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An inverse correlation between vegetable consumption and the incidence of cancer

has long been described. This protective effect is stronger when cruciferous vegetables

are specifically consumed. The beneficial properties of vegetables are attributed to

their bioactive components like fiber, antioxidants vitamins, antioxidants, minerals, and

phenolic compounds. Cruciferous vegetables contain all these molecules; however, what

makes them different are their sulfurous components, called glucosinolates, responsible

for their special smell and taste. Glucosinolates are inactive biologically in the organism

but are hydrolyzed by the enzyme myrosinase released as a result of chewing, leading to

the formation of active derivatives such as isothiocyanates and indoles. A considerable

number of in vitro and in vivo studies have reported that isothiocyanates and indoles

elicit chemopreventive potency through multiple mechanisms that include modulation

of phases I and II detoxification pathway enzymes, regulation of cell cycle arrest,

and control of cell growth, induction of apoptosis, antioxidant activity, anti-angiogenic

effects, and epigenetic regulation. Nuclear erythroid 2-related factor 2 (Nrf2) and Nuclear

factor-κB (NF-κB) are key and central regulators in all these processes with a main role

in oxidative stress and inflammation control. It has been described that isothiocyanates

and indoles regulate their activity directly and indirectly. Today, the metabolic syndrome

(central obesity, insulin resistance, hyperlipidemia, and hypertension) is responsible for a

majority of deaths worldwide. All components of metabolic syndrome are characterized

by chronic inflammation with deregulation of the PI3K/AKT/mTOR, MAPK/EKR/JNK,

Nrf2, and NF-κB signaling pathways. The effects of GLSs derivatives controlling these

pathways have beenwidely described in relation to cancer. Changes in food consumption

patterns observed in the last decades to higher consumption of ultra-processed foods,

with elevation in simple sugar and saturated fat contents and lower consumption

of vegetables and fruits have been directly correlated with metabolic syndrome

prevalence. In this review, it is summarized the knowledge regarding the mechanisms

by which cruciferous glucosinolate derivatives (isothiocyanates and indoles) directly
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and indirectly regulate these pathways. However, the review places a special focus on

the knowledge of the effects of glucosinolates derivatives in metabolic syndrome, since

this has not been reviewed before.

Keywords: cruciferous, glucosinolates, isothiocyanates, indoles, metabolic syndrome, inflammation, Nuclear

erythroid 2-related factor (Nrf2), Nuclear Factor-κB (NF-κB)

INTRODUCTION

The aim of the present reviewwas to assess the current knowledge
about themechanisms through which isothiocyanates (ITCs) and
indoles derived from glucosinolates (GLSs) yield their biological
effects. The effects to GLSs derivatives related to cancer have been
extensively reviewed but have not been reviewed in relation to
metabolic syndrome (MetS), which is what the review is focused
on. Presented first are the factors that influence the amount of
GLSs consumed, such as plant concentrations conditioned by
growing, storage, and cooking conditions. Further is explained
the process by which they are absorbed and metabolized. Then,
the known biological effects and mechanisms through which
ITCs and indoles act are assessed. It should be noted that the
effects of ITCs and indoles have been studied mainly in relation
to cancer, both in cancer cell lines and in cancer studies of
animal models. However, it is necessary to point out that not
only the anticancer effects have been analyzed; their effects in
other situations are also mentioned because the purpose was to
highlight the biological mechanisms they regulate, which can
also be altered in other pathologies. Finally, it is focus on the
metabolic MetS (which is greatly influenced by diet and is a
major cause of death today) and analyzed the protective effects
of ITCs and indoles brought about by the regulation of pathways
previously described in relation to cancer prevention.

High consumption of vegetables and fruit has been
recommended widely for the primary prevention of major
chronic diseases such as type 2 diabetes (1, 2), coronary heart
disease (3, 4), and some cancers such as those of the esophagus,

larynx, stomach, colon and rectum, breast, lung, and bladder

(5, 6). However, not all studies have yielded consistent results

(7, 8). Some data show that not all vegetables have equal
protective efficiency. Schulz et al. (9) found no evidence of an
inverse linear association between total fruit and vegetable intake
and the risk of ovarian cancer, but found that the consumption of
garlic/onion might exert a protective effect on the risk of ovarian
cancer. In a large study of men and women in the United States,
Bhupathiraju et al. (4) suggested that the absolute quantity
of fruits and vegetable consumed (rather than the variety) is
associated with a significantly lower risk of coronary heart
disease. However, the analysis of the correlation between the
variety and quantity showed that higher intakes of specific fruits
(such as citrus fruits), vegetables rich in β-carotene or vitamin
C, and green leafy vegetables were associated with the lowest
risk of coronary heart disease. In another study, Bazzano et al.
(1) found that the consumption of green leafy vegetables and
whole fruit was associated with a lower hazard of diabetes. Thus,
the diverse protective effects of vegetables in relation to chronic
diseases could be attributed to the differences in the composition

of micronutrients and phytochemical profiles, cooking methods,
and individual genetic variability.

The consumption of specific cruciferous vegetables is more
strongly associated with protection against cancer than that of
other vegetables in general (10). The beneficial properties of
vegetables are attributed to their bioactive components such
as fiber, antioxidant vitamins (vitamin C and β-carotene),
antioxidant minerals (selenium), and phenolic compounds.
Cruciferous vegetables contain all these molecules. However,
what makes them different is that they also contain some
sulfur compounds called GLSs (11). Cruciferous vegetables
are members of the Brassicaceae or Cruciferae family (the
alternative name is due to the shape of their flowers whose
four petals resemble a cross) consumed commonly, such as
broccoli, cauliflower, cabbage, kale, Brussels sprouts, Chinese
cabbage, radish, wasabi, mustard, and watercress. GLSs are
responsible for their characteristic pungent odor and bitter
taste. More than 120 different GLSs have been identified
from several plants with a profile and quantity that vary
depending on the cultivars and growing conditions, since these
compounds are vital for plants’ defense against biotic and abiotic
stress (12–14). All GLSs share a basic chemical structure that
contains a β-D-thioglucose group, a sulfonate oxime group,
and a side chain derived from a branched chain amino acid,
methionine, alanine, phenylalanine, tyrosine, or tryptophan (14,
15). According to their structure, they can be classified into
aliphatic (derived from methionine, alanine, leucine, isoleucine,
or valine), aromatic (derived from phenylalanine or tyrosine),
and indolic (derived from tryptophan) GLSs (16). GLSs are
biologically inactive and need to be hydrolyzed by the enzyme
myrosinase to become active (12). GLSs and myrosinase are
located at different compartments in intact plant cells. When
the structure is damaged, both molecules come into contact and
the reaction occurs. This usually occurs when the vegetables
are cut or damaged (during harvesting and processing) or
during chewing (17). Myrosinase removes β-D-thioglucose from
GLS, leading to the formation of unstable compounds that
finally become bioactive molecules such as thiocyanates, ITCs,
indoles, and nitriles in a process influenced by the pH. At
neutral pH, ITC formation is favored, while an acidic pH favors
those of nitriles (13, 18) which do not have anticarcinogenic
properties. In addition, in some plants and specific GLSs,
specific proteins (different from myrosinase) could also play a
role in these chemical changes. These include epithiospecifier
protein (ESP) which drives the reaction of nitrile formation
in plants that contain alkenyl-GLSs but not those that contain
GLSs with a terminal alkene (13). Figure 1 shows a scheme
of GLSs derivatives formation. The amount of GLSs ingested,
and their active compounds (the ITCs) which can eventually
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FIGURE 1 | Scheme of the hydrolysis of glucosinolates by myrosinase enzyme with the resulted isothiocyanates and other derivatives. The biologically active

hydrolysis products of glucosinolates, better studied and discussed in this review have been highlighted. EPS, epithiospecifer protein.

reach the tissues, is determined by several factors including
the content of GLSs determined by the variety of cruciferous
vegetables consumed, the lability of GLSs to environmental
conditions and cooking techniques, their bioavailability, and
their metabolism (19). Table 1 contains a summary of the most
abundant cruciferous GSLs, their derivative ITCs/indoles, and
plants in which they are found.

