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Predictions about the future knowledge of the “complete” food metabolome may be

assayed based on the laws of Moore and Kurzweil, who foresee a technological

development on exponential behavior. The application of these laws allows us to

extrapolate and predict roughly when each single metabolite in foods could be (1) known,

(2) detectable, and (3) identifiable. To avoid huge additional uncertainties, we restrict the

range of metabolites to those in unprocessed foods. From current metabolite databases

and their coverage over time, the conservative number of all considered food metabolites

can be estimated to be 500,000, predicting them being known by around 2025.

Assuming these laws and extrapolating the current developments in chromatography and

mass spectrometry technology, the year 2032 can be estimated, when single molecule

detection will be possible in “routine” mass spectrometry. A possible forecast for the

identification of all food metabolites, however, is much more difficult and estimated at

the earliest in 2041 as the year when this may be achieved. However, the real prediction

uncertainty is extreme and is discussed in the essay presented here.

Keywords: metabolome databases, analytical chemistry, high resolution, LC-MS sensitivity, structure

identification, single molecule detection, dark matter

INTRODUCTION

Definition of Foodome
In the present “omics” era, one may believe based on literature and instrumental developments
that a comprehensive picture of metabolites is known and can be analyzed. However, upon closer
inspection and despite immense technological developments, the major fraction still remains
unknown. The question arises as to whether a forecast is possible and, if so, when a real
comprehensive picture of food metabolites could be available.

Based on the definition of “foodomics” (1), we recently specified “foodome” as being the
“collection of all compounds present at a given time in an investigated food sample and/or in a
biological system interacting with the investigated food” (2).

As a fraction of the foodome, food metabolome is the set of metabolites in food and is supposed
to be accessible using state-of-the-art metabolomics platforms.

The food metabolome has been investigated in a targeted way since the past decades, but
the last years have seen an increasing number of efforts to investigate the metabolome by

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2020.00009
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2020.00009&domain=pdf&date_stamp=2020-02-28
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles
https://creativecommons.org/licenses/by/4.0/
mailto:michael.rychlik@tum.de
https://doi.org/10.3389/fnut.2020.00009
https://www.frontiersin.org/articles/10.3389/fnut.2020.00009/full
http://loop.frontiersin.org/people/153611/overview
http://loop.frontiersin.org/people/159956/overview


Rychlik and Schmitt-Kopplin Predictions in Food Analysis

non-targeted methods through applying current high-resolution
platforms. Among these, e.g., mass spectrometric detectors have
already been compared lately (2).

Besides the continuous efforts to increase the mass exactness
and resolving power of a mass spectrometer (MS), developments
have been very successful in decreasing the limits of detection
(LOD) down to the lower nanogram-per-kilogram level or
beyond. The whole analytical pipeline will determine the
sensitivity limitation of an analytical approach—from sample
conditioning, extraction, and separation toward ionization
source to ion manipulations and detections [in the case of liquid
chromatography (LC)/MS]. Within all targeted metabolomics
platforms, the triple quadrupole (QQQ) mass detectors are now-
a-days still ahead in sensitivity compared to time-of-flight (TOF)
detectors for the same food sample prepared identically.

Food metabolites are present in food over a wide dynamic
range of concentration (from attomolar to molar), and thus
their possible detection depends on their individual amount in
the considered food, their possible selective isolation out of the
matrix in chromatography, their selective ionization potential
in the source (and suppression effects with the matrix), and
the sensitivity of the mass detector in the mass range observed.
Well-known metabolites thus might not be detected by non-
targeted food metabolomics although they are present. For
instance, the whole group of folate vitamers mostly is missing in
a non-targeted study (3), but in the validation of targeted folate
methods, we could hardly find any blank natural material that is
free from folates (4). Moreover, in our studies on the metabolome
of theAlternaria fungi, more than 50% of the primarymetabolites
known in databases are still missing (5).

Only a minority of instrumentally detected molecules are
found in databases, not mentioning the isobars and isomers that
often are not resolved in the analytical approaches (6).

