes survival and proliferation
(42). However, because SIRT1 simultaneously regulates a wide
spectrum of biological processes, its role in HCC oncogenesis
is incompletely understood and further research is warranted
in order to clarify at which level and via what mechanisms do
HCC cells increase and become dependent on SIRT1 expression.
Additionally, the interplay between SIRT1 and the other six
sirtuin family members and their role in HCC should be
further explored.

Multiple studies evaluated the prognostic value of SIRT1
expression in HCC. SIRT1 overexpression correlated with the
development of portal vein tumoral thrombosis, decreased
overall survival rates, lower disease-free survival, and advanced
TNM stages (54). Patients with SIRT1-positive HCC biopsies
had a decreased 10-year survival compared to SIRT1-negative
HCC patients. SIRT1 protein levels appear to be positively
correlated with HCC grades; specifically, SIRT1 expression is
higher in advanced HCC stages. One meta-analysis investigated
the prognostic and clinical implications of SIRT1 expression
in HCC. It showed that heightened SIRT1 expression was
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associated with decreased patient overall survival and death-
free survival. Moreover, increased SIRT1 expression correlated
with larger tumor size, higher p53 expression, high alpha-
fetoprotein (AFP) levels and advanced TNM stages (55).
However, it was highlighted that, for the studies examined in
the meta-analysis, there was no clear cutoff value or unified
standard for the measurement of SIRT1 expression. Even
though the statistical power was limited, it can be concluded
that increased SIRT1 expression correlated with a poor HCC
prognosis (26).

The deacetylation function of SIRT1 is vital for its oncogenic
role in HCC. When the deacetylation domain of SIRT1 is
mutated, the proliferation and colony formation ability of HCC
cells are inhibited (40). Inhibition of SIRT1 in HCC cells,
either through knockdown or administration of SIRT1 inhibitors,
led to decreased tumor development in vitro and in vivo and
exerted cytostatic as opposed to a cytotoxic effect (42, 44), while
SIRT1 overexpression accelerated HCC growth (44). However,
in vivo experiments indicate that other mutations in relevant
cancer-related pathways might determine the function of SIRT1,
thus, the role of SIRT1 should be viewed as context dependent
(56). SIRT1 is also implicated in the malfunction of multiple
HCC signaling pathways such as FOXO1, p53, and TGF (57–
59). SIRT1 downstream targets involved in HCC progression
include YAP (Yes-associated protein) (44, 60), PTEN/PI3K/Akt
(61, 62), telomerase, and p53 (63). Overall, in HCC, SIRT1 acts
as a potential oncogene (45). Further on, we will elaborate on
the interplay between SIRT1 and the aforementioned pathways
and molecules.

SIRT1 expression was also shown to prevent malignant
development in a mouse model of metabolic-syndrome
associated HCC. Communicable infectious diseases have been
successfully dealt with in the past decades. However, in the early
twenty-first century, non-communicable diseases have become
a principal health hazard. The global spread of high calorie
and low fiber, Western style foods, coupled with decreases in
physical exercise led to a global epidemic of metabolic syndrome.
The financial burden inflicted by metabolic syndrome is in the
trillions (64). The epidemiology of obesity-associated HCC (65)
and in vitro and in vivo experiments suggest that an obesogenic
lifestyle, via pro-inflammatory cytokines, insulin resistance,
steatosis, and lipotoxicity, may progress from metabolic
syndrome to NASH (6) and HCC (65). Overall, diet-induced
NASH is estimated to upsurge the number of patients with
NASH-related HCC (3, 66–68).

SIRT1 expression promotes genomic stability in normal
hepatocytes and appears to be protective against high-fat
diet (HFD)-induced HCC. Moreover, the role of SIRT1 as a
protector against metabolic syndrome is clear (69, 70). For
instance, enhancing SIRT1 activity in a mouse model of type
2 diabetes leads to improved insulin resistance and controls
hyperglycemia (7, 71, 72). Moreover, transgenic mice that
systemically overexpress SIRT1 were protected from the hazards
produced by a HFD (69, 73).

One model of metabolic syndrome-associated cancer
examined the effects of a threefold systemic SIRT1 expression on
diet-associated HCC.

Mice overexpressing SIRT1 systemically at approximately
threefold that of the normal WT mice had measurably increased
hepatic SIRT1 deacetylase activity. These mice had improved
glucose tolerance, decreased adipose inflammation, and were
protected from other negative effects of HFD such as hepatic
steatosis. Moreover, compared to the control group, SIRT1-
overexpressing mice displayed a lower incidence of HCC after
the chronic administration of a HFD. Part of the protective
effects of SIRT1 expression in HCC development was attributed
to decreasing NF-κB-induced inflammation and malignant
transformation (51).

Overall, systemic threefold SIRT1 overexpression protects
hepatocytes but not fibroblasts from DNA damage and translates
as safeguard against HFD-induced HCC (51).

SIRT 1 may promote protective effects against HCC via its
effect on β-catenin (25) —an oncogene associated with epithelial
cancer (74). This may account for the carcinoma-selective
protection provided by SIRT1 overexpression.

Collectively, the current body of literature suggests that SIRT1
expression has a pro-tumorigenic role in HCC but is not a
cancer-initiating event.

ROLE OF SIRT1 IN THE TUMORIGENICITY
OF LIVER CANCER STEM CELLS

Multiple models have been proposed in order to explain the
functional and histological heterogeneity of solid cancers. One
of them proposes a hierarchical organization of tumoral cell
populations where a minor cell population termed cancer
stem cells (CSCs) with self-renewal and differentiation
capacities repopulate tumors and establish the histological
and functional heterogeneity characteristic of most cancers
(75, 76). Intra-tumoral CSCs are capable of differentiation
and self-renewal and give rise to tumors identical to the
original one in primary and metastatic sites (76, 77).
HCC tissue samples possess intra-tumoral heterogeneity
(78, 79), and a subpopulation of cells with stem cell-like
proprieties might give rise to HCC and accelerate cancerous
proliferation (80–82). Therefore, due to their proliferation
and differentiation abilities, liver CSC (LCSC) have been
incriminated for HCC initiation (83), chemoresistance (84, 85),
metastasis (83), recurrence, and overall dismal patient outcome
(83, 86–89).

For instance, hepatoblasts are cell progenitors with the
ability to differentiate into hepatocytes (90). During chronic
liver inflammation, hepatoblasts and other hepatic progenitor
cells accrue genetic and epigenetic modifications, leading to
their conversion in LCSCs (91). Importantly, through a process
called dedifferentiation, hepatocytes can also undergo malignant
transformation by acquiring CSC phenotypes (92). HCC CSCs
can be identified through multiple biological markers such as
CD133, CD90, and CD13 and ubiquitin-specific protease 22
(USP22) (82, 93). It was shown that SIRT1 plays a vital role in
the self-renewal and maintenance of embryonic stem cells (94)
and hematopoietic stem cells (95) and is also implicated in the
biology of LCSC.
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SIRT1–MRPS5 Signaling Pathway
Liver cancer stem cells (LCSCs) use enhanced mitochondrial
respiration to generate ATP. In contrast, cancer cells primarily
rely on aerobic glycolysis (Warburg effect) to generate ATP.
Metabolic reprogramming is a hallmark of cancer and plays
a vital role in cancer progression (96); however, the regulator
of metabolic reprogramming that drives the switch from
oxidative phosphorylation to aerobic glycolysis in LCSC is not
fully understood.

Mitochondrial ribosomal protein S5 (MRPS5) is required
for the enhanced mitochondrial function of LCSCs and
promotes cancer commencement and development (97, 98).
Acetylation promotes the nuclear translocation of various
proteins (99). SIRT1 is highly expressed in LCSCs (100, 100)
where it deacetylates MRPS5, thus determining its subcellular
localization. In LCSCs, deacetylated MRPS5 is located in the
mitochondria where it promoted oxidative phosphorylation,
stimulated NAD+ production, and improved mitochondrial
function, thus preserving LCSC stemness. Increased NAD+
also maintains SIRT1 activity and promotes a SIRT1–
MRPS5 positive feedback loop. In contrast, in HCC
cells, acetylated MRPS5 translocates to the nucleus and
consequently promotes metabolic flexibility and enhanced
glycolysis (101).