ABUNDANCE, LABILITY, BIOAVAILABILITY,
AND METABOLISM OF GLSs

The content of GLSs varies widely depending on the cruciferous
variety and is conditioned by the place and conditions of
cultivation (12). Thus, it has been reported that cultivation
under low temperatures decreased plant GLS levels; thus, plants
harvested in the winter or autumn contain lower GLS levels than
those harvested in the spring or summer (20, 21). In addition,
the post-harvest and packaging conditions also modify the
concentrations of GLSs in cruciferous vegetables (22). Rodrigues
et al. (23) found a 79% reduction in the total GLS concentration
in freshly harvested broccoli inflorescences stored at room
temperature for 5 days, while those refrigerated at 4◦C showed
a 16% decrease. Therefore, a refrigerated mode of transport as
well as the sale period could imply a significant loss of these
compounds, which emphasizes the importance of consuming

local vegetables. On the other hand, the cooking technique
utilized may also cause more or less leakage of GLSs; however,
the data about this are controversial as many variables need to be
taken into account, such as whether the vegetable is chopped, the
amount of water, cooking temperature, and duration of cooking
(22, 24–26). Data emanating from diverse studies show that
boiling leads to the largest loss of GLSs (by >50%), depending
on the time and volume of water more than the temperature.
During boiling, GLSs are mostly lost through leaching into the
cooking water, and is favored by the convection movements of
boiling water (27). The data led to the conclusion that boiling
with greater amounts of water and for longer periods increases
the losses of GLSs. Microwave cooking also leads to loss of GLSs
although the increased osmotic pressure causes a breakdown of
the cell structure which brings the GLSs and myrosinase into
contact. The losses described are very variable (15–75%) and
depend on factors such as the amount of water, the intensity of
microwave radiation, and the duration of cooking (22, 25). Stir
frying leads to an increased loss of GLSs (by >60%) (25, 28). In
this case, temperature is the principal feature. It was observed
that stir fried broccoli cooked for 3–5min with oil preheated at
200◦C did not lead to a significant change in the GLS content
(27). However, cooking in preheated oil and maintenance at
140◦C for 5min led to losses of about 60% (25). Lastly, data
showed that steaming was the best mode of cooking that ensured
the preservation of GLSs. Most studies found little or no effect
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TABLE 1 | The most abundant and studied GSLs, their ITCs derivatives and

representative cruciferous-where found.

Glucosinolate Isothiocyanate (abbreviation) Cruciferous plant

Glucobrassicin Indole-3-carbinol (I3C) All cruciferous

Sinigrin Allyl isothiocyanate (AITC) Mustard

Brussels sprouts

Cauliflower

Glucoraphanin Sulforaphane (SFN) Broccoli

Arugula

Gluconasturtiin Phenyl isothiocyanate (PEITC) Cabbage

Chinese cabbage

Radish

Watercress

Glucotropaeolin Benzyl isothiocyanate (BITC) Garden cress

Horseradish

White mustards

(26, 28), and some studies reported that an increase in GLS
content (24, 28) was favored perhaps because steaming strongly
limits their leach into the water.

There is evidence that very little of intact GLSs are absorbed
(29–31) and it is their hydrolyzed products (the ITCs and
indoles) that are absorbed (31). Chopping and chewing breaks
the plant structure and promotes the hydrolyzation of GLSs
to ITCs by myrosinase; however, the cooking temperature can
inhibit the activity of myrosinase and limit the formation of
ITCs (22). Therefore, it has been found that after ingestion of
cruciferous vegetables, the myrosinase from gut microbiota has
relevant influence in the conversion of inert GLSs to bioactive
ITCs (32–36). Consequently, intact GLSs may reach the large
intestine where they can be degraded by the resident gut
microbiota leading to the release of ITCs which will then be
absorbed (31, 32, 37, 38). Recently, it has been found that the
consumption of broccoli modifies the gastrointestinal microbiota
to a healthier profile (39), which coincides with that of bacterial
genera that have myrosinase activity (33–35). Finally, ITCs must
be absorbed and distributed by the body to reach the tissues
where they will affect their biological mechanisms. The precise
mechanism by which ITCs are absorbed has not been elucidated
completely; however, numerous studies conducted using human
(37, 40–42) and animal models (43–46) have described the
mechanism through which ITCs are absorbed. Most studies
conducted among humans have assessed absorption indirectly
through the determination of their metabolites in urine or by
the cyclo-condensation method (37), or by high performance
liquid chromatography with tandem mass spectrometry (HPLC
MS/MS) to measure plasma ITCs (42) after an oral dose. In
studies conducted among humans after intake of a single dose
of fresh broccoli, the peak plasma concentration of ITCs (mainly
sulforaphane [SFN]) was found at about 3 h and disappeared
at 24 h while the peak concentration in urine was recorded
around 6 h and disappeared at 24 h (41, 42). Among rats, studies
mostly assessed the fate of an oral dose of 14C-labeled ITCs. In
general, rapid absorption of ITCs was observed but with some
differences between individual compounds as the structure may

affect the liposolubility (46, 47). For example, among animals
given a 14C-phenethyl ITC (PEITC), the radioactivity in plasma
peaked at 2.9 h while among those who received 14C-PHITC
(phenylhexyl ITC), the peak plasma level was recorded at 8.9 h.
Nevertheless, those that received 14C-PHITC excreted only about
7% in urine and 47% in feces in contrast to those that received
14C-PEITC who eliminated the majority in urine (about 89%)
and only 10% was recovered in feces. These different absorption
rates could perhaps be attributed to a greater lipophilicity of
PHITC (46). All fractions of ITCs—those that are already present
in previously consumed food, those that are formed during
chewing, and those that result from microbiota activity—are
absorbed by the epithelial cells of the small intestine or colon (31,
48). Available data indicate that the entry of ITCs into enterocytes
through the apical membrane by passive diffusion, which is
facilitated by rapid conjugation with reduced glutathione (GSH)
by means of the enzyme glutathione-S-transferase (GST), results
in the maintenance of the concentration gradient and favors
rapid internal accumulation of GSH-ITCs (49, 50). GSH-ITCs
are released through the basolateral membrane via multidrug-
resistance-associated protein 1 (MRP1) and P-glycoprotein (P-
gp) as occurs in other cell lines (51). In addition, some authors
revealed that a proportion of absorbed ITCs and GSH conjugates
(GSH-ITCs) effluxed back into the lumen as GSH-ITCs (49).
Once absorbed, peak plasma concentrations of GSH-ITCs decline
rapidly, signifying a rapid distribution (37, 52, 53). In blood,
GSH-ITCs maintain an equilibrium with free ITCs due to the
low concentrations of GSH in plasma and they are taken up
by tissue through a similar mechanism within the enterocytes,
passive diffusion, and formation of GSH-ITCs (49–51, 54).
The capacity to synthesize GSH-ITCs is determined by the
intracellular concentration of GSH and GST activity and could
be related to the specific effects of ITCs in different tissues (31).
Kim et al. confirmed that GSH-AITC accumulated to a greater
extent in the liver within the first hour after an oral dose of AITC
(25 mg/kg of body weight) followed by the kidneys, spleen, lungs,
and heart (53). On the other hand, unstable ITC derivatives such
as I3C (the major product of hydrolysis of indole-GLSs) in the
acidic pH of the stomach are converted into condensed products
(mainly, DIM [diindolylmethane] which is the most active) (55).
De Kruif et al. in rats given 13C orally found DIM in tissues
extracts from the stomach, small intestine and liver, proving
that they are absolved by the small intestine (56). Anderton
et al. determined the tissue distribution of DIM in mice after an
oral load of I3C, and found that the liver retained higher levels
(129µg/g) of DIM, followed by the lungs (70.5µg/g), kidneys
(61.8µg/g), heart (54.2µg/g), and brain and plasma (19µg/g).
In addition, the peak plasma concentration of DIM occurred at
2 h after I3C administration (52, 57). In human studies, following
I3C administration, the peak plasma concentration of DIM was
detected after ∼3 h (58); the lymphocyte activity of GST had
increased (59) and urinary DIM was detected after ingestion of
brussels sprouts (60).