These findings point to the existence of different categories
of “unknown” metabolites or different kinds of metabolic “dark
matters” (7).

We see currently a fast development of the analytical
equipment (8), and the increase in sensitivity and MS resolution
appears to be growing exponentially, which indicates the
hypothesis of applicability of the Laws of Moore and Kurzweil
in describing the general development of technology over time.
In the early 1960’s, G.E. Moore hypothesized that the number
of transistors in an integrated circuit doubles every 2 years (9),
and based thereon, in 1999 Ray Kurzweil proposed the Law of
Accelerating Returns.

According to this law, the technological advancement will lead
to “... a future period during which the pace of technological
change will be so rapid, its impact so deep, that human life will
be irreversibly transformed” (10). This period corresponds to the
“singularity” or, more precisely, the “technological singularity.”

We hypothesize in this essay that all of these considerations
mentioned above lead to the assumption that the laws of
Moore and Kurzweil are also applicable to current metabolomics
approaches and so to food analysis. Therefore, the application
of these laws may allow us to predict roughly when all
metabolites in foods will be (1) known, (2) detectable,
and (3) identifiable. These predictions are the aims of the

present viewpoint. It has to be highlighted that we limit
our hypotheses to the development of mass spectrometry
with its superior sensitivity and versatility, whereas other
spectrometric methods are out of the scope of this study and
certainly modulate the outcome in describing the chemical
space (11).

UNDERLYING DATA AND CATEGORIES
FOR PREDICTION

Predicting the Magnitude of the
Metabolome
If we want to predict the time when the whole food metabolome
will be identified, we have to estimate first the approximate
number of metabolites that we expect to be identified.
Considered herein as “metabolites” are only those direct
biological small molecule metabolites of living edible systems,
i.e., plant, animal, and microorganism sources—not considered
are compounds of chemical abiotic origin or from chemical
transformations/recombinations (e.g., hydrolysis, thermolysis,
Maillard reaction). For the estimation of these compounds, a look
into contemporary metabolite databases is the first step. Several
compound databases from different organizations or consortia
have been published with different foci in the last decade. A short
overview about the number of compounds, focus, and publisher
or curator is given in Table 1.

The number of compounds included in these databases
ranges from a few thousands (GMD) to almost 100 million
(PubChem)—the sources ranging from primary metabolites
in certain species like humans to all man-made chemical
species, respectively. In principle, all of these compounds
may be occurring in foods, but the majority of them, being
xenobiotica, have very low probability of appearance. For an
estimation of the most probable metabolites generally to be
expected in foods, it is straightforward to exclude, in a first
approximation, all xenobiotica. Moreover, from recent studies
on non-enzymatic browning during thermal processing of
foods, also termed Maillard reaction, it became obvious that
this reaction network results to several tens of thousands
of additional metabolites that have started from only a few
reactive compounds (11–14). Apart from these, many further
reactions of food metabolites like thermolysis, hydrolysis, or
the plethora of lipid peroxidation reactions can be assumed
to increase the number of metabolites tremendously. In order
to keep the numbers manageable, it appears straightforward to
just focus on the endogenous compounds of the primary and
secondary metabolism of plants, animals, and microorganisms
occurring in non-processed foods. This also includes their so-
called phase 1 and 2 metabolites. Similarly like not considering
metabolites arising from processing such as from Maillard
reaction, PubChem, ChemSpider, and Metlin should not be
included as they mainly contain xenobiotica. A much better
estimation is based on the ∼20,000 compounds in KEGG or the
currently updated human metabolome database (15) containing
114,000 compounds. For the plant metabolome, more than
200,000 compounds have been estimated (16). Regarding lipids,
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TABLE 1 | Examples of important metabolite databases.