Relevantly, multiple acetylated proteins act as metabolic
enzymes in the extra nuclear environment and as transcription
factors when located inside the nucleus (102). Nuclear
translocation of MRPS5 led to enhanced expression of
glycolytic proteins and a switch in metabolism, from oxidative
phosphorylation to a Warburg-type metabolism. Thus, MRPS5
may function as a transcription factor when localized in
the nucleus and consequently regulate the expression of
glycolytic genes. However, the exact mechanism by which
MRPS5 increases the expression of glycolytic proteins
is not clear. Further research should establish whether
acetylated MRPS5 acts as a glycolysis promoting transcription
factor in HCC.

SIRT1 expression was higher in LCSC compared to
HCC cells. The comparatively lower SIRT1 expression
in HCC cells may account for the predominant nuclear
localization of MRPS5. However, the tumor microenvironment
is highly dynamic and SIRT1 expression may be
heterogeneous in different cellular subpopulations at
different time points. Thus, fluctuating SIRT1 expression
may contribute to tumoral heterogeneity and self-
renewal by facilitating the transition of LCSCs to HCC
cells. This may explain why MRPS5 is found in higher
concentration in HCC cell’s nucleus even though SIRT1
is frequently overexpressed in HCC cells and it would
be expected to deacetylate MRPS5 and thus promote its
mitochondrial localization.

SIRT1 also induced the mitochondrial unfolded protein
response (UPRmt) that preserves cell longevity and metabolic
fitness (103, 104). LCSCs present accelerated oxidative
phosphorylation, which is associated with increased ROS
production. Therefore, the SIRT1–UPRmt axis maintained
LCSC viability by reducing ROS.

Metformin was reported to be beneficial to HCC patients (58).
Interestingly, metformin downregulates MRPS5, which inhibits
the activity of mitochondrial complex 1, thus decreasing the
function of LCSCs (see Figure 1).

Human HCC samples with increased SIRT1 expression and
high cytoplasmic MRPS5 levels presented more CSCs and were
associated with high metastases rates, cancerous embolization,
increased tumor size, and decreased survival compared to
patients whose HCC biopsies showcased low cellular SIRT1
expression and high nuclear MRPS5 levels. This further indicates
that the metabolic reprogramming induced by SIRT1/MRPS5
axis is crucial for the stemness of CSCs.

In summary, the SIRT1/MRPS5 axis augmented the metabolic
plasticity and reprogramming of LCSC by ameliorating and
maintaining mitochondrial function, consequently promoting
hepatocarcinogenesis. Further studies should explore the
interaction between SIRT1 and other MRPs. Administration of
LCSC-targeted oxidative phosphorylation inhibitors or MRPS5
inhibitors should be explored in future experiments.

SIRT1–SOX Signaling Pathway
In vivo mice models demonstrated that SIRT1 is necessary
for maintaining the self-renewal and tumorigenicity of LCSCs.
In those models, silencing SIRT1 expression reduced the
incidence of HCC compared with the controls (100). SIRT1 is
overexpressed in LCSCs where it is necessary for maintaining
oncogenesis and self-renewal and is correlated with a poor
prognosis of HCC patients.

The core embryonic transcription factor circuitry (SOX2, c-
Myc, Oct4, Nanog) is implicated in the self-renewal of CSCs
(105–107). SIRT1 induces tumorigenicity in a subpopulation
of LCSC in a SOX2-dependent manner. SIRT1 knockdown in
LCSCs decreased SOX2, Oct4, and Nanog expression levels.
Treating LCSCs with SIRT1 inhibitors TV6 and EX-527 reduced
SOX2 and Nanog (100).

SIRT1 regulates SOX2 gene expression thus primes LCSC
for self-renewal. DNA (cytosine-5)-methyltransferase 3A
(DNMT3A) catalyzes the transfer of methyl groups to CpG DNA
structures. In LCSCs, SIRT1 expression inhibited DNMT3A,
consequently promoting hypomethylation of the SOX2 promoter
and activated SOX2 gene expression, consequently inducing
self-renewal and oncogenicity (100). Notably, HCC stage
and recurrence were correlated with SIRT1 and SOX2. Thus, in
LCSCs, SOX2 is a prime downstream regulator of SIRT1-induced
self-renewal and oncogenesis (100).

The Ubiquitin Proteasome Pathway (UPP) is the prime
mechanism for protein catabolism in mammals. UPP is also
responsible for degrading SIRT1 (108, 109). IGF1 was vital
for the self-renewal and tumoral growth of LCSCs. Namely,
IGF signaling inhibited the UPP pathway, thus increasing
SIRT1 protein levels and function in LCSCs (100). Thus, IGF1
may enhance the self-renewal of LCSCs by mediating SIRT1
levels (100).

Inhibiting SIRT1 in LCSCs reduced SOX2 expression and
strongly repressed tumor growth in both in vivo and in
vitro models. Overall, SIRT1 deacetylase activity was vital for
the oncogenicity and self-renewal of LCSCs. Selective SIRT1

Frontiers in Nutrition | www.frontiersin.org 4 September 2019 | Volume 6 | Article 148

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Farcas et al. SIRT1 and Hepatocellular Carcinoma

FIGURE 1 | Comparative representation of MRPS5 signaling in liver cancer stem cells and HCC cells. In LCSCs, SIRT1 deacetylates MRPS5, which promotes its

mitochondrial localization. Mitochondrial MRPS5 increases oxidative phosphorylation and consequently ROS. However, SIRT1 also promotes UPRmt activity, which

decreases ROS levels. Conversely, in HCC cells, MRPS5 is localized in the nucleus where its activity promotes increased cellular glycolysis. All the figures in this article

were made using images from http://smart.servier.com.

inhibition in LCSCs is a potential therapeutic target hindering
HCC development and progression.

SIRT1–MEK Signaling Pathway
Initially, HCC heterogeneity was attributed to hepatocytes since
the liver was presumed to lack a distinct stem cell population
(110). Nevertheless, accumulating evidence shows that HCCs
display multiple cell subpopulations, some of which have stem
cell characteristics (111, 112), and increased expression of
CSC1 markers (Nanog, SOX2, Oct4) was identified in some
HCC subpopulations (113, 114). These subpopulations were
associated with increased HCC invasion and chemoresistance
(115). The core embryonic transcription factor’s circuitry
(SOX2, c-Myc, Oct4, Nanog) is essential for LCSCs self-
renewal (105–107).

Mitogen-activated protein kinase 1 (MAPK1/MEK1)
is an oncogene implicated in cancer development and
therapy resistance. Active MEK1 signaling is vital for
the proliferation and oncogenic potential of LCSC. The
interplay between MEK1 and SIRT1 was crucial for upholding
the self-renewal and growth of LCSCs. Decreased MEK1
expression in LCSCs reduced the expression of Oct4,
c-Myc, SOX2, and Nanog and significantly decreased
LCSC self-renewal and proliferation (46). Mechanistically,
MEK1 signaling activation increased SIRT1 expression
and protein stability and inhibited the proteasomal
degradation of SIRT1; this promoted self-renewal and
oncogenicity in LCSCs, resulting in poor prognosis of HCC
patients (46).

In a cohort of 148 HCC patients, the expression of the
MEK1–SIRT1 pathway was strongly correlated with tumor size,
vascular and capsular invasion, clinical tumor stage, and poor
prognosis (46). MEK1 knockdown in LCSCs isolated from
HCC samples lowered SIRT1’s half-life, suppressed oncogenicity
and self-renewal, and lessened the expression of stem cell
markers. However, these results need to be further replicated
and validated in vivo. Inhibiting SIRT1/MEK1 signaling impedes
HCC oncogenesis and should be further explored as a possible
therapeutic target (see Figure 1).