After the initial conjugation with GSH catalyzed by the
enzyme GST, the conjugates are metabolized to a mercapturic
acid derivate (N-acetyl-cysteine-ITC [NAC-ITC]), which is
excreted in the urine (53). Thus, the liver plays a relevant
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role in xenobiotic detoxification since it contains high levels of
GSH and has the highest GST activity in the organism, and
supports the formation and accumulation of high levels of GSH-
ITC conjugates (52, 53). On the other hand, the kidney is the
major organ implicated in the conversion of GSH-ITCs to the
corresponding mercapturic acid derivate since it has elevated
N-acetyltransferase activity (NAT) (61). Thus, it appears from
experimental data (62) that the GSH-ITCs initially formed in
the liver would be secreted as such and those formed in the
kidney would be acetylated and excreted. In support of this,
Kim et al. found that the level of GSH-AITC was higher in
the liver but the level of NAC-AITC was more elevated in
the kidney (53). In addition, the GSH-ITCs in the liver can
also be metabolized to NAC-ITC and then excreted into the
bile (62). The enterohepatic cycling was supported by evidence
from human data that the excretion of dihydrocarbonates
(such as GSH-ITCs) showed a biphasic curve after ingestion
of horseradish (29). Data show that the specific structure of
ITCs could affect their affinity to the enzyme GST, act as a
phase I enzyme substrate, and be secreted into the bile and
excreted in feces. For example, phenyl-, benzyl-, and allyl-
ITCs such as PEITC are principally conjugated with GSH and
metabolized via the mercapturic acid pathway to NAC-PEITC
and excreted in urine. In contrast, a majority of PHITC (with
an alkyl side chain) is excreted in the bile and recuperated in
feces (46, 62, 63). Thus, phase I metabolism could contribute to
the biotransformation and bioavailability of active ITCs. Figure 2
shows a schematic representation of the factors influencing
the amount of GLSs ingested, their absorption, distribution,
metabolism, and excretion.

BIOLOGICAL EFFECTS OF ITCS AND
MECHANISMS

As mentioned above, numerous epidemiological studies that
reported a lower risk of suffering various types of cancers when
cruciferous vegetables are consumed in the diet in a regular form
have been published over the years. From these observations,
abundant efforts have been made to understand the mechanisms
through which hydrolyzed products derived from GLSs reduce
the risk of cancer with the aim of arriving at potential cancer
therapies. The most studied products of hydrolysis of GLSs, due
to the abundance of their precursors in consumed cruciferous
vegetables, have been the stable ITCs PEITC, SFN, BITC, AITC,
and the unstable ITC derivatives (the indoles I3C/DIM). This
section of the review focuses on the biological effects of ITCs
and indoles that have been described in the regulation of key
cell signaling pathways. These effects have been firstly and
widely studied in relation to cancer. However, these pathways
are not only altered in cancer but also in other conditions
such as obesity, diabetes, and arteriosclerosis (MetS). This is
why most of the cited studies will refer to cancer (though not
all) and we reserve the final section of the review to focus on
how ITCs and indoles can prevent MetS by modulating the
common pathways described in cancer. It has been found that
ITCs and indoles modulate the activity of enzymes involved in

phases I and II of the detoxification pathway; modulate the cell
cycle, oxidative stress, and inflammation; angiogenesis; as well as
epigenetic effects.

Modulation of Enzyme Activity in Phases I
and II of the Detoxification Pathway
Phases I and II of the detoxification pathway contain the
most important enzyme group involved in xenobiotic
biotransformation (64). The phase I enzymes are represented
by the cytochrome P450 family (CYP450) that modify the
molecule via oxidation, reduction, or hydration and, as a result,
the xenobiotic (e.g., drugs, procarcinogens) may be activated
or inactivated. The phase I metabolism generally increases
the polarity of molecules and facilitates the excretion. Phase
I reactions can be followed by phase II reactions to increase
solubility, but phase I reactions are not a requirement to be
substrate of Phase II enzymes. Phase II consists of a sulfation,
glucuronidation, acylation, methylation or conjugation with
GSH or amino acids, facilitating its excretion in urine or
bile (64). However, some potential carcinogenic molecules
become active when they are biotransformed through phase I
enzymes (65). Inhibition of specific CYP enzymes involved in
carcinogen activation inhibited cancer development in animal
models (65, 66).

Stable ITCs (such as SFN, AITC, PEITC, and BITC), have been
found to inhibit carcinogen activation through the inhibition of
CYP enzymes in animal studies and cell lines (67–70). Leclercq
et al. found that in human volunteers, a single ingestion of
watercress homogenate (rich in the GLS precursor of PEITC)
increased the area under the curve of time course plasma
chlorzoxazone, suggesting that CYP2E1 activity was inhibited
(71). Yoshigae et al. finally described a possible mechanism
underlying the inactivation of human CYP2E1 by PEITC
(72). Later, Nakajima et al., in an in vitro model of cells
expressing specific human CYP isoforms, proved that PEITC
yielded chemopreventive effects against nitrosamine-induced
carcinogenesis through CYP450 inhibition (67). On the other
hand, indole-GLS derivatives (such as I3C) and their condensed
products (such as DIM) have a different effect than stable ITCs
since they increase the activity of certain CYP enzymes (68, 69,
73). The mechanism described would be that DIM binds to the
aryl hydrocarbon receptor, which then recognizes and binds to
the xenobiotic response element (XRE) sequences in the DNA
of genes of a large number of CYP enzymes, and increases their
expression (74, 75). Increased expression of phase I enzymes
in general could be considered beneficial to the elimination of
the possible adverse effects of activated procarcinogenic agents.
In breast cancer (characterized by altered CYP expression)
I3C/DIM demonstrated a protective effect (73). In some breast
cancer cell lines, CYP1A1 and CY1A2 are expressed at low levels;
they are responsible for the production of estrogen metabolites
that are protective against cancer, and it has been found that
DIM increases their expression, favoring a protective role (76).
Therefore, in a phase I clinical trial of healthy women, it was
observed that the administration of I3C promotes CYP1A2
activity (59).
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FIGURE 2 | General overview of ingested glucosinolates and isothiocyanates fate: mouth hydrolysis, microbiota hydrolysis, absorption, metabolism, and excretion.

GLSs, glucosinolates; ITCs, isothiocyanates; MYR, myrosinase; GSH-ITCs, glutathione isothiocyanates conjugates; Alb-ITCs, albumin isothiocyanates conjugates;

Gly-Cys-ITCs, glycine-cysteine isothiocyanates conjugates; Cys-ITCs, cysteine isothiocyanates conjugates; NAC-ITC, N-acetylcysteine isothiocyanates conjugates;