Name/publisher Focus No. of compounds As of Reference/webpage

PubChem All human-made chemical

compounds

96,110,535 20.08.2019 https://pubchem.ncbi.nlm.nih.gov/

ChemSpider Chemical compounds from diverse

data sources

>71,000,000 12.01.2020 http://www.chemspider.com

Metlin Endogenous metabolites and

xenobiotica

958,000 2017 https://metlin.scripps.edu

Human metabolome database

(HMDB)

Human metabolites including

conjugates

114,000 2018 http://www.hmdb.ca/

MassBank High-resolution MS database of

metabolites including MS/MS spectra

76,418 12.01.2020 https://massbank.eu/MassBank/Index

KNApSAcK, Nara Institute of

Science and Technology

Plant metabolite database 51,179 29.09.2019 http://www.knapsackfamily.com/

knapsack_jsp/top.html

LIPID MAPS Lipids 43,636 10.07.2019 http://www.lipidmaps.org/resources/

databases/index.php?tab=lms

Kyoto Encyclopedia of Genes and

Genomes (KEGG) database

Metabolites, reactions, enzymes, and

genes related to metabolic pathways

18,607 21.08.2019 https://www.genome.jp/kegg/

Golm Metabolome Database

(GMD)

GC-EI MS database on plant

metabolites

2,222 (metabolites) 17.02.2017 http://gmd.mpimp-golm.mpg.de/

dataentities.aspx

the most comprehensive database LIPID MAPS lists around
44,000 compounds with in-silico predictions running into the
hundreds of thousands (17). Some entries of these databases
are overlapping, but the extent of overlap is hard to estimate
(18). In order to follow a rather worst-case scenario, assuming
that there are possibly additional 100,000 still hitherto unknown
metabolites, a rough estimation for our most conservative
prediction may be 500,000 as the number of all relevant food
metabolites. From this rough deduction, the magnitude of
uncertainty is obvious and the true number may range from half
of this figure to its double, i.e., some hundreds of thousands of
additional possible and conceivable metabolites not covered yet.

The next step and assumption for our prediction will be the
course of time in which these compounds will be discovered.
As outlined by Kurzweil (10), many developments, particularly
in computing and data handling, follow an exponential
evolution. When having a short look at the developments of
the databases mentioned above, this time evolution has been
reported for HMDB in 2018 and is visualized in Figure 1A.
It is evident that, between the years 2007 (HMDB 1.0) and
2018 (HMDB 4.0), the number of compounds increased in
this predicted exponential manner (15) and can be further
projected accordingly into the future when assuming the Law of
Accelerating Returns (10). A further information from HMDB
can be concluded, i.e., (i) the number of predicted compounds,
(ii) those that have been detected, and (iii) those that have
been quantified. This indicates several categories of “unknowns”
or “dark matters,” which will be further hypothesized and
outlined below.

Predicting the Performance of Analytical
Equipment
In order to detect, identify, and quantify the predicted number
of metabolites, the next assumption for our prediction is the

forecast on how the performance of the analytical equipment
in spectroscopy, spectrometry, and separation sciences, as
the analytical pillars, will develop (11). In this respect,
we first have to differentiate between targeted and non-
targeted metabolomics platforms as outlined above. Second,
we have to compile the relevant key performance indicators
(KPIs) of the instrumentation such as sensitivity of detection,
chromatographic resolution, mass accuracy or MS resolution,
and their development over time. For both targeted and non-
targeted metabolomics, the primary KPI is the sensitivity of
detection, and compiling these data for all analytical approaches
would be challenging. As each analytical technology has its own
criteria to document sensitivity, for this review, the evolution of
sensitivity already published for one analytical platform (2) has
been continued.

For instance, development in the sensitivity of mass
spectrometric equipment is referenced for the compound
reserpine as the signal intensity for a given amount injected into
the MS. The ionization efficiency for any other chemical can
be different by up to many multitudes and makes it difficult to
generalize, but a further assumption to extend our hypothesis
will be that the limit of detecting reserpine refers to a constant
threshold of signal intensity, which means that the limit of
detection is decreasing over time as revealed in Figure 1D.