Notch3–SIRT1–LSD1–SOX2 Signaling
Pathway
Lysine demethylase 1 (LSD1) is an epigenetic regulator
responsible for demethylating various histones and controls the
pluripotency of stem cells (116–118). LSD1 is overexpressed in
HCC cells compared to normal hepatic parenchyma. Moreover,
LSD1 is overtly expressed in LCSCs where it directly regulated
the transcription of the SOX2 gen, promoted self-renewal and
tumorigenesis, and was associated with a poor patient prognosis
(119). Similar to the effect of SIRT1 via DNMT3A, LSD1
demethylated the SOX2 promoter and consequently increased
its expression and improved LCSC stemness. Acetylation inhibits
the enzymatic activity of LSD1 and stimulates its degradation via
UPP. SIRT1 deacetylated LSD1 and thus increased its stability
(see Figure 2).

Notch signaling is vital for cell proliferation and survival
(120). In HCC, Notch receptors are mostly overexpressed and
their ligand expression was associated with aggressive tumor
phenotypes (121). Notch promoted HCC development and
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FIGURE 2 | SIRT1-related pathways involved in LCSC proliferation.

metastasis through activating the Wnt/β-catenin pathway
(122, 123). Moreover, Notch signaling was shown to promote
CSC self-renewal. Notch3 signaling induced SIRT1 expression
and facilitated LDS1 deacetylation and activated LSD1,
consequently promoting LCSC self-renewal. The Notch3-
dependent pathway was crucial for LCSC self-renewal and in
vivo tumor dissemination (see Table 1).

SIRT1–CPEB1 Signaling Pathway
Cytoplasmic polyadenylation element-binding protein 1
(CPEB1) mediates mRNA translation and negatively regulates
HCC stemness and chemoresistance. Moreover, CPEB1
expression was low in HCC and LCSCs when compared to
normal hepatocytes (124).

In HCC, CPEB1 upregulation decreased chemoresistance,
accelerated doxorubicin-induced apoptosis, inhibited cell
migration and self-renewal and decreased tumoral growth while
CPEB1 knockdown had the opposite effect.

The 3′ untranslated region (3′UTR) of SIRT1 mRNA presents
two cytoplasmic polyadenylation element (CPE) sequences.
CPEB1 binds to SIRT1 mRNA and could curtail the poly(A)
extremity of SIRT1 mRNA, thus decreasing SIRT1 protein
levels. Thus, CPEB1 regulated SIRT1 expression at the post-
transcriptional level. Hence, decreased CPEB1 expression may
account for SIRT1 overexpression, which in turn promotes

LCSCs self-renewal, chemoresistance, and HCC cell spheroid
formation (124).

THE INTERPLAY BETWEEN miRNAs AND
SIRT1 IN THE DEVELOPMENT AND
TREATMENT OF HCC

MicroRNAs (miRNAs/miRs) are endogenous, single-stranded,
non-coding regulatory RNAs (131) that exert their biological
functions by integrating into the RNA-inducing silencing
complex of their target mRNA where they attach to the 3′UTR
and either inhibit mRNA translation or induce its degradation
(47, 132). The function of multiple miRs was shown to be
dysregulated in HCC and in a plethora of other cancers.
Depending on the cellular environment and target genes, miRs
can function as either oncogenes or tumor suppressors (47,
133, 134). miRs were demonstrated to play a role in HCC
development, proliferation metastasis, and therapeutic resistance
(121, 135, 136).

p53-miR-34a–SIRT1 Signaling Pathway
0404

0404, is a DNA-damaging compound with no cytotoxic effects on
non-cancerous human hepatocytes. 0404 induced apoptosis and
decreased growth in an in vivoHepG2HCCmodel. However, P53
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TABLE 1 | Molecules involved in the biology of LCSCs and their interaction with SIRT1.

Role in HCC Interaction with SIRT1 Comments References

MRPS5 ↑LCSCs mitochondrial

function and NAD levels

SIRT1 deacetylates MRPS5

and promotes its nuclear

localization

Metformin ↓MRPS5 (101)

SOX2 ↑LCSCs self-renewal

↑Tumorigenicity

SIRT1 promotes SOX2

expression

SIRT1 inhibitors TV6 and

EX-527 ↓SOX2

(88)

MEK1 ↑Proliferation and

oncogenesis of LCSC

MEK1 ↑ SIRT1 expression

in LCSC

↑MEK-SIRT1 expression

correlated with HCC

metastasis

(46)

LSD1 ↑LCSCs self-renewal and

tumorigenesis

SIRT1 deacetylates LSD1

and prevents its degradation

↑SOX2 expression (119)

CPEB1 ↓Chemoresistance

↓Stemness

↑Apoptosis

↓SIRT1 expression CPEB1 expression is ↓ in

LCSCs and HCC

(124)

WT HepG2 cells were more responsive to 0404 compared to the
p53 mutant Huh7 cell lines (137).

P53 modulates the transcription of multiple miRs. In
turn, numerous miRs target the 3′UTR region of p53
mRNA. Hence, p53 and miRs may form a feedback
loop (138).

The miR-34 family is typically silenced in multiple
tumors and was identified as the most frequent p53-
induced miRs (139, 140). miR-34a was shown to increase
p53 transcription and acetylation and induced apoptosis
in HCC cells. In HepG2 but not in Huh7 cell lines,
0404 upregulated p53 and miR-34a expression, increased
acetylated p53, and downregulated SIRT1 protein expression,
which consequently inhibited HCC growth (137). The
anticancer mechanisms induced by 0404 and its toxicity
and efficacy should be examined in vivo on multiple HCC
cell lines.

Quercetin

Quercetin is a flavonoid with anti-cancer proprieties and
low toxicity to non-cancerous cells. Quercetin activated
apoptosis and cell cycle arrest in HepG2 and Huh7 cells.
However, p53 status determined the sensitivity of HCC cells
to quercetin. Namely, in p53 WT cell lines, proliferation was
reduced by a significantly lower quercetin quantity, when
compared to p53 mutants. HepG2 cells treated with quercetin
showcased increased p53 expression, miR-34a activity, and
SIRT1 inhibition (140, 141).

SIRT1 deacetylates p53, resulting in the cessation of
its activity. miR-34a silences SIRT1 mRNA by binding to
its 3′UTR region (142). Quercetin activated p53, which
induced miR-34a and consequently silenced SIRT1 mRNA
expression, leading to increased p53 acetylation, activity, and
consequently apoptosis, thus forming a positive feedback loop.
In summary, quercetin activates the p53-miR-34-SIRT1 axis
and induces a positive feedback loop that suppresses tumor
formation (143).

miR-34a-IL-24 Oncolytic Adenoviruses
miR-34a expression was shown to be downregulated in multiple
cancers including HCC, where it exerts a tumor-suppressive

role. In HCC, miR-34 levels were inversely correlated with
vascular invasion, necrosis, and histological staging, and low
miR-34a expression was associated with decreased overall
survival (144).

miR-34a delivery via oncolytic adenovirus killed HCC cells in
vitro, with low toxicity to normal hepatocytes. Importantly, miR-
34a expressed in HCC via oncolytic adenoviruses, downregulated
SIRT1 and Bcl-2 (144) expression, and induced cancerous
cytotoxicity (144).

The cytokine IL-24 is known to inhibit tumoral angiogenesis
and activates tumoral apoptosis. It was hypothesized that
increasing the expression of both IL-24 and miR-34a
would provide synergistic therapeutic benefits. Oncolytic
adenovirus-mediated transfer of both miR-34a and IL-
24 led to a more potent inhibition of HCC cell growth
than administering either miR-34a or IL-24 separately.
However, the antitumoral mechanisms of the oncolytic
adenoviruses used in the abovementioned study are
insufficiently understood and its effects on metastasis should also
be explored.