GST, glutathione-S-transferase; γGT, γglutamyltranspeptidase; CG, cysteinylglycinase; NAT, N-acetyltransferase.
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Numerous stable ITCs and indole derivatives of GLSs are
potent inducers of phase II enzymes (49, 64, 77–79). The genes
that encode phase II enzymes contain antioxidant response
element (ARE) domains; ITCs recognize and bind to them,
increasing their expression (68). A study conducted among
smokers showed that watercress consumption promotes a
higher excretion of glucuronidated nicotine in urine indicating
activation of the phase II enzyme UDP-glucuronosyltransferase
(UGT) (80). Most recently, Yuan et al., in a randomized, placebo-
controlled, double-blind study conducted among smokers found
a greater excretion of the mercapturic acids of benzene and
acrolein (substances of tobacco smoke) in urine after oral
administration of PEITC for 5 days (81). In addition, human
polymorphisms for the GST gene that affect their activity
have been described (82). Lower or null GST activity could
affect the susceptibility to diseases due to reduced excretion
of toxic molecules or could promote increased efficiency of
cancer chemotherapy owing to a higher drug half-life (83). In
the same sense, lower or null GST activity could result in a
slower elimination and longer exposure to ITCs in cruciferous
vegetables, maintaining their biological actions for a longer time.
Several epidemiological studies found a higher cancer protective
effect of cruciferous vegetable consumption among individuals
carrying GSTM1-null and GSTT1-null than among those with
normal GST activity (84–87). In the same vein, Yuan et al. (81)
determined urine excretion of mercapturic acids of benzene and
acrolein in cigarette smokers who received oral supplementation
of PEITC, and observed a remarkably stronger effect of PEITC in
subjects withGSTM1 andGSTT1-null genotype with a significant
higher excretion than in those with a normal genotype (88). In
Hep G2-C8 cells, Saw et al. described that I3C/DIM induced
the expression of ARE-mediated phase II genes such as GSTM2,
UGT1A1, andNQO1(NAD(P)H:quinone oxidoreductase 1, as well
as a synergic effect with SFN and PEITC (89). In summary, the
main mechanism of carcinogenesis inhibition described for ITCs
appears to occur through two levels of the detoxification pathway:
selective P450 enzyme inhibition (stable ITCs) or activation
(I3C/DIM) and an induction of phase II enzymes, preventing
the activation of procarcinogens and increasing their excretion
(Figure 3). Although these activities are attributed exclusively
to ITCs, an in vitro study described that intact GLSs modulate
hepatic CYP450 and phase II enzymes (78).

Modulation of the Cell Cycle: Proliferation
and Apoptosis
The cell cycle comprises a series of tightly regulated stages
that include growth and division to eventually result in two
new daughter cells. Multiple checkpoints are implicated in the
regulation of the cell cycle such as growth signals, availability of
nutrients, and the integrity of DNA. If the DNA is damaged, the
cell cycle can be transiently arrested to repair it or the apoptosis
pathway can be activated, leading to cell death. When cell cycle
regulation is disturbed, the DNA is not repaired correctly and
the mutation can propagate, contributing to the development of
cancer (19). The effects of ITCs/I3C on cell cycle regulation have
been studied in a wide variety of cancer cell lines and in animal

models (55, 69, 90, 91). Numerous in vitro experiments in an
extensive variety of cancer cell line models of the bladder, lung,
prostate, osteosarcoma, adenocarcinoma, and colon (UM-UC3,
J82, RT4, LTEP-A2, PC-3, LM8, and HT-29) have investigated
the effects of SFN on cell cycle regulation. The results showed
an extensive coincidence in that SFN arrests the cell cycle in the
G2/M phase (92–100). Some of these studies also showed that its
effect was mediated through induction of the expression of p21
and p53, which are cyclin-dependent kinase (CDK) inhibitors
(94–96). Cyclins and CDK are important promoters of mitosis
initiation as a consequence of cellular proliferation. In a manner
similar to SFN, PEITC arrests the cell cycle in the G2/M phase in
HeLa, Caco-2, and PC-3 cell lines (101–103), but in the G0/G1
phase in human prostate cancer DU-14 and LNCaP cell lines
(104). In most of these studies, an increase in expression of p21
and a decrease in expression of the cyclins CDK and cdc25c
was found (102, 103). Other studies regarding the effects of
BITC and AITC on cell proliferation also showed their ability to
arrest the cell cycle generally in G2/M by increasing p21 and/or
p53 expression and decreasing the expressions of CDK and
cyclins (cdk1, cyclin B) and cdc factors (cdc2, cdc25b, cdc25c)
(93, 101, 105–111). The effects on cell proliferation have also
been described for I3C/DIM; in MCF7 breast cancer cell lines,
they arrest the cell cycle in G1 (112–114). Moreover, I3C/DIM
increase the expressions of p53 (114), p21, and p27 and decrease
that of CDK6 (112). Similar effects were observed in PC-3
prostate cancer cells treated with I3C (115).

In addition, the mechanisms through which ITCs inhibit the
proliferation of cancer cells include the activation of apoptosis,
as well as both the mitochondrial/intrinsic pathway and death
receptor/extrinsic pathway (91). All the most studied ITCs (such
as PEITC, SNF, BITC, AITC, and I3C/DIM) have been found
to cause inhibition of the antiapoptotic factor Bcl-2 in different
cell lines and mice (93, 94, 110, 116, 117). However, different
mechanisms through which ITCs activate apoptosis have been
described. Hu et al. (118) described that PEITC induces apoptosis
via the intrinsic pathway throughMAPK signaling, via activation
of JNK through p38 that leads to cytochrome c release, and
subsequent activation of caspase-9 and caspase-3 in HT-29 cells.
In another study, Wang et al. (119) showed that induction of
apoptosis by PEITC in PC-3 cells is mediated by ERK. Later,
Xu et al. (120) demonstrated that ITC-induced apoptosis (by
SFN, PEITC, and AITC) is tightly coupled to ERK and JNK
signaling in human prostate PC-3 cells. Furthermore, in the
bladder cancer cell lines HTB9 and RT112, Islam et al. (121)
found that SFN inhibits proliferation of cells by decreasing
the expressions of PI3K/Akt/mTOR. Other studies of 5637 and
T24 human bladder cancer cells showed that treatment with
SFN induces mitochondrial caspase dependent apoptosis due to
reactive oxygen species (ROS) accumulation and activation of
endoplasmic reticulum stress with activation of Nrf2 (nuclear
erythroid 2-related factor 2) signaling pathway (121, 122). Other
researchers have confirmed that the increase in ROS levels is a
way by which BITC and PEITC induce apoptosis in cell lines
of pancreatic cancer, chronic myeloid leukemia, and chronic
lymphocytic leukemia (123–125). Nrf2 is a transcriptional factor
that binds to ARE regions in DNA to induce the expression of
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FIGURE 3 | Detoxification pathway scheme showing isothiocyanates and indoles effect. SFN, Sulforaphane; AITC, Allyl isothiocyanate; PEITC, Phenyl isothiocyanate;

BITC, Benzyl isothiocyanate; I3C, Indole-3-carbinol; DIM, diindolylmethane.

major antioxidant enzymes that detoxify ROS (126, 127) and
can inhibit the nuclear factor kappa B (NF-κB) transcriptional
factor. NF-κB activity is linked to cellular processes that promote
cancer, such as inflammation, cell proliferation, and angiogenesis
and facilitate tumor growth and metastasis (128, 129); thus,
its inhibition could yield positive effects in the prevention or
treatment of cancer. The evidences that SFN and BITC decrease
NF-κB activity have been described in the bladder and colon
cancer cell lines T24 and T29, respectively (130, 131). Chen
et al. showed that DIM also promotes apoptosis through AMPK
activation, resulting in suppression of mTOR in C4-2B and
LNCaP prostate cancer cells (132). In addition, in PC-3 prostate
cancer cells, it was found that I3C/DIM induces apoptosis
through inhibition of Akt/PI3K signaling with decreases in
the expressions of Bcl-xL and BAD (133). Thus, I3C/DIM
induce apoptosis via modulation of the PI3K/Akt/mTOR/NF-
κB pathway (115, 134). Finally, it has been reported that ITCs
and indoles play an important role in controlling the cell
cycle, diminishing the proliferative capacity, and activating the
apoptosis pathway; however, the specific underlying mechanism
could differ according to the ITC or cell type.