It is again obvious that the development follows an

exponential behavior over the last 8 years and can be predicted

to follow this path in the future when assuming the Law

of Accelerating Returns set up by Kurzweil. Considering

non-targeted LC-QTOF instrumentation, a certain gap in
sensitivity is obvious when compared to LC-QQQ, but the

equivalent development of increasing sensitivity over time can be

assumed. Again it has to be stressed that, within manufacturers’

equipments, we will find different performances in sensitivity,
but it can be assumed that all of them fall in the same order of
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FIGURE 1 | Evolution and prediction of predicted, detected, and identified metabolites over time. (A,B) The number of predicted and identified compounds in the

HMDB versions 1.0 (2007) and 4.0 (2018) (15) increased in the given time range in a predicted exponential manner and can be further projected accordingly into the

future to reach the number of 500,000 metabolites comprising the relevant metabolites in foods, excluding xenobiotica and process-generated compounds. The

fractions of not-predicted and not-identified metabolites are termed dark matter I and dark matter III, respectively. (C,D) The evolution of signal sensitivity over time in

contemporary LC-QQQ MS instrument in (D) is translated into a limit of detection for the given injected amount of molecules, here for the reference compound

reserpine. Under the assumption that the limit of detecting reserpine refers to a constant threshold of signal intensity, the limit of detection has been decreasing over

time. The development follows an exponential behavior over the last 8 years and can be predicted to follow this path in the future until single molecule detection is

reached. As the sensitivity of non-targeted LC-QTOF MS can be expected to be one order of magnitude lower than that of the LC-QQQ, single molecule detection of

the former will be reached later. The respective year projected to the current state of detected molecules in HMDB and the estimation of the further evolution to detect

the expected number of 500,000 metabolites result in “dark matter II,” which is equivalent to the non-detected metabolites over time.

magnitude; otherwise, they would not have been competitive in
the market up to present.

The next assumption refers to the target sensitivity that the
equipment would have to achieve in our prediction. In this
respect, a comprehensive detection is required, i.e., a metabolite
should be detectable if only one molecule is present in the
respective amount of food. This is equivalent to the requirement
of single molecule detection. It is clear that the currently
detectable few femtograms of reserpine still equals around a
few million molecules, but this number can be expected to
exponentially decrease according to the trend of the last years (see
below) and the assumed Law of Accelerating Returns.

A further KPI to consider would be mass spectrometric
resolution, and the exponential increase for TOF instruments has
already been reported by Bristow (19).

When comparing the existing lack in sensitivity and resolution
of contemporary instruments, the requirement to bridge the
sensitivity gap of more than six orders of magnitude toward
single molecule detection on the basis of reserpine appears
more challenging than the necessity to resolve all metabolites.
The resolution currently achieved by the Orbitrap-type of
instruments is in the several hundreds of thousands, and 21
Tesla FTICR-MS instruments may already reach up to 50,000,000
and this resolution appears higher than currently needed for
food metabolites. Moreover, analytical resolution can also be
increased in systems chemical analytics with hyphenations of
mass spectrometry with separation sciences or spectroscopy
equipments in various dimensionality (i.e., LC-HRMS-NMR or
GCxGC-HRMS) (11, 20, 21). Sufficient resolution is already or
will soon be achieved within the time range until single molecule
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detection will be available; single molecule imaging is already
reached with techniques such as atomic force microscopy.

Predicting Analytical Singularity
For this prediction, assuming several hypotheses, the time
evolution of the developments in detecting, identifying, and
quantifying the metabolome has to be followed up in the future.
The target number of metabolites would be hypothetically set at
500,000 in the present study to enable a first evaluation, and when
projecting the development of the predicted metabolites in the
HMDB, the progress displayed in Figure 1B can be assumed with
its exponential projection asymptotically reaching the number
of 500,000 in ∼2025. This means that, based on such a model,
there should no longer be any unknown relevant metabolites
in 2025, which appears rather unrealistic when considering the
current low percentages of the assigned metabolites in metabolic
studies. Until then, these currently unknown compounds may be
assigned to the first category of “dark matter,” i.e., “unknowns” or
“dark matter I” (Figure 1B).

