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We aimed to determine the prebiotic impact of Mushroom Bulgaria inquinans (BI) on

the host immune response and gut microbiota. Male C57BL/6 mice were fed a diet

supplemented with 0, 1, or 2% BI for 4 wks. Compared to mice fed with a control diet

(0% BI), mice fed with 1 or 2% BI had an increase of T cell proliferation from the spleen,

but such change was not found between 1 and 2% BI treated mice. Also, BI at 2%

increased the production of IL-2 of splenocytes stimulated with T-cell mitogens, but BI

at 1 and 2% did not affect productions of other splenic-T cell cytokines including IL-4,

IL-10, and IFN-γ. Interestingly, BI at 1 or 2% inhibited T cell proliferation of mesenteric

lymph node (mLN) but this effect was not found between 1 and 2% BI treated mice.

Furthermore, BI inhibited the production of IL-2 in anti-CD3/CD28-stimulated T cells from

mLN in a dose-dependent manner. Meanwhile, BI at 2%, not 1% inhibited the production

of IL-4, IL-10, and IFN-γ of mLN. Since BI at 2% produced a more significant effect

on the immune response, we further used BI at 2% to evaluate the effect of BI on gut

microbiota. Of note, BI reduced the diversity of gut microbiota and resulted in an increase

of Faecalibaculum and Parabacteroides abundance and the decrease of Allobaculum,

Candidatus_Saccharimonas, and Rikenella abundance at the genus level. Finally, the

correlation was observed between specific bacteria genera and the productions of T-cell

cytokines from mesenteric lymphocytes: Rikenella and Candidatus_Saccharimonas

correlated positively with IL-2, IL-4, IL-10, and IFN-γ; Bacteroides and Parabacteroides

correlated negatively with IL-2 and IL-4; Faecalibaculum correlated negatively with IFN-γ

and IL-4 and Bacteroides and Bifidobacterium correlated negatively with IFN-γ. The

specific role of each intestinal microbiota observed is still unclear, but BI might exert

a prebiotic effect on gut microbiota by increasing the abundance of potentially beneficial

bacteria (Faecalibaculum). This is helpful for further demonstrating the healthy-promotion

mechanism of B. inquinans.
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INTRODUCTION

Both innate and adaptive immune functions play crucial roles
in preventing and controlling pathogenic infection, neoplasia,
and maintaining immune homeostasis in the body. Currently,
there are limited approaches available to efficiently modulate
the immune response. Nutritional interventions that involve
optimizing the intake of essential nutrients and using potential
functional foods have become an increasingly popular strategy
to regulate the function of immune cells. Edible mushrooms,
containing many bioactive components such as polysaccharides,
glycoproteins, proteins, lipids, and secondary metabolites,
have been explored extensively for their immunomodulating
properties including enhanced NK activity (1), promoted
dendritic cell maturation and functions (2), augmented vaccine
efficacy to protect against infection (3), and anti-obesity (4)
in animal models. Besides, the immunomodulating properties
including improved γδ- and NK- T cell proliferation and
activation, increased IgA production in healthy young adults (5),
and anti-inflammatory effects in ulcerative colitis and Crohn’s
disease (6, 7) are observed in edible mushrooms.

The non-lichenized ascomycete Bulgaria (B.) inquinans is an
edible wood-inhabiting ascomycete growing on freshly felled
oak and widely found in the area of Changbai Mountain
(Northeastern of China). The fruit bodies of B. inquinans are
delicious food after treated by Na2CO3 solution. However,
eating too much can cause lip-swelling or valgus, which can
be due to photosensitive dermatitis. Because of this swelling,
it is sometimes referred to as the “pig-mouth mushroom.”
B. inquinans has been used as food and traditional antitumor
medicine for many years (8). Also, evidence shows that several
compounds isolated from the fruit bodies of B. inquinans
have been demonstrated to have antibacterial (9), antitumor
(10), antipruritics and antierythema effects (11). Importantly,
polysaccharides which exist in the fruit bodies of B. inquinans
have been isolated and purified and then demonstrated to have
antioxidant activity in vitro (12) and the immunological activities
including ConA- and LPS-induced lymphocyte proliferation
in vivo (13).