Butyrate–miR-22–SIRT1 Signaling Pathway
Butyrate, a short-chain fatty acid, is produced by the intestinal
microbiome via anaerobic fermentation and is subsequently
absorbed by the hepatocytes (145). Butyrate was shown to induce
apoptosis and decrease tumorigenesis in multiple malignancies
(146, 147). Butyrate was reported to inhibit SIRT1 gene
expression in some types of cancer, although this has not yet been
demonstrated in HCC (148).

miR-22 was shown to be downregulated in HCC and its low
levels contributed to tumorigenesis (149). miR-22 expression
activated apoptosis and inhibited the in vitro proliferation of
the Huh7 cells. Oppositely, SIRT1 expression was high in
Huh7 cells and increased the expression of antioxidants such
as superoxide dismutase (SOD), consequently maintaining cell
proliferation (40).

In Huh7 cells, butyrate induced miR-22, which directly binds
the 3′UTR region of SIRT1 and downregulates its expression;
this reduced SOD activity and augmented ROS production,
increasing caspase 3 and cytochrome c activity, thus promoting
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apoptosis (150). Furthermore, by downregulating SIRT1, miR-
22 increased PTEN and gsk-3 expression and downregulated β-
catenin and p-akt expression and thus may promote apoptosis
and decrease HCC proliferation (150).

However, multiple aforementioned experiments were only
performed with 2D cultures or in vitro (150, 151). 3D cultures
better mimic the in vivo environment (152) and it was reported
that therapeutic approaches are less effective in 2D cultures
when compared to 3D ones. Drug resistance was also reported
to be higher in 3D cultures (153–155). Thus, replicating
therapeutic interventions performed with monolayer cultures
with spheroids, or in vivo, may offer a better understanding of
their translational potential (see Figure 3).

miR-133b-Sirt1-GPC3-Wnt/β-catenin
Signaling Pathway
The Wnt/β-catenin pathway is essential for the physiological
functioning of the liver (156) and is also implicated in
oncogenesis (157). In non-cancerous cells, SIRT1 deacetylates
β-catenin, thus constricting it to the cytoplasm and limiting its
ability to trigger transcription and induce cell proliferation (25).

The β-catenin gene is commonly mutated in HCC (158).
SIRT1 is negatively associated with β-catenin mutation in HCCs,
demonstrating that SIRT1 may promote oncogenesis in cancers
independent of Wnt/β-catenin.

miR-133b mainly acts as a tumor suppressor and is
markedly reduced in a multitude of cancers (159). miR-133b
expression was decreased in a majority of HCC biopsies when
compared to paired adjacent normal tissue (160). Moreover,
miR-133b upregulation in HepG2 cells strongly repressed
HCC cell proliferation and invasion and promoted apoptosis
(47). Additionally, miR-133b upregulation decreased tumor
growth, in nude mice with orthotopic HepG2 cell tumors.
miR-133b directly targets and is inversely correlated with
SIRT1 in human HCC cells. Enhanced miR-133b expression
strongly decreased SIRT1 expression at both mRNA and
protein levels. Overall, the anti-cancer effect of miR-133b
in HCC cells appears to be achieved through inhibiting
SIRT1 expression.

GPC3 stimulates HCC growth via Wnt signaling. It has
been reported that SIRT1 inhibition decreases the expression
of cancer markers AFP and GPC3. Decreased GPC3 and
AFP expression indicate the development of an increasingly
differentiated cell phenotype and may be beneficial (42).
GPC3 is a membrane protein that is extremely overexpressed
in HCC and is involved in hepatocarcinogenesis (161–163).
GPC3 suppression in HCC cells inhibited proliferation and the
expression of anti-apoptotic proteins (Mcl-1, Bcl-2, and Bcl-xL)
and also increased TGF-β expression (47). GPC3 also promoted
HCC cell EMT (164).

Malignant cells are characterized by inadequate intercellular
adhesion and increased cellular motility. E-cadherin is a
molecule vital for cell–cell adhesion in epithelial tissues (165).
Dysregulation of E-cadherin-modulated intercellular adhesion is
observed in human carcinomas and correlates with acquisition
of metastatic potential (166). Downregulating SIRT1 decreased

GPC3 mRNA and increased the mRNA expression of E-
cadherin (42). miR-133b upregulation or GPC3 downregulation
repressed GPC3, Mcl-1 Bcl-2, Bcl-xL, and SIRT1 expression
and increased the expression of E-cadherin. Moreover, GPC3
downregulation canceled the SIRT1 overexpression-induced
inhibition of apoptosis and accelerated invasion and proliferation
(47). Additionally, in HCC cells, miR-133b overexpression
inhibited GPC3 expression and cell proliferation.

GPC3 interacts with Wnt ligands, consequently stimulating
cell migration and proliferation in HCC (167, 168). Activation
of the Wnt signaling pathway induces cytoplasmic buildup
and nuclear translocation of the transcription factor β-
catenin. Intranuclear β-catenin induces the expression of
genes that regulate cell differentiation, proliferation, migration,
and apoptosis (168–170). SIRT1 upregulation increased the
expression of GPC3, which consequently stimulated the Wnt/β-
catenin pathway and induced cytosolic accumulation and
nuclear translocation of β-catenin. Concluding, miR-133b
suppresses cell proliferation and migration and activates cell
apoptosis, by inhibiting the Sirt1-GPC3-Wnt/β-catenin signaling
pathway (47).

However, SIRT1 was reported to suppress Wnt/β-catenin in
multiple malignancies including mouse and human HCCs (171–
175). Mechanistically, SIRT1 expression was shown to stimulate
β-catenin phosphorylation, which promoted its degradation.
SIRT1 regulation of β-catenin is contingent on protein kinase
A (PKA). SIRT1 may stimulate PKAs auto-phosphorylation but
may also influence PKA through transcriptional regulation of
PGC1α–PKA’s upstream regulator.

SIRT1 can activate the transcription of PGC1α in HCC
cells. PGC1α was demonstrated to elevate cAMP, which,
in turn, stimulates the activity of PKA. Thus, SIRT1 may
collaterally promote the phosphorylation of PKA and β-
catenin through a PGC1α-cAMP-dependent manner (175).
SIRT1 also increases βTrCP gene expression. βTrCP is crucial
for Sirt1-induced Wnt/β-catenin signaling inhibition. Namely,
phosphorylated β-catenin is ubiquitinated by βTrCP and
consequently degraded.

Overall, suppressing SIRT1 expression in HCC for
therapeutic purposes may activate Wnt/β-catenin signaling
and promote tumorigenesis. To short-circuit this
potential side effect, the Wnt/β-catenin pathway should be
simultaneously inhibited (175).

miR-449–SIRT1–SREBP-1c Signaling
Pathway
Sterol regulatory element binding protein (SREBP)-1c is a
transcription factor predominantly localized in adipocytes and
hepatocytes, where it regulates lipid synthesis-related gene
expression. Abnormal lipid metabolism has been connected
to HCC development (65, 176) and SREBP-1c dysfunction
is involved in oncogenesis (177–179). SIRT1 regulates lipid
metabolism and its activation decreased the expression of hepatic
SREBP-1c (180).

miR-449 is part of a miR family that regulates apoptosis
and proliferation and may promote tumor suppression via
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FIGURE 3 | Mediators of miRs and their intracellular effects. Multiple compounds may influence the levels of intracellular miRs and negatively regulate HCC

progression. Oncolytic adenoviruses, butyrate, 0404, and quercetin positively regulate multiple HCC miRs and, as a consequence, decrease metastasis, proliferation,

and invasion.

downregulating histone deacetylases (181, 182). In Huh7 and
HepG2 cell lines, miR-449 directly targets and inhibits SIRT1
mRNA expression, which consequently inhibits SREBP-1c and
thus constrains cholesterol and fatty acid biosynthesis (151).
Additionally, the SIRT1-SREBP-1c downstream metabolic
oncogenes 3-hydroxy-3-methylglutaryl CoA reductase
(HMGCR) and fatty acid synthase (FASN) (177, 183) are
also downregulated. Overall, miR-449 expression decreases mice
HCC xenograft development (151, 184).