The next prediction refers to the time when all of these
metabolites will be detectable by analytical equipment as resolved
features, and this requires the projection of the non-targeted
metabolomics to single molecule detection. This is outlined in
Figure 1D, which projects the exponential development of the
current LOD of 6 × 10−18 mol (Table S1) to the LOD being
one molecule, i.e., 1.66 × 10−24 mol. Assuming this model,
single molecule detection on routine MS equipment should be
feasible by around 2032. It has to be mentioned that single
molecule detection is already available in single particle mass
spectrometry (22) or in modern atomic force microscopy (23)
with which even the aliphatic or aromatic rings can be visualized.
In conclusion, the second category of dark matter would refer to
“non-detected” or “dark matter II” and is indicated in Figure 1C.
When comparing “dark matter I” with “dark matter II,” it has
to be kept in mind that the detected molecules may be either
unknown or known, i.e., not being present in databases and
belonging to “dark matter I” or being present in databases and
belonging to not-“dark matter I,” respectively. Therefore, “dark
matter I” is not a complete subset of “dark matter II.”

Several weaknesses of this prediction have to be admitted:
first, the possibility of single molecule detection does not
necessarily imply that all single molecules in a complex
food extract will be detectable due to ionization selectivity
in mass spectrometry, high dynamic ranges in abundances,
presence of enantiomers, etc. As we have to consider ionization
suppression for almost all ion sources, the current procedure
to circumvent this would be dilution, but this would require
an even higher sensitivity. This means that the time point
to achieve single molecule detection would be even later, if
ever. Apart from general sensitivity considerations, we still
have to keep in mind that contemporary MS instrumentation
may hardly detect the classes of compounds that are hardly
ionizable, and uncovering these will require novel kinds of ion
sources. Multiple ionization sources may be useful to cover
a broader chemical range and to observe more compound
classes. We showed, e.g., in a study with FTICR-MS of
complex organic mixtures involving ESI, APPI, and APCI in

both positive and negative ionization modes that electrospray
ionization in positive mode covers only 30% of the total
observable compositional space involving all modalities (6).
Moreover, the need to differentiate between all stereoisomers
points to the need of novel methods or chromatographic systems
for enantioseparation.

Predicting the Identification of the Whole
Food Metabolome
Moreover, one molecule appearing as a resolved analytical signal
in the analysis does not necessarily mean that the compound
is already identified in structure. In contrast to NMR, MS
will only provide the elemental formula and, therefore, allow
the molecule to be assigned only tentatively to an unequivocal
chemical structure. Moreover, there will still be ambiguity about
the identity of the compound even when MS/MS fragmentation,
for instance, is applied and gives further evidence about the
putative structure. This limitation directly leads to the definition
of a third level of uncertainty, i.e., the “non-identified” or “dark
matter III.”When comparing “dark matter III” with “dark matter
I” and “dark matter II,” it is clear that identified molecules are
necessarily known and detected, i.e., members of “dark matter
III” are either components of “dark matter I” or “dark matter II”
or of both.

For unraveling “dark matter III,” the prediction is even more
difficult and more subject to high fluctuations as the direct
projection would require data on developments of either all
metabolites’ extraction, clean-up, and spectroscopic structural
assignment by, i.e., NMR or chemical synthesis (if possible
in a reasonable time) and commercial availability to that
date. However, a rather coarse prediction is possible from
the already mentioned HMDB database and here from the
number of identified and quantified metabolites developing over
the last decade (green curve in Figure 1A). These numbers
are much smaller than those of the other categories, and
it will take much longer to completely unravel dark matter
III. If the projection is assumed to be a combination of
the current exponential evolution and to run in parallel
with the projection of dark matter I and II, the time
point when all food metabolites will be assignable in food
samples could be expected in this model by around 2041
(Figure 1B).