Gut microbiota plays a crucial role in regulating the systemic
immune function during health and diseases (14). Whereas, gut
microbial ecology can be modulated through diet (15, 16). For
example, calorie restriction diets (low fat- or carbohydrate diets)
could result in weight loss by the increase of the prevalence of
Bacteroidetes (17). In addition to the effect of macronutrients
on altering the gut microbiota, a deficiency in micronutrients
could alter the gut microbial communities in the gut (18, 19).
Although dietary fiber is not digestible by the mammalian host,
it can be readily digested by the intestinal microbiota (20, 21).
Therefore, dietary intervention is a potential tool to regulate
gut microbial ecology and have applications in maintaining the
intestinal homeostasis, preventing and treating chronic diseases
associated with microbial dysbiosis.

In recent years, studies performed utilizing animal models
have shown that consuming some medicinal (22, 23) and edible
mushrooms have the health promoting-prebiotic effect (24, 25).
Especially, the β-glucans found in edible mushrooms such as

white button mushroom or B. inquinans could enhance immune
function via stimulating toll-like receptors on immune cells
(13). Edible mushrooms may support healthy immunity and
affect inflammatory responses through interaction with the gut
microbiota (26), which indicated that some of the benefits
of edible mushrooms may profit from their impact on the
microbiota. Although oral supplementation with polysaccharide
isolated from B. inquinans is effective in modulating certain
immune functions (27), little is known about the potential
immunological and microbiota effects of fruit bodies of
B. inquinans. The current study aimed to investigate the effects
of B. inquinans feeding on host immune functions including
peripheral andmesenteric immune organs andmicrobiota as well
as a possible mechanism of action in mice.

MATERIALS AND METHODS

Diet and Mice
Fruit bodies of B. inquinans (BI) were purchased from
Tonghua in Jilin Province, China. After its authentication was
confirmed by Professor Xiangmei Zhang, a voucher specimen
(NoF121733) was deposited in the College of Biology Science and
Engineering of Hebei University of Economics and Business for
future reference.

After B. inquinans was treated with Na2CO3, the mushroom
powder was prepared and added at 1 or 2% (wt:wt) to an
AIN-93G diet (Research Diets) (1% BI and 2% BI, respectively)
as previously described (3). These doses are considered
translationally relevant because they are achievable through the
normal dietary intake in humans. The 1% dose for mice can be
converted to a daily consumption of 1.1 g fresh mushrooms/kg
body weight for humans by using isocaloric calculation (28) or
∼75 g fresh mushrooms/d (1 serving) for a person weighing 65–
70 kg. Similarly, the 2% mushroom is equivalent to 2 servings/d.

All experimental procedures were conducted following the
Guide for the Care and Use of Laboratory Animals by the
National Institute of Health (NIH Publications No. 8,023, revised
1,978) and approved by the Institutional Animal Care and
Use Committee at Huaihe Hospital of Henan University (No:
HHYY2018008). Specific pathogen-free male C57BL/6 mice
(6–8 weeks of age) were obtained from Nanjing Biomedical
Research Institution of Nanjing University (Nanjing, China) and
individually housed in a controlled environment (temperature
23◦C, relative humidity 45%) with a 12:12 h light: dark
cycle. Mice were provided with free access to water and the
experimental diet ad libitum. Mice were divided randomly into
three experimental treatment groups (Figure 1A). The control
group was fed a control diet and the 1% and 2% group was fed
1% and 2% BI, respectively. Body weight was measured weekly
until the end of the intervention.