Thus, miR-449 inhibited the SIRT1–SREBP pathway which
decreased proliferation and DNA synthesis, reduced lipid
anabolism, and suppressed tumorigenesis in Huh7 and HepG2
cell lines (151).

MALAT1–miR-204-5p–SIRT1 Signaling
Pathway
The lncRNA metastasis associated lung adenocarcinoma
transcript 1 (MALAT1) is decidedly expressed in HCC where it
stimulates growth and invasion. MALAT1 activates mechanistic

target of rapamycin (mTOR) signaling (185) and enhances the
development of HCC CSC (186).

Oppositely to MALAT1, miR-204 promotes apoptosis by
activating p53 and inhibiting anti-apoptotic protein Bcl-2 (187).
miR-204 also inhibited cancer stemness and EMT and increases
chemosensitivity (187, 188). However, MALAT1 expression was
negatively correlated with miR-204 levels. MALAT1 directly
attaches to miR-204 and negatively regulates its expression
(189). SIRT1 appears be a vital intermediary in the interplay
between MALAT1 and miR-204. It is known that SIRT1
is vital for HCC EMT, migration, and invasion. SIRT1 is
directly targeted and silenced by miR-204 (189). However,
SIRT1 and MALAT1 attach to the same miR-204 site; thus,
MALAT1 might be in competition with SIRT1 for binding miR-
204; this decreases miR-204-induced SIRT1 inhibition. Overall,
MALAT1 negatively regulatedmiR-204 activity and consequently
increased SIRT1, which, in turn, induced HCC migration and
invasion (189). Inhibiting MALAT1 decreased the aggressive
behavior of HCC, which makes it a potential therapeutic
target (189).
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Moreover, it was shown that miR-204-5p expression was
decreased in multiple human HCC cell lines (189). Decreased
miR-204-5p levels were associated with HCC metastasis
and poor patient outcome. In HCC cell lines, miR-204-
5p binds to the 3′UTR region of SIRT1 and consequently
decreases its expression at both mRNA and protein levels.
Likewise, in these same cell lines, miR-204-5p was inversely
associated with SIRT1 expression. miR-204-5p decreased
the invasion and survival of HCC cells by reducing SIRT1
expression and protein levels both in vivo and in vitro (190).
Overall, miR-204-5p induced post-transcriptional inhibition
of SIRT1 in multiple human HCC cell lines. Importantly,
miR-204-5p overexpression strongly downregulated both
SIRT1 mRNA and protein levels in HCC cells and thus
attenuated tumoral growth. As such, miR-204-5p is a potential
diagnostic marker and increasing its expression and activity
in HCC cells is a therapeutic option that needs to be further
explored (190).

miR-486
miR-486 downregulation may be a hallmark of HCC
development and contributed to the differentiation of
LCSCs into HCC cells (43). miR486 was shown to
be strongly downregulated in HCC samples and in
LCSCs (43).

On the contrary, SIRT1 expression was increased
in LCSCs and maintained the tumorigenic and self-
renewal proprieties of LCSCs in vivo, and was inversely
correlated with miR-486 levels in LCSCs (43). miR-486
directly targets and strongly suppresses SIRT1 expression
and decreased the tumorigenic and chemo-resistant
properties of LCSCs and suppressed HCC invasion and
tumorigenicity (43).

Overall, this further validates the role of SIRT1 as a promoter
of HCC development, invasion, and recurrence, in part through
maintaining the stemness of CSCs (43).

miR-29c
Decreased levels of the miR-29 family were associated with
poor HCC survival. The miR-29 family have tumor-suppressive
roles by targeting Mcl-1 and Bcl-2. Relevantly, miR-29c exerts
tumor-suppressing functions by inhibiting hepatocytic SIRT1.
Ectopic miR-29c expression decreased SIRT1 expression
and consequently repressed cell proliferation. miR-29c
directly targets and suppresses SIRT1 mRNA translation in
hepatocytes (191).

miR-29c was shown to be strongly downregulated in
HCC biopsies and correlated with poor patient prognosis.
The 5-year survival rate of HCC patients with low
miR-29c expression was pointedly inferior to that of
HCC patients with high miR-29c expression. Future
interventions that upregulate miR-29c in HCC models
may provide insights into a more efficient management of
HCC (191).

miR-29a
Decreased miR-29a expression is common in HCC, where it
promoted metastasis and, as a predictor of early post-surgical
recurrence, diminished overall survival and disease-free
survival (192). miR-29a suppressed HCC proliferation.
Tellingly, miR-29a was strongly downregulated in HCC
tissue biopsies when compared with adjacent normal tissue.
miR-29a upregulation suppressed HCC cell proliferation
and colony formation. Mechanistically, miR-29a increased
p21 expression and decreased CDK4 and CyclinD1
expression, consequently suppressing cell cycle progression;
it also targeted the 3′UTR region of SIRT1 mRNA and
decreased SIRT1 mRNA and protein expression consequently
overturning HCC cell proliferation (192). Oppositely, SIRT1
overexpression decreased the protective effects exerted by
miR-29a. Overall, data suggests that miR-29a may serve
both as a prognostic marker and as a therapeutic target for
HCC suppression.

miR-138
It has been confirmed that miRs have suppressive or promotive
effects on tumor metastases and invasion and impact HCC
progression (193).

miR-138 functions as a tumor suppressor and it was found
to be downregulated in multiple cancers (194). In HCC
cells, miR-138 suppresses cell invasion and proliferation.
Interestingly, miR-138 expression levels were inversely
correlated with SIRT1 mRNA levels in HCC tissues (193).
Upregulation of miR-138 expression downregulated SIRT1
at the level of mRNA and protein levels. miR-138 binds
to the 3′UTR unique complementary site of the SIRT1
gene and directly inhibits SIRT1 expression, which leads to
hindered HCC proliferation, migration, and invasion (193).
miR-138 was inversely correlated with SIRT1 mRNA in
HCC tissues.

Multiple studies showed that miR-138 expression was
downregulated in a majority of examined HCC samples
compared with peritumoral non-cancerous tissue (193). SIRT1
is overexpressed while miR-138 levels are decreased in HepG2,
SMMC7721, Bel7404, and HCCM3 compared to the normal
hepatic cell line L02 (193).

Tellingly, increasing miR-138 expression in HepG2 and
SMMC7721 cell lines inhibited their proliferation (193). This
suggests that decreased miR-138 expression was associated
with increased SIRT1 mRNA expression in HCC (193). This
validates the role of miR-138 in HCC proliferation and
metastasis (195).

miR-34a
miR-34a is a tumor suppressor in breast, colon (196), and a
plethora of cancers. miR-34a expression was correlated with
HCCmetastasis (197). miR-34a downregulated c-Met expression
and consequently inhibited HCC invasion and migration (198),
which have oncogenic or tumor suppressor functions (199).

miR34a expression was decreased in Hep3B and Huh7 cells
when compared to normal hepatocyte cell lines. Inducing miR-
34a overexpression in Hep3B and Huh7 significantly decreased

Frontiers in Nutrition | www.frontiersin.org 10 September 2019 | Volume 6 | Article 148

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Farcas et al. SIRT1 and Hepatocellular Carcinoma

cellular invasion and migration (200). Moreover, miR-34a
overexpression also decreased SIRT1 mRNA and protein levels
and increased acetylated p53. Thus, miR-34a overexpression
downregulated SIRT1 expression, which increased acetylated p53
levels and consequently suppressed HCC metastasis (200).