DISCUSSION

The upmost weakness of the prediction presented here is
its ambiguity and requires an intense uncertainty assessment
and let us play with numbers. This starts already with the
uncertainties referring to the number of metabolites up to
the development of the unequivocally identified metabolites.
The assumed uncertainty of 50% of the existing number of
metabolites would already lead to a time range from 2022 to
2028, respectively, for unraveling dark matter I. The speculated
uncertain number of 500,000 different metabolites is also
relatively conservative, and assuming a number of one million
would already lead to 2028 for revealing dark matter I and
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2060 for dark matter II. This is already without considering
the plethora of all conceivable metabolites based on chemistry
rules that can reach extremely high numbers (11). For instance,
a molecule consisting only of carbon, hydrogen, and oxygen
with the formula CnH2nOn at a molecular mass of 500 would
have theoretically around 1016 calculated possible isomers—
and with the formula CnHnOn an even higher number of
1020 isomers, respectively (11). The magnitude of all possible
reactions, e.g., during processing or storage (abiotic degradations
such as reductions/oxydations, condensation reactions, and
polymerizations), is not even counted in this very conservative
hypothetical assay. The sensitivity differences between the same
type of instrument from different manufacturers may cover
one order of magnitude, and the necessity to further dilute
the extracts to overcome ionization suppression has an impact
on our calculations and thus may expand the time range
for uncovering dark matter II (i.e., single molecule detection)
from 2029 to 2038. For dark matter III, the time prediction
may range from a projection running in parallel with the
best-case scenario for dark matter II, i.e., around 2035, to a
flat exponential projection of quantified metabolites in HMDB
from the database’s last update approximating the number of
500,000 not revealed before the end of the twenty-first century.
For this development, the law of Kurzweil obviously does
not apply within the observed time period. This exemplifies
the well-known proverb attributed to Niels Bohr who said
that “prediction is very difficult, especially about the future”
(24) and thus sets the real limitation of our wizzard’s crystal
ball’s reading.

From all of the considerations mentioned above, it seems clear
that, in particular, three bottlenecks have to be circumvented
before the whole food metabolome can be unraveled: (i)
coverage and curation of databases, (ii) sensitivity and
resolution of analytical equipment, and (iii) unequivocal
metabolite identification.

These issues have to be addressed by the food analytical
community, including researchers and developers at
academic institutions and instrument manufacturers. A
current target for the latter would be the development of
ultrasensitive and ultrahigh resolution equipment (in mass
spectrometry and multidimensional chromatography). We
hope that the law of Kurzweil will be applicable to all of
these methodologies.

Further aspects in foodomics involving the quantitation of
all of these metabolites have not been mentioned above. This

hopefully will be achievable sometime after “all” metabolites
have been identified as, with the availability of the needed
reference compounds or with the knowledge of unequivocal
analytical properties, targeted methods will be available within
the next decades.

Another aspect which has been often discussed with respect to
analytical development is the miniaturization of the equipment
with reduced need in sample amount and the consequent
reduction of analysis time. These properties can be expected to
also show a similar exponential evolution and would lead to fast,
portable, and selective sensors, the development of which is also
currently taking place. However, this prediction is out of the
scope of this perspective.

At present, all three dark matters exist concurrently and are
recognizable for any analytical chemist working inmetabolomics,
e.g., foodomics. In the further years, the follow-up of the
evolution in knowledge predicted for the three dark matters
mentioned herein, with the predictions presented here, will
indicate the validity of this perspective.

When comparing these predictions with those of the
singularity in artificial intelligence (AI) and human intelligence
predicted for 2045, it appears likely that by then we will have
unraveled at least dark matter I and dark matter II, and the latter
singularity may speed up the unraveling of the remaining dark
matter III. The help of AI may even have some unpredictable
effect on the speed of discoveries and unraveling of all dark
matter. Also, after singularity has been reached, the world as
we know it now may completely have changed in many other
different respects as well.
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