Antioxidant and Anti-inflammatory Effects
Usually, oxidative stress is accompanied by an inflammatory
response that is part of the responses to combat this oxidative
damage. However, persistence of an oxidative stimulus (even

if mild) will also lead to the maintenance of a chronic
inflammatory state that can be more or less severe. Therefore,
the organism fights this oxidative damage first to eliminate the
causative agent and then to eliminate the inflammation to restore
normalcy (135). As mentioned above, the genes that encode
proteins relevant to the elimination of oxidative agents contain
ARE sequences, as do phase II enzymes and stress-responsive
antioxidant genes, such as GST, UGT, NAD(P)H:quinone
oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1) (136,
137). The central role of Nrf2 transcription factor in the
upregulation of antioxidant genes in the oxidative stress
response has been described (138). NF-κB plays a key role
in immune response regulation to activate mediators (such as
pro-inflammatory cytokines) to favor the attack of the inciting
agent in the first step of the immune response, in which it
also produces oxidation agents (135). However, in most normal
cells NF-κB is in inactive form, and a constitutive activation of
NF-κB has been noted in almost all cancers (128) and chronic
physiological inflammatory conditions such as MetS (139). It
has been reported that ITCs and indoles increase Nrf2 activity
and inhibit NF-κB (140–145). In Raw 264.7 macrophage cells, it
was found that BITC diminished the lipopolysaccharide (LPS)
induced inflammatory response in a dose-dependent manner
through the inhibition of NF-κB translocation to the nucleus
as well as that of its target genes Ilβ1, IL6, TNFα, nitric oxide
synthase (iNOS), and cyclooxygenase-2 (COX2) (145). In mice,
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topical application of BITC also ameliorated the TPA-induced
swelling in the ears (model for inflammation diseases, including
psoriasis) diminishing the expressions of iNOS and COX2 (145).
The authors concluded that the anti-inflammatory effects of
BITC could be mediated via the inhibition of Akt and ERK and
the subsequent downregulation of NF-κB signaling. Zhou et al.
recently confirmed that AITC attenuated oxidative stress in mice
with chronic obstructive pulmonary disease via Nrf2 signaling
(140). In a traumatic brain injury model of mice, AITC reduced
infarct volume and brain swelling by decreasing the levels of pro-
inflammatory molecules, IL1β, IL6 through the downregulation
of NF-κB, and ameliorated some neuronal plasticity markers
and increased the antioxidative mechanism by upregulating the
Nrf2 pathway, evidenced by the double effect of AITC (141).
Similar results have been described for PEITC, BITC, and SNF,
in that they reduce the endothelial damage induced by oxidized
LDL (146) or in NIH3T3 fibroblasts (142). Kim et al. described
the protective effect against inflammation induced by DIM, but
not for I3C, in LPS-treated BV-2 microglial cells by decreasing
the expressions of iNOS, COX2, and NF-κB (147). In addition,
DIM reduces the hippocampus inflammation caused by LPS
administration in mice, thereby reducing the infiltration of pro-
inflammatory macrophages (147). In mice, it has been found that
DIM also attenuates colonic inflammation and tumorigenicity
in a mouse colitis model and an azoxymethane (AOM)/DSS
induced colon cancer model (148).

Anti-angiogenic Effects
In the stages of cancer development, progression refers to the
capacity for tumors to extend to other parts of the body (also
referred to as metastasis). Angiogenesis denotes the construction
of new blood vessels from existing ones to facilitate the delivery
of nutrients and oxygen to tumor cells. Therefore, angiogenesis
plays a fundamental role in tumor progression, and thus
metastasis, which constitutes the most difficult phase for cancer
control and treatment and is normally the cause of death
(149–151). Metastasis is a complex process whereby cells lose
their adhesive capacity and migrate through the circulation
to other tissues. Thus, the new vascular network facilitates
migration of cells; however, extracellular matrix degradation
is an essential aspect of the loss of cell adhesion capacity. In
this process, enzymes called metalloproteinases (MMPs) are
important. There are pieces of evidence that SNF, PEITC,
BITC, AITC, PITC, and I3C downregulate MMP2 and MMP9
in various cell lines (152–154). The angiogenic process is
regulated by numerous molecules, in addition to MMPs, such
as growth factors (vascular endothelial growth factor [VEGF],
bFGF, angiopoietins, EGF, and TGF), integrins, and interleukins
(IL1, IL2, IL6, IL8, IL12, and IL17) (149). The most studied
among them is VEGF and there is evidence that ITCs and
I3C inhibit angiogenesis by downregulating VEGF (152, 155).
Treatment of HUVEC and PC3 cells with PEITC inhibited
neovascularization and cell migration with suppression of VEGF
secretion, downregulation of VEGF receptor 2 protein levels, and
inactivation of Akt (156). Treatment of human microvascular
endothelial cells (HMEC-1) with SFN decreases the formation of
new microcapillaries with reduction in VEGF levels (152). This

was also observed later by Kim et al. in HCT116 human colon
cancer cells (157). Thejass et al. showed that AITC and PEITC
treatment downregulated VEGF and pro-inflammatory IL1β,
IL6, and TNFα, but increased the anti-inflammatory effects of
IL2 and inhibition of metalloproteinase (TIMP1) (158). Among
mice, Hajra et al. reported that I3C blocked angiogenesis by
inhibiting VEGF-A and MMP-9 (155). One important factor
that stimulates angiogenesis is hypoxia that results from tumor
growth or due to other situations such as increase in adipose
tissue caused by obesity, leading to the activation of hypoxia
inducible factor-1α (HIF-1α) which in turn stimulates VEGF
(152). In accordance with this, it was found that SFN dramatically
decreases the expressions of HIF-1α and VEGF in HCT116
cells exposed to hypoxia (157). Similar results were found in
MCF-7 cancer cells treated with PEITC (159, 160). PC-3 and
C4-2B prostate cancer cells treated with DIM demonstrated
decreases in HIF-1α and NF-κB expression and an increase in
radiation efficacy (161). Gupta et al. described that in human
glioma cells the inhibitory effect of PEITC on angiogenesis
depended on PI3K/Akt and ERK/MAPK (160). In addition,
it is known that IL1β upregulates HIF-1α through a classical
inflammatory signaling pathway involving NF-κB and COX-2,
ending in upregulation of VEGF. Thus, HIF-1α is recognized
as a pivotal transcription factor linking the inflammatory and
oncogenic pathways (127). The inhibition of NF-κB appears to
be important in reducing cell proliferation, inflammatory status,
and metastasis, and as discussed previously, there is abundant
evidence that ITCs/indoles downregulate NF-κB activity (144).

Epigenetic Effect: Histones Modification,
DNA Methylation, and miRNA
The main mechanisms underlying epigenetic processes are
post-translational histone modifications and DNA methylation,
which are modulated by histone deacetylases (HDACs) and
DNMTs (methyltranspherases), respectively. Histone acetylation
results in an open chromatin conformation which facilitates
the transcription process. HDACs remove the acetyl group
from histones, leading to chromatin condensation which hinders
transcription. The overexpression of HDACs are a common
hallmark of cancer and their inhibition is considered to be
therapeutic against cancer tumor progression (162, 163). ITCs
and indoles have been found to exert a potent effect as HDAC
inhibitors in various cancer lines (164–174). The most studied
is SFN and the most common effect found is the inhibition of
HDAC3 associated with an increase in p21and Bax expression
and a decrease in cyclin D1 expression, which together results
in cell cycle arrest and apoptosis activation (167, 168, 171, 173).
In addition, in TPA-induced neoplastic transformation of mouse
skin cells, Su et al. described that SFN promotes a decrease
in HDAC expression with an increase in Nrf2 expression and
their downstream target genes (such as HO-1 and NQO1) of
phase II enzymes (169). PEITC in LNCaP prostate cancer cells
inhibits HDAC3 with an increase in p21and p27 expression,
leading to cell arrest (170). In another experiment, the inhibition
of HDAC1, 2, 4, and 6 protein expression was observed and
related to activation of the tumor suppressor factor RASSF1A
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(Ras-association domain family 1 isoform A) (175). In addition,
Beaver et al. showed that DIM significantly decreased HDAC
activity and was correlated with increased expression of p21
in PC-3 and LNCaP prostate cancer cells (166). In human
pancreatic cancer cells, Sanjay et al. showed that BITC incubation
promotes a decrease in the expression and activity of HDAC1
and HDAC3 with decreases in the expression and activity of
cyclinD1 andNF-κB (172). In accordance, I3C andDIMdecrease
the expression of HDAC1, 2, 3, and 8 in T cells activated by
staphylococcal enterotoxin B with a decreased secretion of pro-
inflammatory cytokines (174). DNAmethylation is an important
process by which gene transcription is regulated (176). Changes
in the pattern of methylation of genes have been related to
the expression of oncogenes and cancer development (176). It
has also been described that ITCs and indoles regulate DNMTs
and mediate the process of carcinogenesis (175, 177–184). SFN
is the ITC that has been studied the most, and in general,
the research shows that SFN promotes a decrease in the DNA
methylation of certain genes with anti-tumor action through
the inhibition of DNMT1, DNMT3A, and DNMT3B. This leads
to decreased expression of HDACs resulting in reactivation of
genes [such as p21 (177), cyclin D2 (179) or Nrf2] and the
downregulation of HO-1 and NQO1 (169, 181) depending on
the nature of the study and the type of cell utilized. Similar
results were obtained in DIM-treated TRAMP-C1 cells assessed
by Wu et al., in which DNMT expression diminished and the
methylation status of Nrf2 was reversed, resulting in its enhanced
expression (184). Wong et al. described that in normal prostate
cell (PeRC) and cancer cell lines (LNCaP and PC3), SFN andDIM
altered promotermethylation in distinct sets of genes with similar
targets within a single cell line. Further, they showed that SFN
and DIM reversed many of the cancer-associated methylation
alterations (178). PEITC in LNCaP cell lines also showed a
reduction in the activity of RASSF1A promoter methylation
through inhibition of DNMT3A and 3B (175). In leukemia T
cells, the effects of PHITC were an inhibition of DNMT1 and
DNMT3B, an increase in acetylation of histones 3 and 4, reversal
of hypermethylation of the tumor suppressor gene p15, and
reactivation of its transcription (180).