All in all, data suggest that the post-transcriptional
overexpression of SIRT1 may be promoted by loss of suppressive
mRNAs that normally target and inhibit its expression.

THE ROLE OF SIRT1 IN THE METASTASIS
OF HCC

Metastases are a great contributor to HCC morbidity (12).
SIRT1 overexpression in HCC samples correlated with
advanced tumor stage and increased incidence of portal
vein tumor thrombus. Moreover, SIRT1 overexpression in
HCC facilitates invasion and proliferation and suppresses
apoptosis (15, 126, 191). SIRT1 also increased the invasiveness
and motility of human HCC cells and was necessary for HCC
metastasis in vitro. Importantly, silencing SIRT1 reduced the
aforementioned metastatic characteristics of human HCC
cells (54). Accelerated cancer invasiveness is associated with
increased mitochondrial activity, oxygen consumption, and ATP
production (201).

One way in which SIRT1 promotes HCC metastasis is by
its interaction with peroxisome proliferator–activated receptor
γ coactivator 1α (PGC-1α). PGC-1α is a transcriptional
co-activator that promotes mitochondrial biogenesis and
respiration (19, 202). PGC-1α expression was demonstrated
to enhance the invasion and migration of HCC cells (54). In
HCC samples, SIRT1 overexpression was highly correlated
with PGC-1α upregulation. Ectopic SIRT1 expression
upregulated PGC-1α in HCC cells. Moreover, SIRT1
physically interacts with, deacetylates, and activates PGC-
1α. SIRT1-induced PGC-1α increased mitochondrial copy
numbers and mass, cellular ATP levels, DNA transcript
levels, and mitochondrial biogenesis, which boosted the
migration and invasion of HCC, thus promoting cancer
dissemination (54, 203).

PGC-1α-induced mitochondrial biogenesis and oxidative
phosphorylation were crucial for HCC metastasis (204)SIRT1
knockdown inHCC cells reduced the expression of mitochondria
biogenesis-related genes, diminished mitochondrial mass and
copy number, intracellular ATP, and mitochondrial DNA
transcript levels. These changes led to decreased intracellular
ATP production and impaired HCC metastasis (54).

The epithelial-to-mesenchymal transition (EMT) was shown
to promote HCC metastasis (205). Through EMT, epithelial
cells gain mesenchymal-like characteristics such as reduced
intercellular junctions, enhanced invasiveness and motility,
chemoresistance, and decreased polarization (206). SIRT1
expression promoted migration and invasion of HCC cell lines
and metastasis in an in vivo xenograft mice model by activating
EMT (45).

However, other reports suggest that SIRT1 expression was not
occasionally activated in human HCC cell lines, suggesting that

SIRT1-arbitrated metastasis did not implicate EMT (54). The
difference may be attributed to the different HCC models used
in the experiments.

Combined, these results suggest that SIRT1 expression
promotes progression, metastasis, and invasion of HCC. SIRT1
knockdown decreased migration and invasion of HCC cells in
vitro, decreased HCC invasion and metastasis in vivo (45, 54),
and impaired mitochondrial function and biogenesis, suggesting
that the SIRT1/PGC-1α axis may be a viable therapeutic target for
decreasing metastasis (54).

IMPLICATIONS OF SIRT1 IN THE
TREATMENT AND CHEMORESISTANCE
OF HCC

HCC is a chemo-refractory cancer (207). Multidrug resistance
(MDR) is partly incriminated for HCC metastasis and
recurrence. The ATP binding cassette (ABC) transporters
are involved in the cellular efflux of chemotherapeutics.
ABC overexpression is partly incriminated for HCC
MDR (208). The ABC transporters, P-glycoprotein, or
multidrug resistance protein 1 (P-gp, MDR1) and multidrug
resistance protein 3 (MRP3) are important for HCC
chemotherapy (209–211).

SIRT1 expression was shown to stimulate oncogenesis
and promote MDR in HCC (40, 212). SIRT1 overexpression
upregulates MDR1 in HepG2 cells (213). Contrarywise,
silencing FOXO1 or SIRT1 accentuates the cellular uptake
of chemotherapeutics and reinstates HCC chemosensitivity.
For instance, SIRT1 knockdown in human HCC cells
enhanced doxorubicin-induced chemosensitivity and
apoptosis (15).

Acetylated p53 promotes tumor suppression by interacting
with its downstream targets. SIRT1 deacetylates both p53
and FOXO1, consequently suppressing their ability to induce
apoptosis and cell growth arrest (214, 215).

FOXO1’s activity is controlled by post-translational
interventions, including acetylation, ubiquitination, and
phosphorylation. SIRT1 deacetylates FOXO1 and thus promotes
its nuclear localization and increases the FOXO-dependent
transcription of stress-response genes (216, 217). Specifically,
FOXO1 binds to the MDR1 gene promoter and increases MDR1
gene transcription.

Deleted in Liver Cancer-1 (DLC-1) is an established tumor
suppressor that has important roles in cell motility and signal
transduction pathways. Akt regulates DLC-1 activity by post-
translational modifications. SIRT1, by inhibiting the PI3K/Akt
pathway, could increase DLC-1 expression and thus promote
HCC cell motility (218).

HULC/USP22/SIRT1/Autophagy Pathway
Autophagy is involved in the chemoresistance of cancer cells
(219). Cisplatin, sorafenib, and 5-FU can induce autophagy in
HCC cells, thus decreasing apoptosis and chemosensitivity (220).
Long noncoding RNAs (lncRNAs) are transcripts involved in
regulating gene expression. lncRNA HULC (highly upregulated
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in liver cancer) is involved in HCC chemoresistance and
autophagy. In HCC biopsies and cell lines, SIRT1 and HULC are
both aberrantly upregulated.

Oxaliplatin and 5-FU upregulated HULC expression in HCC
cells. In turn, HULC strongly increased USP22 protein levels and
promoted SIRT1 deubiquitylation, consequently decreasing the
UPP-mediated degradation of SIRT1 and increased its protein
stability. miR-6825-5p, miR-6886-3p, and miR-6845-5p bind
to the 3′UTR region of USP22 mRNA and thus decrease its
levels. HULC downregulates the abovementioned miRs and
strongly upregulates USP22. HULC-induced SIRT1 upregulation
enhanced the deacetylation of key autophagy components such
as Atg7 and Atg5 and triggered autophagy, which decreased
HCC chemosensitivity. In summary, the HULC/USP22/SIRT1
pathway induces protective autophagy and decreases HCC
chemosensitivity. In vivo knockdown of HULC or SIRT1
sensitizes HCC to oxaliplatin. Thus, combining chemotherapy
with HULC or SIRT1 inhibitors in MDR HCC is a therapeutic
option that needs further exploration (see Table 2).

Cambinol and EX-527
EX-527 and cambinol are cytotoxic to and trigger apoptosis in
both 2D and 3D HCC cultures (42). Cambinol and EX-527 are
SIRT1 inhibitors with antitumor effects that decrease MDR1
mRNA expression in a p53 status- and dose-dependent manner.
This suggests that their administration and compatibility with
other chemotherapeutics should be adjusted according to the
particular genotype of the HCC treated (221).

Cambinol or EX-527 decreased SIRT1 activity and protein
levels and thus increased apoptosis, reduced cell migration, and
decreased the growth and viability of HCC cell spheroids (60,
126). EX-527 increased the acetyl-p53/p53 ratio in HCC cells
and promoted apoptosis. Surprisingly, cambinol decreased the
acetyl-p53/p53 radio in Huh7 cells, and increased p53 protein
levels. The reason for this discrepancy and the consequences
of cambinol on p53 acetylation should be further explored in
multiple HCC models. However, both Ex-527 and cambinol
decreased FOXO1 expression and increased FOXO1 acetylation,
which consequently decreases P-gp in 2DHCC cultures.Whether
this reduces chemoresistance should be further explored in HCC
spheroids or in vivomodels.