Determination of Cytokines and T Cell
Proliferation
After feeding for 4 wks, mice (n= 6/group) were euthanized with
CO2 asphyxiation followed by exsanguination. The spleens and
mesenteric lymph nodes (mLN) were aseptically collected and

Frontiers in Nutrition | www.frontiersin.org 2 October 2020 | Volume 7 | Article 144

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Sang et al. Bulgaria inquinans, Immune Responses, and Microbiota

FIGURE 1 | Effect of B. inquinans supplementation on body weight. (A) Flow diagram of this study. (B) Body weight changes of the mice. Values are means ± SEM (n

= 6 mice/group). Control, control diet; BI, B. inquinans.

single-cell suspensions were prepared as previously described
(3), and viable cells were determined and counted using trypan
blue exclusion. Splenocytes and mesenteric lymphocytes were,
respectively, seeded into 24-well culture plate at 3 × 106/well in
the presence of plate-coated anti-CD3 (5µg/ml) and soluble anti-
CD28 (1µg/ml) mAbs (anti-CD3/CD28) or ConA (1.5µg/ml)
for 48 h to determine cytokine productions of IFN-γ, IL-2, IL-4,
and IL-10 by T cells using ELISA kits (all from BD Pharmingen).

Furthermore, after splenocytes and mesenteric lymphocytes
were stimulated with anti-CD3/CD28 for 72 h, cells were
collected to determine T cell proliferation by measuring the ki-
67 expression in total CD3+ T cells using a Mindray Bricyte E6
flow cytometry (Shenzhen, China).

Cell Subpopulations
To determine the percentage of total T cells (CD3), macrophages
(F4/80), and NK cells (NK1.1), splenocytes and mesenteric
lymphocytes were blocked with anti-CD16/CD32 mAb (Fc
block from eBioscience, San Diego, CA) and then multi-
stained with fluorescence-conjugated anti-CD3 (T cells), anti-
F4/80 (macrophages), and anti-NK1.1 (NK cells) mAbs (all
from eBioscience). To determine the T cell proliferation, anti-
CD3/anti-CD28-stimulated cells were blocked and then multi-
stained with fluorescence-conjugated anti-CD3 and anti-ki-67
(a cellular proliferation marker) mAbs (eBioscience) using the
Foxp3/Transcriptional Factor Staining Buffer Set (eBioscience).
All antibodies and reagents were from eBioscience. Data acquired
on a Mindray BriCyte R© E6 flow cytometer (Shenzhen, China)
were analyzed using FlowJo 10.0 software (Tree Star).

Microbiota Analysis
Murine feces were collected on day 28, immediately frozen in
liquid nitrogen, and stored at −80◦C until DNA extraction.
Total genome DNA was extracted using the CTAB/SDS
method. The V3-V4 region of 16S rRNA genes was PCR-
amplified by using a specific primer (341F-806R) with Barcode
(Supplementary Figure 1). All PCR reactions were performed
in 30 µL reactions with 15 µL of Phusion R© High-Fidelity
PCR Master Mix (New England Biolabs), 0.2µM of forward

and reverse primers and 10 ng template DNA. Thermal cycling
consisted of initial denaturation at 98◦C for 1min, followed by
30 cycles of denaturation at 98◦C for 10 s, annealing at 50◦C for
30 s, and elongation at 72◦C for 30 s, followed by a final step of
72◦C for 5min, and sequenced on an Ion S5TM XL platform by
Wuhan Servicebio Technology Co. Ltd (Wuhan, China).

Sequence analysis of the clean reads for all samples
was performed by UPARSE software (UPASE v7.0.1001) at
≥97% sequence similarity cut off following with SILVA
with a confidence score threshold of 80% using Mothur
software to obtain taxonomic information and its relative
abundance. To study the phylogenetic relationship of different
Operational Taxonomic Units (OTUs), and the difference of
the dominant species in different samples (groups), multiple
sequence alignment was conducted using the MUSCLE software
(Version 3.8.31) (29).

Statistics Analysis
Data in the tables or figures were presented as means ± SEM.
Statistical analysis was carried out by one-way ANOVA test
followed by a Bonferroni post hoc test for multiple comparisons
or non-paired Student’s t-test using GraphPad Prism 8.0
software. Alpha diversity (observed-species, Chao, Ace, Shannon,
and Simpson) was performed with the QIIME (Version1.7.0) and
the data were displayed with the R software (Version 2.15.3).
To explore the key gut flora which may be related to the
inflammation of the gut, Spearman’s correlation analyses were
performed among the known gut genera and the production of
cytokines secreted by mesenteric lymphocytes, and Spearman’s
correlation analyses were performed using GraphPad Prism 8.0
software. Significance was set at P < 0.05.