miRNAs are non-coding RNAs that are most abundant
in animal cells. They have a length of 20–24 nucleotides and
they play a pivotal role in regulatory pathways including
differentiation, proliferation, and apoptosis, and regulate
approximately one third of human genes (185, 186). During
carcinogenesis, various miRNAs are deregulated (186). There
is evidence that ITCs and indoles exert some of their effects
by modulating specific miRNAs (187). It has been found
that SFN in epithelial cancer cells (NCM460 and NC356)
modulated 18 miRNAs (15 upregulated and 3 downregulated).
Among the upregulated genes were miR-23b and miR-27b
which are tumor suppressors, while the pro-oncogenic miR-
155 was downregulated (188). PEITC in PC3 prostate cancer
cells causes overexpression of miR-194 which decreases the
expression of MMPs and hindering metastasis (189). I3C
increases miR-34a expression in MCF-7 human breast cancer
cells using p53 as a direct transcriptional target (190). In rats
exposed to environmental cigarette smoke, I3C and PEITC

showed a synergic effect by restoring the lung miRNA profile
(191). In general, there is an increase in expression of those
miRNAs related to decreased angiogenesis and proliferation or
increased apoptosis and a decrease in expression of those miRNA
implicated in the opposite direction (187, 192–195). Figure 4
summarizes the overall effects described for ITCs and indoles
in the regulation of cell proliferation, apoptosis, inflammation,
and angiogenesis.

METABOLIC SYNDROME: DEFINITION

Obesity is characterized by excess body weight due to fat
excess (196). The expansibility of white adipose tissue (WAT)
in obesity entails deregulation between cellular proliferation
and apoptosis, pro-inflammatory macrophage infiltration
with increased pro-inflammatory cytokine secretion, and
stimulation of angiogenesis. Obesity is frequently associated with
other pathologies, mainly type 2 diabetes (insulin resistance),
atherosclerosis (dyslipidemia), and hypertension. This cluster
of associated pathologies is known as the MetS (197) and is
currently a leading cause of death worldwide (198).

Several health organizations have provided definitions for
MetS. The United Kingdom National Health Service (199)
defines MetS as “. . . the medical term for a combination of
diabetes, high blood pressure (hypertension), and obesity” and
adds that “. . . it increases the risk of coronary heart disease,
stroke, and other conditions that affect the blood vessels.” The
International Diabetes Federation (IDF) (200), the American
Heart Association (201) and the National Heart, Lung and
Blood Institute (202) define MetS as a group of risk factors for
heart attack or stroke. Specifically, the IDF posits that MetS
“. . . is a cluster of the most dangerous heart attack risk factors:
diabetes and raised fasting plasma glucose, abdominal obesity,
high cholesterol, and high blood pressure.” According to data
from theWorld Health Organization (2016), the leading cause of
death worldwide was ischemic heart disease, followed by stroke
and chronic obstructive pulmonary disease (198) all of which are
related to MetS. Scientists have agreed on a set of criteria for
the diagnosis of MetS. According to the IDF, for a person to be
diagnosed with MetS, they must have: central obesity (defined
according to the waist circumference with values specific to the
ethnicity) (203) plus any two of the following four factors: raised
triglyceride levels, reduced high density lipoprotein cholesterol
level, raised blood pressure, and increased fasting plasma glucose
concentration (200).

Obesity and Comorbidities
Obesity, the condition central to MetS, is characterized by an
excess body weight due to fat excess (196). Today, obesity is
defined as a mild but chronic inflammatory state (204). Animal
studies have shown that the sequence of obesity establishment
resembles the stages of the typical inflammatory response, only
that it does not resolve in this case (205–207). In mice fed
a high fat diet (HFD), it has been observed that in the first
week, there already exists an increased infiltration of neutrophils
in WAT (206). Then, around 5 weeks lymphocyte infiltration
is observed (207) and finally after 16 weeks, when obesity
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FIGURE 4 | Representative effects of isothiocyanates on cellular cycle arrest, apoptosis, inflammation, and angiogenesis. Green arrows indicate the pathways that

isothiocyanates increase and the red arrows the inhibited ones. HDACs, histone deacetylases; DNMTs, methyltranspherases MMPs; RASSF1A, Ras-association

domain family 1 isoform A; ROS, reactive oxygen species; COX-2, ciclooxigenasa 2; HIF-1α, hypoxia inducible factor-1α; VEGF, Vascular Endothelial Growth Factor.

is well-established, macrophages become the main infiltrating
cells (206, 207). The lymphocyte and macrophage infiltrates in
WAT of obese individuals (mice and humans) are mainly pro-
inflammatory, while those in the WAT of lean individuals are
anti-inflammatory (207–210). Thus, this inflammation has been
interpreted as a response of the organism to an insult, which
in this case is nutritional energetic overload, and whereby the
stimulus persists and inflammation becomes chronic (211, 212).
In addition, the diets that are usually consumed in middle-
and high-income countries, where there is higher prevalence
of obesity, are often unbalanced with very low fruit and
vegetable consumption and with excessive meats and ultra-
processed products that impose a burden of saturated fats
and refined sugars (196, 213–216). Thus, the disturbed energy
balance in favor of fat accumulation, that is obesity, leads
to a WAT growth with hypertrophy and death of adipocytes
promoting macrophage infiltration to phagocytize the remains;
these in turn produce pro-inflammatory cytokines that favor
further infiltration (217, 218). Saturated fatty acids directly

stimulate differentiation to a pro-inflammatory macrophage
profile while monounsaturated and polyunsaturated fatty acids
promote an anti-inflammatory profile (219). Thus, if the
stimulus persists, that is, if the diet is still rich in saturated
fatty acids and energy, a vicious circle is established with
continuous infiltration of pro-inflammatory macrophages, which
maintains the inflammation chronically (220). In addition,
while eicosanoids derived from ω-6 polyunsaturated fatty acids,
prostaglandins, and leukotrienes, facilitate the initiation of the
inflammatory response, the eicosanoids and docosahexanoids
derived from ω-3 polyunsaturated fatty acids, resolvins, and
protectins, are essential to finishing it (139, 221). It has been
found that the diets of obese individuals are usually deficient
in ω-3 fatty acids but not in ω-6 fatty acids, and this could
contribute to maintaining the chronic inflammation (205, 221,
222). Besides, the hypertrophy of WAT also elicits tissue
hypoxia, which favors inflammation and angiogenesis that are
needed to expand WAT (209, 223). Therefore, to enable the
adipocytes to hypertrophy, the MMPs must break down the
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extracellular matrix. Accordingly, in a mouse MMP14 null
model, researchers observed a reduction in adipose tissue mass
and smaller adipocytes (224). Moreover, in obese mice fed an
HFD, increased HIF-1α and VEGF levels have been found,
and HIF-1α overexpression was causally implicated in obesity-
induced insulin resistance (221). Related to inflammation, the
NF-κB signaling pathway is also activated in obesity and is
responsible for the production of pro-inflammatory cytokines
such as TNF-α that induce insulin resistance (139).