SIRT1 downregulation suppresses MRP1 and increases
intracellular concentration of Adriamycin in MDRHCC.
Downregulating SIRT1 via shRNA decreases MRP3 and MRP1
protein levels. However, the effects of cambinol and Ex-527 on
those proteins in HCC have not yet been explored.

Sorafenib
Sorafenib is used in the treatment of advanced HCC. Notably,
HCC cells resistant to sorafenib showcased increased MRP3 and
P-gp expression. Thus, combining cambinol or EX-527, which
downregulates P-gp and MRP3 in HepG2, with conventional
chemotherapeutics may offer new treatment options against
MDRHCC. Surprisingly, cambinol and EX-527 induced MRP3
and P-gp expression in Huh7 cells. Since HepG2 are p53 WT
while Huh7 are p53mutant, it was suggested that this may at least
partially account for the discrepancy.

Therapy response may depend on p53 status, which
appears to influence the expression of ABC transporters in
MDRHCC. Therefore, the p53 status of each HCC has to be
considered when evaluating for susceptibility to chemotherapy.
This undermines the importance of characterizing the
chemosensitivity of multiple HCC types and personalizing
treatment accordingly.

USP22/SIRT1/AKT/MRP1 Signaling
Pathway
Ubiquitin-specific protease 22 (USP22) is part of a subfamily
of deubiquitinating enzymes and a CSC marker. USP22 is
exceedingly expressed in some multidrug resistant human
HCC cell lines (MDRHCC) where it decreases sensitivity
to 5-fluorouracil (5-FU), doxorubicin, and methotrexate;
specifically, it reduced the intracellular concentration of
doxorubicin by promoting efflux pump activity and inhibited
5-FU-induced apoptosis. Similarly, SIRT1 expression in
MDRHCC decreased intracellular doxorubicin concentrations
and promotes resistance to 5-FU.

Inhibiting USP22 in MDRHCC strongly decreased ABCC1
expression [encodes MRP1 (resistance-associated protein 1)]
and thus increased intracellular doxorubicin concentrations, but
only dimly influenced ABCB1 expression (encodes P-gp). Thus,
UPP22 may predominantly induce MDR viaMRP1.

USP22 deubiquitinated SIRT1 (222, 223) and thus increased
SIRT1 protein levels, which deacetylated and thus activated the
PI3K/AKT pathway (224) and consequently increased MRP1s
expression (225), which promoted MDR in HCC. However,
this mechanistic chain needs to be further validated by other
experiments. In 168 HCC biopsies, the protein expressions
of MRP1 and USP22 were strongly correlated. Inhibiting the
PI3K/AKT pathway in MDRHCC suppressed MRP1’s expression
and promoted 5-FU-induced apoptosis (226). SIRT1 inhibition
increased the sensitivity of MDRHCC to 5-FU and increased
intracellular concentration of doxorubicin. Simply put, USP22
may activate the SIRT1–AKT–MRP1 pathway and consequently
promote MDR in human HCC cells (226). Future studies should
explore the relationship between USP22 and other proteins
involved in MDRHCC such as MRP1 and cytochrome P450,
which is involved in the hepatic metabolism of xenobiotics.

SIRT1–YAP Signaling Pathway
SIRT1 stimulated the transcription of MKK3 and Yes-associated
protein (YAP), which in turn promoted the nuclear localization
of p38. SIRT1 activated p38 and consequently promoted HCC
development (44). In HCC cells, SIRT1 expression activated
YAP2 transcriptional activity and also accentuated the interaction
between YAP2 and the transcriptional cofactor TEAD4, and thus
promoted the transcription of their downstream targets, which
consequently accelerated HCC cell growth and survival. SIRT1
deacetylates YAP2 both in vitro and in vivo, which upregulated
the YAP2/TEAD4 axis and promoted HCC cell proliferation (60).

Treatment with cisplatin accentuated the interaction between
SIRT1 and YAP2 and promoted the expression of the
YAP2 downstream genes. As a response to cisplatin, YAP2
translocates to the nucleus where it is deacetylated by SIRT1,
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TABLE 2 | Therapeutic substances that interfere with SIRT1-related pathways in HCC.

Medication Targeted signaling

pathways and biological

processes

Effects on HCC Type of study References

Oxaliplatin and 5-FU HULC-USP22-SIRT1 ↑Autophagy

↑HCC chemosensitivity

in vivo (125)

EX-527 and cambinol SIRT1 inhibitors ↑Apoptosis

↓Cell migration

↓ Tumoral growth

in vivo (126)

Metformin ↑AMPK activity

↑Acetylated p53 and p21

↑Senescence

↑Apoptosis

↓Proliferation

in vitro and in vivo (127)

Gallotannin ↑AMPK phosphorylation

↓SIRT1 expression

↓Colony formation

↑Cytotoxicity

↑Senescence

in vitro and in vivo (128)

Ku0063794 and Everolimus ↓SIRT1 expression ↓Proliferation

↓Autophagy

↑Apoptosis

in vivo, ex vivo, and in vitro (129)

2-Unsubstituted

4,11-diaminoanthra[2,3-

b]furan-5,10-dione

derivatives

↓tNOX

↓Intracellular NAD+

↓SIRT1

↓Acetylated p53

↑ Apoptosis

↓Cell migration

in vitro (130)

which consequently protects HCC cells from cisplatin-induced
apoptosis. Overall, both YAP2 and SIRT1 confer protection
against cisplatin (60). Silencing SIRT1 inhibited the nuclear
translocation of YAP2 and promoted sensitivity to cisplatin.

Since SIRT1 inhibition induced cytostatic effects in HCC
(42), combining it with cytotoxic chemotherapeutics should be
considered. Moreover, SIRT1 inhibiting compounds used for the
purpose of treating HCC should selectively target tumoral SIRT1
and spare normal hepatocytes in order to preserve liver function.

AMPK–SIRT1–p53 Signaling Pathway
By targeting transcription factors such as p53 and FOXO,
SIRT1 suppressed cellular differentiation and senescence and
may promote HCC growth (227). Mutual regulation ensues
among p53 and SIRT1. SIRT1 deacetylates and inactivates p53
while acetylated p53 downregulates the translation of SIRT1 via
miR-34a (142). Silencing SIRT1 in HCC cell cultures increases
acetylated p53 and promotes growth arrest (41). This relationship
is further validated by nicotinamide (NAM), a SIRT1 inhibitor.
In mice treated with NAM, p53 presented increased acetylation,
which led to decreased HCC oncogenesis. Importantly, the
protective effects of NAM were attributed to the inhibition of
SIRT1, not to NAM’s antioxidant effect.

In HCC cells, SIRT1 deacetylates p53, thus repressing cellular
senescence and apoptosis, and promotes tumorigenesis (63,
228). SIRT1 knockdown in HCC cells increased acetylated
p53, decreased proliferative activity activated senescence, and
induced a more differentiated cellular state (26, 42). However,
the response to silencing SIRT1 may depend on the p53
status of HCC cells. Silencing SIRT1 in p53 WT HepG2 cells
increased AMPK phosphorylation, reduced phospho-mTOR,
and promoted G1 phase arrest (41, 63). However, silencing SIRT1
in p53 mutant HCC decreased phospho-AMPK and increased
mTOR phosphorylation, which stimulated HCC tumorigenesis.
Moreover, some reports indicate that inhibiting SIRT1 prevented

cell proliferation irrespective of the p53 status of the HCC cells
(42). The dynamic between the p53 status of HCC cells and how
it affects SIRT1 inhibition is not yet clear.