RESULTS

Body Weight
During the whole experiment, all mice in each diet group
remained healthy. Daily food intake of group pair-fed mice was
from 2.9 to 3.5 g. No difference in body weight was found among
the diet groups at the start or the end of the study (Figure 1B).
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FIGURE 2 | Effect of B. inquinans supplementation on splenocyte populations. On day 28, mice were sacrificed with CO2 and spleen was collected to determine the

immune cell populations including T cells [CD3, (A,B)], macrophages [F4/80, (C,D)] and NK cells [NK1.1, (E,F)] by flow cytometry described as the “Materials and

Methods” section. Values are means ± SEM (n = 6 mice/group). Means without a common letter differ at P < 0.05. Control, control diet; BI, B. inquinans.

Cell Subpopulations in Spleen and
Mesenteric Lymph Node
The percentage and numbers of total T cells (CD3+)
(Figures 2A,B) and NK cells (NK1.1+) (Figures 2C,D) in
the spleen did not differ among the 3 diet groups. However, the
percentage and number of Mø (F4/80) in mice fed with the 2%
BI were lower than those of mice fed the control and 1% BI diet
(Figures 2C,D). In the mesenteric lymph node, the percentage
of total T cells, NK cells, and Mø did not differ among the 3 diet
groups (Figure 3).

Cytokine Production in Spleen and
Mesenteric Lymph Node
In the spleen, mice fed with the 2% BI diet had the highest
amounts of IL-2 secreted by T cells stimulated either with anti-
CD3/CD28 or ConA than those of mice fed with the control

and 1% BI diet (Table 1). IFN-γ (Th1 cytokine), IL-4, and IL-10
(Th2 cytokines) production did not differ among the different
diet groups (Table 1).

In the mesenteric lymph node, anti-CD3/CD28-stimulated
secretion of IL-2 was significantly lower in the group fed with the
1% BI diet than in the control diet group and was further lessened
in the 2% BI diet group (Table 2). In addition, the 2% BI-fed
mice had significantly lower IFN-γ, IL-4, and IL-10 production
compared to the control group (Table 2). However, no difference
for IFN-γ, IL-4, and IL-10 production was found between the
control and 1% BI diet group (Table 2).

T Cell Proliferation in Spleen and
Mesenteric Lymph Node
In the spleen, T cell proliferation was significantly increased in
the 1 or 2% BI diet group compared to the control group, but
no difference in such changes was found between the 1 and 2%
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FIGURE 3 | Effect of B. inquinans supplementation on mesenteric lymphocyte populations. On day 28, mice were sacrificed with CO2 and all mesenteric lymphocyte

populations was collected and pooled to determine the immune cell populations including T cells [CD3, (A)], macrophages [F4/80, (B)] and NK cells [NK1.1, (C)] using

flow cytometry described as the section Materials and Methods. Values are means ± SEM (n = 6 mice/group). Control, control diet; BI, B. inquinans.

TABLE 1 | Effect of BI supplementation on cytokine production of splenocytes

stimulated with T-cell mitogens.

Cytokines Diet

Control 1% BI 2% BI

IL-2 (pg/ml)

Anti-CD3/CD28 888 ± 235a 830 ± 142a 1933 ± 220b

ConA 24 ± 10a 33 ± 20a 122 ± 35b

IFN-γ (ng/ml)

Anti-CD3/CD28 65.4 ± 5.5 65.59 ± 8.3 48.92 ± 6.5

ConA 12.93 ± 2.90 15.55 ± 3.59 17.77 ± 4.24

IL-4 (pg/ml)

Anti-CD3/CD28 306 ± 43 614 ± 260 969 ± 290

ConA ND ND ND

IL-10 (pg/ml)

Anti-CD3/CD28 14.36 ± 1.34 17.20 ± 0.85 16.12 ± 1.10

ConA 326 ± 108 538 ± 94 555 ± 91

Values are means ± SEM (n = 6 mice/group). Different letters indicate a statistically

significance (P < 0.05). ND, Non-detectable; Control, control diet; BI, B. inquinans.