Type 2 diabetes is characterized by insulin resistance and
is prevalent among people older than 40 years and normally
associated with obesity. However, type 2 diabetes has been
increasingly described among children and adolescents, related
to the change in lifestyle and nutrition (222, 225, 226). Insulin
resistance could be promoted through WAT inflammation
generated in obesity and liver lipid accumulation (197), which
is associated with nutritional energetic overload (225, 227). In
addition, the diabetic state also increases liver inflammation with
a pro-inflammatory profile of Kupffer cells and the secretion
of pro-inflammatory cytokines that aggravate insulin resistance
(228). Elevated circulating glucose levels interact with proteins
and lipids which are glycated. The process occurs through the
Maillard reaction, a complex sequence of chain reactions that
leads to the formation of stable advanced glycation end products
(AGEs) which are oxidants and can damage tissues (229, 230).
AGEs may produce ROS, bind to specific cell surface receptors
(RAGE) and contribute to an inflammatory state in diabetes.
The interaction between AGE and endothelial RAGE leads to
NF-κB upregulation, which transcribes its target genes such
as vascular cell adhesion molecule-1 (VCAM-1), intercellular
adhesion molecule-1 (ICAM-1), and VEGF; pro-inflammatory
cytokines as IL1α, IL6, and TNFα; and RAGE itself (229, 231).
The insulin resistance present in diabetes also promotes an
increase in the level of circulating lipids (232) due to slow VLDL
emptying since the level of lipoprotein lipase is diminished.
In addition, there is reduced LDL clearance; consequently,
their circulation time is increased, leading to hyperlipidemia
and increasing their susceptibility to oxidative modifications
(233). In LDL samples obtained from diabetic individuals, there
have been observed significantly elevated levels of both apoB
and lipid linked to AGE (233). Besides, it was found that
macrophages take up the glycated LDL to a greater extent
than native LDL, resulting in the formation of foam cells as is
characteristic of the early atherosclerotic lesion (234). Thus, the
formation of AGE in a hyperglycemic environment contributes
to the vascular pathophysiology, promoting the development of
atherosclerosis in diabetes (235). The atherosclerotic process also
involves an inflammatory process, in which NF-κB plays a major
role, contributing to the overall incidence of inflammation in
MetS (236).

In addition to comorbidities that exist among obesity, type 2
diabetes, and atherosclerosis, obesity is associated with a higher
risk of certain cancers, such as those of the pancreas, liver,
colon and rectum, kidney, endometrium, and postmenopausal
breast (237). Another condition that also occurs as a comorbidity
to MetS is Alzheimer’s disease [characterized by chronic brain
inflammation in which diet is the risk factor (238–240) and

represents the third leading cause of death in the highest income
countries] (198).

Food Consumption Habits Associated to the

Frequency of Metabolic Syndrome
Diverse studies have put in evidence regarding the relationship
between alimentary habits and obesity prevalence and, in turn,
their comorbidities in various countries such as Brazil, Canada,
United States, Australia, and various European countries (241–
246). These studies showed a trend in the last decades toward
a decrease in the consumption of fresh food (mainly vegetables
and fruits) in favor of ultra-processed foods (247) and how
this change correlates with the increase in obesity prevalence
worldwide. Other studies have correlated the consumption of
ultra-processed foods with the increase in sugars, saturated and
trans-fat, and Na intake, that in addition, correlate with an
associated higher energy intake and obesity prevalence (248–
251). In relation to the increase in cancer incidence associated
with MetS, Fiolet et al. found that a 10% increase in the
proportion of ultra-processed foods in the diet was associated
with a significant increase (>10%) in the risk of overall cancer
and more specifically of postmenopausal breast cancer, the most
commonly related to obesity (237). In summary, all the scientific
and epidemiological data lead us to a common point. That is,
when diet is unbalanced with energy excess due to high intake
of sugar and saturated fat, and with a shortage of fruit and
vegetables, the MetS and comorbidities occur.

Effects of Cruciferous
Glucosinolate-Derived Isothiocyanates and
Indoles on Metabolic Syndrome
The effects of ITCs and indoles on MetS components have also
been studied (252–258). The oxidative stress that exists in MetS,
as a consequence of an overload of the homeostatic system,
results in pro-inflammatory adipokine secretion, activation of
the immune system, and chronic inflammation. The cellular
mechanisms of defense against oxidative stress are orchestrated
by the transcription factor Nrf2, as stated previously, making it
a key target for the amelioration of MetS. Previous data have
shown that ITCs and indoles activate Nrf2; thus, they are good
candidates for further study. In mice fed an HFD supplemented
with glucoraphanin (a GLS precursor of SFN), Nagata et al.
(259) found a mitigated weight gain, attenuated fat depot (WAT),
decreased hepatic steatosis, and improved glucose tolerance
and insulin sensitivity. All these changes occurred without
changes in intake but with an increase in energy expenditure.
In addition, the increased energy expenditure occurred through
WAT browning. The researchers also showed that decreased
activation of NF-κB and JNK increased pAkt expression, together
with diminished pro-inflammatory macrophage infiltration in
WAT. Finally, they also found changes in microbiota with
decreased relative abundance of Gram-negative bacteria that was
correlated with diminished circulating LPS levels. Glucoraphanin
supplementation had no effect in HFD fed Nrf2 knockout
mice, suggesting that the anti-obesity effects of glucoraphanin
(SFN) are due to the activation of the Nrf2 pathway. Similarly,
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using an adipocyte (3T3-L1)-macrophage (RAW264.7) co-
culture system, Kang et al. described that brassinin (an indole)
suppressed inflammation through Nrf2-HO-1 signaling pathway
activation (260).

Several other authors described that SFN, AITC, BITC,
PEITC, and indoles inhibited adipocyte differentiation in 3T3-
L1 cells (261–265) and in mice (265–268). However, recently,
Yang et al. described that the same doses of SFN and SFEN
(sulforaphene) yielded stronger effects than AITC, BITC, or
PEITC in inhibiting the differentiation of 3T3-L1 adipocytes.
SFEN was also efficient in inhibiting adipogenesis in human
adipose tissue-derived stem cells. The SFEN effect occurred when
added early in differentiation and was mediated by decreased
C/EBPβ stability, lowering PPARγ and C/EBPα expression (261).
These results are in accordance with those reported previously
by Chen et al. who showed that adipogenesis inhibition occurred
in 3T3-L1 adipocytes through uptake of SFEN via the Hedgehog
signaling pathway (263). Earlier, in 3T3-L1 preadipocytes, Choi
et al. found that SFN arrested the cell cycle in the G0/G1 phase by
increasing the expression of p27 and decreasing the expressions
of cyclin D1, CDK4, cyclin A, and CDK2 (262). In the same study,
the authors also found that SFN decreased the phosphorylation
of ERK1/2 and Akt. Similar results were obtained by Choi
et al. when 3T3-L1 preadipocytes were exposed to I3C; in this
case, the cells were arrested in the transition from the S to the
G2/M phase together with an increase in p27 expression and
a diminished cyclin A expression (269). They also found that
inhibition of adipogenesis, similar to that observed with SFEN,
was achieved at an early stage of differentiation, and I3C regulates
lipid synthesis via AMPKa signaling with diminished ERK and
Akt phosphorylation. Yan et al. found that DIM arrested 3T3-L1
proliferation at the G0/G1 phase, but no effect on I3C was found.
Moreover, the researchers also concluded that the inhibition of
adipogenesis is mediated by targeting USP2 activity (265). In
addition, the activation of apoptosis in 3T3-L1 adipocytes was
found for SFN through downregulation of the Akt/p70s6k1/Bad
pathway and upregulation of the ERK pathway as reported by Yao
et al. (270).