5′ AMP-activated protein kinase (AMPK) is an enzyme
implicated in glucose and fatty acid uptake; its activation
stimulates hepatic fatty acid oxidation, ketogenesis, and
lipogenesis (229). AMPK is a downstream target of tumor
suppressor LKB1. The LKB1–AMPK pathway is vital for the
suppression of mTOR signaling. mTOR signaling is overactive
in multiple solid tumors and modulates cell proliferation (230).
The AMPK-α2 subunit was shown to be strongly downregulated
in HCC compared with the corresponding normal hepatic tissue
and was correlated with poor patient prognosis.

In HCC cells, AMPK-α2 and SIRT1 are co-localized in the
nucleus where they directly interact. AMPK phosphorylates
SIRT1 at Thr344 and thus inhibits its deacetylase activity and
substrate binding capacity and consequentlymaintains acetylated
p53 levels, which promote apoptosis. Thus, AMPK promotes p53
acetylation and exerts antioncogenic functions in HCC (231).

Metformin
Inducing senescence may be a viable strategy for the chronic
management of HCC, since it has fewer negative consequences
than therapies that activate apoptosis (232, 233).

Metformin is a drug primarily used for the treatment
of type 2 diabetes; it also has antitumoral effects in HCC
(127, 234). A low dose of metformin strongly suppressed
HCC growth in vivo and in vitro by inducing senescence,
inhibiting proliferation, and activating apoptosis (127, 233).
Metformin promoted phosphorylation and activated AMPK,
which in turn phosphorylated SIRT1 and disabled its enzymatic
activity. Consequently, levels of acetylated p53 and p21 were
increased ensuing HCC senescence (127). Additionally, AMPK
phosphorylation induced bymetformin inactivatedmTOR in p53
mutant HCC and negatively regulated oncogenesis (63). These
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results need to be replicated with a larger variety of HCC cell
lines (233).

However, both metformin and AMPK modulate NAD+
metabolism and can induce SIRT1 activity (127, 235, 236).
Notably, SIRT1 can be phosphorylated at multiple sites that
promote different phenotypes. Nevertheless, in HepG2 cells
cultured in a high glucose medium, metformin activated both
AMPK and SIRT1 and amplified p53 deacetylation contributing
to p53 degradation (237). Specifically, metformin primarily
targeted AMPK, which activated SIRT1. In this model, both
AMPK and SIRT1 were required for metformin-induced p53
degradation (237).

Gallotannin
Gallotannin is a plant-derived compound with anticancer effects
(125). Treating HCC cells with gallotannin in vitro resulted
in reduced colony formation, amplified cytotoxicity, increased
senescence, impaired autophagy, upregulated p21, and promoted
cell death. In a mouse xenograft model, gallotannin decreased
tumor growth (128). Mechanistically, gallotannin activated
AMPK phosphorylation and decreased SIRT1 expression in both
in vitro and in vivoHCC models (128).

Everolimus and Ku0063794
The PI3K/AKT/mTOR signaling pathway is involved in the
development of multiple malignancies, including HCC (129).

Abnormal mTOR signaling is present in up to 48% of HCC
patients and is associated with a meager prognosis. Everolimus is
an mTOR complex 1 (mTORC1) inhibitor. However, targeting
both mTORC1 and 2 is pivotal for evading drug resistance
(129). Administering everolimus with Ku0063794, an mTORC2
inhibitor, produced a potent antioncogenic effect in HCC cells
(130). mTOR and SIRT1 both regulate autophagy (130). SIRT1
may promote autophagy via deacetylating transcription factors
such as E2F1, FOXO1, histone H4, and p53, which subsequently
induce autophagy-related genes (238). Moreover, inhibiting
mTOR can also activate autophagy (130, 239).

In HepG2 cells, combining Ku0063794 with everolimus
decreased autophagy and inhibited SIRT1 expression, whereas
individual monotherapy with either of the compounds did not
inhibit SIRT1 and promoted autophagy (130, 240). Blocking
autophagy stimulated apoptosis, decreased proliferation, and
inhibited SIRT1 expression. This suggests that autophagy may
promote survival in HCC cells (130).

Overall, combined use of Ku0063794 and everolimus
downregulated autophagy by decreasing SIRT1 and consequently
promoted antioncogenic effects in HepG2 cells (130). This
experiment should be further validated with other HCC cell lines
and by using spheroids or in vivo models. Moreover, testing
whether mTORC1/2 inhibitor AZD8055 also inhibits autophagy
would further validate the result obtained with Ku0063794 and
everolimus in HepG2 cells (130).

In summary, in vivo, ex vivo, and in vitro results with
HCC cells confirmed that combined Ku0063794 and everolimus
therapy was superior to administering either compound alone
as indicated by their increased reduction of cell invasion,
migration, proliferation, and increased EMT inhibition (240).
EMT inhibition was partly produced by decreased SIRT1 levels.

Thus, combining everolimus with the mTORC1/2 inhibitor
Ku0063794 provides potent anticancer effects (240).

tNOX-SIRT1-p53
First-line HCC treatment compounds such as doxorubicin are
associated with systemic toxicity, inefficacy, and chemoresistance
(10, 11). Recently, new anti-cancer compounds with high
antiproliferative activity against chemoresistant cells have been
developed (241, 242). The human tNOX gene encodes for
a protein that is expressed in multiple solid malignancies
where it is crucial for cellular migration and proliferation.
tNOX converts reduced NADH to oxidized NAD. Importantly,
tNOX inhibition reduces intracellular NAD concentration, which
influences SIRT1 function (241, 243, 244). Suppression of tNOX
by a multitude of agents activated apoptosis and diminished
malignant cell growth (244, 245).

Two 2-unsubstituted 4,11-diaminoanthra[2,3-b]furan-5,10-
dione derivatives promoted apoptosis in human HCC cells in
a tNOX-dependent manner. In p53 WT HCC cells, these anti-
cancer compounds bound and downregulated tNOX, which
decreased intracellular NAD, and consequently suppressed SIRT1
activity. Decreased SIRT1 activity led to increased p53 acetylation
and activation, which upregulated its downstream target, pro-
apoptotic Bak and thus increased apoptosis (246). Augmented
p53 acetylation promoted by SIRT1 inhibition was also associated
with activation of PUMA, which upregulates Bak and prompts
apoptosis (246, 247).

tNOX reduction reestablished non-cancer phenotypes, such as
decreased migration, and amplified sensitivity to stress-induced
apoptosis. Accumulating evidence suggests that suppressing
tNOX may improve patient prognosis (246, 248–250).

c-Myc was demonstrated to be an HCC initiating oncogene
(251). C-Myc expression is associated with HCC progression
and poor patient prognosis (26, 252). In HCC cells, SIRT1
induced the expression of oncogenic c-Myc, which in turn
increased β-catenin mRNA and protein expression and amplified
the transcription and expression of the β-catenin target genes
survinin and cyclin D1. Therefore, SIRT1 overexpression
promoted oncogenesis via c-Myc activation (39, 246) and
protected against p53 induced apoptosis (26).

c-Myc was shown to increase SIRT1 through transcriptional
and post-transcriptional regulation. The SIRT1-c-Myc axis
impacts cellular growth; however, the result of this interaction is
still controversial (253–255).

CONCLUDING REMARKS

HCC accounts for immense mortality rates worldwide and
poses difficult therapeutic problems. The therapies used today
are inefficient at managing late-stage disease or metastasis.
A better understanding of the underlying mechanisms that
promote HCC development, metastasis, and chemoresistance
may enable the development of more efficient therapeutic
protocols. SIRT1 mediates LCSCs stemness, HCC metastasis,
and chemoresistance. Targeting SIRT1 either to hinder the
progression and metastasis of HCC or to decrease LCSCs
stemness may be a viable therapeutic option. Directly
inhibiting SIRT1 viamiRs, exogenous compounds, or combining
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conventional chemotherapeutics with tumor-selective SIRT1
inhibitors may improve treatment outcomes. However, a better
understanding of the biology of SIRT1 in HCC is needed in
order to efficiently inhibit related pathways and constrain
HCC development.
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