BI groups (Figure 4A). Contrary to splenic T cell proliferation,
mice fed with the 1 or 2% BI diet showed an inhibitory effect on
T cell proliferation of mesenteric lymphocytes when compared
with the control mice, but no difference in such changes was
found between the 1 and 2% BI treated groups (Figure 4B).

Gut Microbiota
A total number of 90 7,200 raw sequences were obtained with
an average of 75,600 tags per mouse. After sequence processing,

TABLE 2 | Effect of BI supplementation on cytokine production of mesenteric

lymphocytes stimulated with T-cell mitogen (Anti-CD3/CD28).

Cytokines Diet

Control 1% BI 2% BI

IL-2 (ng/ml) 4.36 ± 0.30a 2.14 ± 0.31b 0.39 ± 0.05c

IFN-γ (ng/ml) 54.71 ± 6.90a 38.66 ± 6.53a 11.54 ± 5.84b

IL-4 (pg/ml) 177 ± 9a 143 ± 26a 48 ± 10b

IL-10 (ng/ml) 7.06 ± 2.46a 7.82 ± 2.29a 0.71 ± 0.16b

Values are means ± SEM (n = 6 mice/group). Different letters indicate a statistically

significance (P < 0.05). Control, control diet; BI, B. inquinans.

847,008 clean reads of 16S rRNA (accounting for 93.40% of the
raw reads) with an average length of 404 bp were obtained to
be used for further analysis. The sequences were clustered into
OTUs with 97% similarity cut off, and a total of 724 OTUs were
obtained. Then the OTUs for bacteria were categorized into 23
phyla, 31 classes, 62 orders, 97 families, 136 genera, and 68 species
by making a comparison to a SILVA database.

The rarefaction curve is used to determine whether the current
sequencing depth of each sample can be enough to reflect the
microbial diversity. As shown in Figures 5A,B, with the number
of sequences increased, the number of identified OTUs reached
saturation of the rarefaction curves, which demonstrated that the
samples used in this study were commendably able to reflect the
diversity of the bacterial richness and diversity that could be used
for the following difference analysis. Meanwhile, comparisons
of OTUs showed an overall similar richness of OTUs between
control and BI-treatedmice at the 3% similarity level (Figure 5B).
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FIGURE 4 | Effect of B. inquinans supplementation on T cell proliferation from splenocytes and mesenteric lymphocytes. On day 28, splenocytes and mesenteric

lymphocytes were stimulated with plated-coated anti-CD3 (5 µg/ml) and soluble anti-CD28 (1 µg/ml) Abs to evaluate T cell proliferation pregated on CD3+ using flow

cytometry. Values are means ± SEM (n = 6 mice/group). Means without a common letter differ at P < 0.05. Control, control diet; BI, B. inquinans.

FIGURE 5 | Rarefaction curves for the control group and 2% BI administration group. On day 28, the feces were collected to evaluate the gut microbiota using unique

OTUs. (A) Rarefaction curves showing unique OTUs at the 97% threshold. (B) Venn Graph showing common and unique OTUs in the control group and 2% BI

administration group. Control, control diet; BI, B. inquinans.

Furthermore, the Venn diagram shows the common and unique
OTUs between two group samples (Figure 5B). The percentages
of OTUs unique to the Control and BI groups were 27.2, and
1.39%, respectively, and 71.4% OTUs were shared by two groups,
which suggested the similarity in the bacterial structure between
the two groups.

As an alternative approach of bacteria richness and diversity
assessment, we determined the Chao, Abundance-based
Coverage Estimator (Ace), Shannon, and Simpson diversity. In
consistent with the rarefaction curve data from the sequenced
OTUs, feeding BI had a reduced trend in either Chao or Ace
index between these two groups (Figures 6A,B). Further, the
Shannon and Simpson diversity indices of the fecal microbiome
were evaluated in these two groups. As shown in Figures 6C,D,
dietary BI reduced both diversity indices (p< 0.05). These results
suggested that feeding BI could reduce the richness and diversity
of the microbiome.