In mice fed with an HFD to induce obesity, Choi et al.
found that SFN prevents an increase in body weight without
changes in food intake. SFN treatment also decreased circulating
levels of leptin and cholesterol and increased the level of
adiponectin. Fat deposition decrease inWAT takes place through
inhibition of C/EBPα and PPARγ and the suppression of
lipogenesis via activation of the AMPKa pathway (268). In
HFD fed mice, Chuang et al. described that BITC and PEITC
prevent body weight gain in a dose-dependent manner with
diminishing adipogenesis and prevention of hepatosteatosis
through inhibition of the lipogenic regulatory transcription
factors PPARγ, LXRα, and SREBP1c, and a decrease in their
regulated downstream enzymes (266). They also found that BITC
and PEITC had similar effects and that 3T3-L1 cells were arrested
in the G0/G1 phase. Similar results have been described for AITC
also in HFD fed mice; in this case, the authors found prevention
of body weight gain, decreased fat deposition in WAT and
liver, and diminished inflammation. Diminished liver lipogenesis
was mediated through activation of Sirt/AMPKa signaling,

downregulation of SREBP1c, and upregulation of PPARα (271).
They also investigated the decreasing liver inflammation and
found diminished levels of TNFα, IL1β, and IL6 together with the
activation of NF-κB signaling. Treatment of HFD fed mice with
I3C (267) or DIM (265) also resulted in a decrease in body weight
consequent to fat mass reduction and lipogenesis inhibition. Yagi
et al. described that PEITC reduces food intake by activating
leptin signaling via hypothalamic leptin receptors (Ob-Rb) and
the Janus kinase 2 signal transducer (272). Furthermore, among
mice, it has been found through the intraperitoneal glucose
tolerance test that AITC reduces hyperglycemia and increases
exogenous glucose consumption, ameliorating insulin sensibility
(273). Ameliorated insulin sensibility was also found for BITC,
PEITC, and AITC in HFD fed mice (266, 274). Jayakumar
et al. found that I3C and DIM treatment of HFD fed mice
induces decreases in the levels of glucose, insulin, and glycated
hemoglobin and ameliorated overall oxidative stress (275). It
has recently been reported that SFN could prevent Alzheimer
progression and cerebral ischemia (276). Thus, all these pieces
of evidence highlight that the use of GLS derivatives from
cruciferous vegetables might be considered for the treatment
of MetS.

Human studies aimed at investigating the effect of ITCs
and indoles on MetS are scarce. Treatment of 40 hypertensive
individuals (without diabetes and with normal levels of
cholesterol) with 10 g of dried broccoli sprouts during a 4-
week period failed to improve endothelial function (277).
Another clinical trial examined 81 patients randomized to
three groups: one to consume 10 g/d of broccoli sprouts
powder (BSP), the other to consume 5 g/d of BSP, and
another to consume the placebo for 4 weeks. The results
showed that only the consumption of 10 g/d BSP resulted
in a significant decrease in serum insulin concentration and
HOMA-IR with improved insulin resistance (278). Japanese
males with hepatic abnormalities treated with broccoli sprout
extract capsules for 2 months showed significantly decreased
serum levels of liver function markers (ALT, γGTP, and
alkaline phosphatase activity); no changes were observed in
the placebo group (279). A controlled trial conducted among
healthy men analyzed the potential effect of 10 g freeze-dried
nasturtium leaf (rich in BITC) administration on the levels
of certain gut hormones that regulate food intake and satiety.
The patients avoided the intake of cruciferous vegetables for
a 1 week before the intervention. The results showed that the
levels of peptide YY (PYY), an anorexigenic gut hormone,
were increased after intake of freeze-dried nasturtium leaf
during 6 h, and their effect could be more or less depending
on whether they carried a polymorphism of the bitter taste
receptor TAS2R38. Obese individuals frequently have lower
levels of PYY and bariatric by-pass surgery results in elevated
PYY levels. Therefore, administration of extract nasturtium
(or BITC) or special diets containing nasturtium might be
considered in the treatment of obesity (280). A randomized
trial of 11 healthy individuals (www.controlled-trials.com
ISRCTN19147515) assessed the effect of a dose of mustard (rich
in AITC) on energy expenditure during 150min. The results
failed to show any relevant thermogenic response at the highest
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FIGURE 5 | Representative scheme of the main components of the MetS that ultimately lead to cardiovascular problems and others. Upper of the figure are shown

the effects of isothiocyanates that have been found and that could prevent MetS development.

tolerable dose (281). Finally, López-Chillón et al. conducted
a clinical trial of 40 healthy overweight subjects treated with
broccoli sprouts over a long period (ClinicalTrials.gov ID NCT
03390855). The treatment phase consisted of 30 g/day of broccoli
sprouts consumed for 10 weeks followed by a phase of 10
weeks of normal diet without consumption of these broccoli
sprouts. The results showed a positive effect on inflammatory
parameters with a significant decrease in IL6 levels that was
maintained after treatment. In addition, the levels of GLSs, ITCs,
and theirmetabolites (GRA, IB, SFN, SFN-GSH, SFN-NAC, SFN-
CYS, I3C, and 3,3-DIM) were determined in urine as a control
of broccoli intake, increased significantly during the treatment
period, and decreased thereafter (282).

Figure 5 is a schema of how the increase in WAT size results
in increased infiltration of pro-inflammatory macrophages and
secretion of pro-inflammatory cytokines. High energy intake
also promotes lipid deposition and inflammation in the liver.
Both contribute to systemic inflammation that results in insulin
resistance, dyslipidemia, and hypertension (i.e., MetS) which are
the main risk factors for cardiac diseases. It shows also the
described effects of ITCs and indoles that improve MetS.

CONCLUSIONS

In this review, the important regulatory biological role of
cruciferous GLSs derivatives (ITCs and indoles) has been
highlighted. Many scientific studies have put in evidence that
GLSs derivatives play a key role in regulating central cell
pathways and have epigenetic effects. For this reason, GLSs
derivatives have been proposed as a possible co-therapy for the
treatment of certain cancers, given their activity in the cell cycle,
apoptosis, and angiogenesis regulation. More recently, they have
been proposed as a possible mechanism in the prevention and/or
therapy of MetS or disorders afflicting the central nervous system
due to their anti-inflammatory effects. The results in animal
and cell studies in relation to the MetS have shown that GLSs
derivatives (ITCs and indoles) treatment reduces fat deposition
in WAT and liver, decreases proliferation and differentiation of
adipocytes, promotes WAT browning with an increase of energy
expenditure, improves insulin sensitivity, reduces inflammation
and decreases food intake. These results are promising to GLSs
derivatives as a possible treatment to prevent MetS, however,
there are few human trials. In addition, caution should be
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exercised since certain toxic effects have also been described
(276). When other vegetable components with a high antioxidant
capacity, like β-carotenes and vitamin E, have been administered
as co-treatment or preventive agents for certain cancers, adverse
effects have been found, reaching the point of having to stop
the study because cancer progressed faster than among those
that did not receive the supplement (283, 284). It is for this
reason (without discarding the therapeutic application and the
given scientific evidence regarding the important biological role
of GLS derivatives in regulating key cellular pathways) that
the consumption of cruciferous vegetables, and vegetables in
general, in the diet should be claimed. There is a need to return

to a healthier diet in which the pyramid base must constitute
vegetable foods, of which cruciferous vegetables are essential.
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