There was no significant change at the phylum, class,
order, or family levels after 4 wks feeding between control
and BI groups (Data not shown). At the genus level, we
performed the phylogenetic relationship of genus horizontal
species between the control and BI groups through multiple

sequence alignment. Figure 7 displays the relative abundance
of the top 30 genera among the two different groups. At the
genus, BI supplementation increased the relative abundance of
Faecalibaculum and Parabacteroides and decreased the relative
abundance of Allobaculum, Candidatus_Saccharimonas, and
Rikenella. Also, BI supplementation showed a tendency toward
increased SCFA-producing bacteria (Bifidobacterium) and lactic
acid-producing bacteria (Lactobacillus). These distinct responses
of individual genera to BI suggests that BI might profoundly
impact the gut microbial community.

Correlation Between Specific Gut Genera
and Mesenteric Cytokine Level
Figure 8 revealed that the cytokines IL-2, IL-4, IL-
10, and IFN-γ correlated positively with Rikenella
and Candidatus_Saccharimonas; while Bacteroides and
Parabacteroides correlated negatively to a significant
degree with IL-2 and IL-4. Moreover, IFN-γ secreted by
mesenteric lymphocytes significantly correlated negatively
with Faecalibaculum, Bacteroides, and Bifidobacterium, and
Faecalibaculum correlated negatively with IL-4 produced by
mesenteric lymphocytes.
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FIGURE 6 | The richness and diversity of the bacterial community in the control group and 2% BI administration group. (A) Chao index; (B) Ace index; (C) Shannon

index; (D) Simpson index. Control, control diet; BI, B. inquinans.

DISCUSSION

Studies show that the dietary intake of a variety of mushrooms,
their extracts and isolated compounds are effective in modulating
some aspects of immune function (30), which is crucially
important to eliminate self-antigens and invading pathogens.
Furthermore, consumption of edible mushrooms has the
capability of modulating gut microbial populations (31), which
in turn may exert pro- and anti-inflammatory responses
by regulating the function of immune cells during immune
responses (14, 32, 33). Since some components isolated and
purified from B. inquinans can alter the body’s immune response
(11, 13), it has been implied that whole B. inquinans treatment
could influence the body’s immune system and gut microbial
ecology. To our knowledge, for the first time, this study shows
that feeding mice a 4-wk dietary supplementation of mushroom
B. inquinans affected the body’s immune responses, including
the peripheral and mucosal immune system by enhancing
mitogens-stimulated T cell proliferation and IL-2 production
of splenocytes while suppressing mitogen-stimulated T cell
proliferation and T-cell secretion of IL-2, IL-4, IL-10, and
IFN-γ in mesenteric lymphocytes and the perspective of gut
commensal bacteria.

In the human body’s immune system, there are several main
types of immune cells, such as macrophages, NK cells, and
T cells. Mushrooms and their extracted polysaccharides have
been shown to possess immunological activities that can protect
the body from microbial and parasite attacks via modulating
the function of immune cells. e.g., white button mushrooms
(WBM) could enhance NK activity, not affect NK cell numbers
in C57BL/6 mice (1) and dietary WBM can enhance the efficacy
of vaccination against microbial infection (3). Polysaccharides
isolated from B. inquinans enhanced splenic lymphocyte
proliferation in malaria-bearing mice and normal mice (13,
27), which suggest that B. inquinans could impact the body’s
immune functions possibly via its’ bioactive components such
as polysaccharides. Indeed, B. inquinans treatment enhanced
the proliferation of splenic T cells when compared with the
control diet. In contrast, T cell proliferation of MLN was
significantly inhibited by B. inquinans treatment. However,
which bioactive components such as polysaccharides isolated
from B. inquinans could affect intestinal immune response needs
to be further evaluated.

T cell-mediated immune response is pivotal in modulating
both the type and extent of the immune responses. T helper (Th1)
cells mainly produce IL-2 and IFN-γ and are crucial to defense
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FIGURE 7 | The changes in the relative abundance at the genus level of the gut microbiota of mice in the control group and BI treatment group at day 28. (A) The

relative abundance of the top 30 genera between two groups. (B) BI affected the specific bacterial genera. Values are means ± SEM (n = 6 mice/group). Control,

control diet; BI, B. inquinans.

against intracellular pathogens infection. Th2 cells mainly secrete
IL-4 and IL-10 and are mainly involved in humoral responses
to extracellular infection. Polysaccharides from fungi have been
demonstrated to modulate the immunological activities such
as the induction of Th cell reaction in a different manner.
However, it lacks evidence for the effect of B. inquinans
or its extracted polysaccharides on cytokine production of
T cells. Polysaccharides isolated from B. inquinans could
promote splenic lymphocyte proliferation (13, 27), indicating
that B. inquinans treatment might have the ability to change
cytokine production of immune cells. As expected, B. inquinans
administration increased the production of IL-2 of mitogens-
activated T cells from the spleen while decreasing the production
of cytokines including IL-2, IL-4, IL-10, and INF-γ from mLN.
IL-2 is a crucial cytokine to promote T cell survival, growth,
and expansion (34). These results indicate that B. inquinans
may promote or suppress T cell proliferation possibly via the
enhancement or impairment of IL-2 from the spleen or mLN,

respectively. Furthermore, since impairing T cell responses in
the mLN, B. inquinans may be undesirable in certain microbial
infection. This is further supported by our feeding experiment
in vivo in which B. inquinans treatment decreased the survival
and increased the burden of bacterial in the liver and spleen
in Salmonella-infected mice (unpublished results). However, it
may be beneficial for certain autoimmune and inflammatory
disorders where overactive T-cell mediated response plays a role.
Thus, future studies using appropriate animal models are needed
to further evaluate the clinical significance of the observed
immunomodulatory effects of B. inquinans.

It is well-known that gut microbiota plays a central role in
the immune homeostasis or the maintenance of a stable immune
system (35). A breakdown of intestinal immune homeostasis
is a major cause of chronic inflammatory bowel diseases (36).
In addition, the gut microbial dysbiosis is implicated in the
etiopathogenesis or manifestation of other diseases such as
multiple sclerosis and Alzheimer’s disease (37).
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FIGURE 8 | Correlation between the specific bacterial genera and cytokines

secreted by mesenteric lymphocytes n = 6 mice/group. *Statistical significant

based on a P < 0.05 (Spearman’s correlation coefficient). The heat map was

generated using Prism 8.0 software.

Therefore, how to maintain the symbiotic relationship that
the immune system shares with the microbiota may be a
powerful strategy to improve human health. Prebiotics could
suppress endogenous pathogens found with the intestinal tract
via inducing a stronger immune system against exogenous
pathogens (38, 39). The prebiotics are good ingredients (such as
mushroom) that are selectively utilized by host microbes which
provide various health benefits. Oligosaccharides and fibers are
the major sources of prebiotics that can regulate gut microbiota
composition with increased numbers of bifidobacteria and
improve gut barrier function (40, 41). Studies have found
that the important sources of prebiotics, which are non-
digestible polysaccharides derived from mushrooms and other
foods, can have health-promoting effects via enhancing the
growth of gut probiotic bacteria (25, 31, 42). Lentinula edodes-
derived polysaccharide L2 has shown great effects on the
gut microbiota and immune-stimulating activity (43) and
Lentinula edodes-derived β-1→ 3,1→ 6-glucan has the anti-
inflammatory activities (44). Although B. inquinans-derived (1→
6)—β-D-glucan has been proved to have the immunological
activities such as mitogens (LPS and ConA)-induced lymphocyte
proliferation, whether B. inquinans treatment could influence
the gut microbiota is still unknown. To our knowledge, we
first demonstrated that B. inquinans reduced the diversity and
evenness of gut microbiota in the feces. Consistent with our
study, mushroom Lentinula edodes-derived polysaccharide could
reduce the diversity and evenness of gut microbiota along
the intestine (43), indicating that mushroom polysaccharide
might regulate gut microbial diversity. Currently, as little is
known about the structure of microbiome interaction networks,
May’s study suggests that species diversity can be problematic
for community stability (45). A mathematical analysis from
Foster and colleagues predicts that high species diversity leads
to unstable microbiome communities (46). Thus, low species
diversitymight be beneficial tomake gutmicrobial ecology stable.
These data suggest that dietary B. inquinans could contribute to
gut microbiome stability.

B. inquinans did not affect the microbial composition at the
phylum, class, order, or family levels, but it significantly
altered the microbial composition at the genus levels

including increasing the abundance of Faecalibaculum and
Parabacteroides and decreasing the abundance of Allobaculum,
Candidatus_Saccharimonas, and Rikenella. Importantly,
these bacteria were positively or negatively correlated with
cytokines secreted by mesenteric lymphocytes. For example,
Faecalibaculum has been shown to have anti-tumor properties
(47) and Candidatus_Saccharimonas is involved in maintaining
normal intestinal function (48). Rikenella is positively correlated
with inflammatory factors (49) and correlated with chronic
systemic inflammatory disorders (50), suggesting that the
Rikenella contributes to promoting inflammation. Thus,
current data indicate that B. inquinans could influence the host
immune response possibly via modulating the abundance of
these bacteria.

Currently, the specific role of each intestinal microbiota
observed in this study is unknown. But our results reported
the overall alteration in the structure of intestinal microbiota,
which might be due to the direct effect of fungal polysaccharide
on enterocytes that can secret cytokines and modulate the
immune responses to the gut microbiota (51), which finally
shaped the gut microbiota ecology (52). Inflammatory bowel
disease is characterized by gut microbiota dysbiosis (53).
However, B. inquinans showed great effects on gut microbiota
and immunological activities. Therefore, further studies are
urgently needed to explore the possibility of the preventive
and/or therapeutic application of B. inquinans to dysbiosis-
related diseases.

In the present study, we only explored the effects of
B. inquinans on the splenocyte and mesenteric lymphocyte
functions and the gut microbiota in the feces. Thus, one
limitation of this study is the lack of determining the effects of
B. inquinans treatment on the gut microbiota in the intestines
(small intestine, cecum, and colon contents) and the immune
response in other gut-associated lymphoid tissues (Peyer’s patch
and small intestine lamina propria). Cignarella et al. (49)
demonstrated that mice fed with the normal diet for 0 and 4
wks did not affect the diversity and richness of gut microbiota
community and gut microbiota composition; whereas different
diets could significantly change gut microbiota community,
suggesting that the normal diet might not affect gut microbiota
ecology in a controlled environment in mice. However, to strictly
present our data, another limitation of the study is the lack of
evaluating whether there is a difference in the immune response
and gut microbiota at baseline.

Furthermore, sincemushroom B. inquinans can be considered
toxic in large quantities because of photosensitive dermatitis, it
has not been used globally as an edible mushroom (only used
as an edible mushroom in China), indicating that it cannot be
referred directly to food and special attention should be paid to
the preparation of meals with B. inquinans.

CONCLUSIONS

In conclusion, feeding B. inquinans promoted mitogen-
stimulated T cell proliferation and T-cell secreted IL-2
from peripheral immune tissue (Spleen) while inhibited
mitogen-stimulated T cell response including T cell
proliferation and T-cell related cytokine production from
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mucosal immune organs. Further gut microbiota analysis
demonstrates that B. inquinans treatment decreased the
diversity and evenness of gut microbiota in the feces.
Other significantly changed populations in response to
B. inquinans treatment include Faecalibaculum, Parabacteroides,
Allobaculum, Candidatus_Saccharimonas, and Rikenella.
In particular, the abundance of Candidatus_Saccharimonas
and Rikenella are exclusively and positively correlated with
all cytokine levels produced by mesenteric lymphocytes in
B. inquinans-treated mice.
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