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Human milk (HM) is a complex and dynamic biological fluid, which contains appreciable

concentrations of the glucocorticoids, cortisol and cortisone. Experimental studies in

non-human primates suggest the HM glucocorticoids’ impact on infant growth and body

composition. In this current study, analysis is made of the relationships between HM

glucocorticoid concentrations and the infant growth and development over the first year

of life. HM was collected by lactating healthy women (n = 18), using a standardized

protocol, at 2, 5, 9, and 12 months after childbirth. Cortisol and cortisone concentrations

in the HMweremeasured using liquid chromatographymass spectrometry. Infant weight,

length and head circumference were measured by standard protocols and percentage

fat mass (% FM) determined by whole body bioimpedance. Cortisol and cortisone

concentrations were unaltered over the analyzed lactation period (2–12 months), and

were altered by infant sex. Although, HM cortisol was positively associated with infant

percentage fat mass (% FM) (p = 0.008) and cortisone positively associated with infant

head circumference (p = 0.01). For the first 12 months of life, the concentration of

HM glucocorticoids levels was positively associated with infant adiposity (%FM) and

head circumference. This preliminary evidence provides insight to a possible relationship

between ingested HM glucocorticoids and infant body composition. Further studies are

required to determine the mechanisms regulating HM glucocorticoids.

Keywords: cortisol, cortisone, lactation, mass spectrometry, fat mass, head circumference

INTRODUCTION

Nutrition during the first 1000 days of life, a period from conception to the child’s second year,
has a major impact on the infant’s growth and development (1). It is during this critical period of
life where subtle changes in growth and developmental trajectories can have substantial impact on
the health of that individual later in life, including obesity and non-communicable disease risks
through childhood and into adulthood (2, 3). Numerous studies demonstrate that the infant intake
of mothers’ milk (human milk: HM) and establishment of breastfeeding for longer periods confer
benefits for both the mother and infant, from nourishment, cognitive benefits, immune protection
and reduces the risk of childhood obesity (4–8).
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Human milk (HM) is complex and dynamic, not only
containing nutritive factors (9), but also being recognized as
a rich source of hormones, which have been demonstrated to
impact directly or indirectly on infant body functions (10).
The presence of hormones, such as leptin, insulin, ghrelin,
adiponectin, and insulin like growth factor-1 (IGF-1) is of
great importance, due to their involvement in the key aspects
of appetite and metabolic regulation (10–13). Thus, amoungst
infants where HM is the predominant source of nourishment for
the first year of life, subtle variation in HM composition, may
modify early growth, and development.

One major class of hormones present in HM are the
glucocorticoids, cortisol, and cortisone. All are involved in the
regulation of metabolic homeostasis and inflammation (14).
However, far less is known of the potential biological functions
of HM derived glucocorticoids in the developing infant. It has
been demonstrated that the glucocorticoids are predominantly
transferred from the maternal circulation into HM. Unlike
plasma, the concentration of cortisone in HM is higher than
cortisol and also greater than the levels measured in the
maternal plasma circulation (15–17). Furthermore, differences
exist in salivary cortisol concentrations between breastfed infants
and formula feed infants (18) and plasma cortisol strongly
correlates with HM cortisol over the first year of life (15). Whilst
the role of HM cortisol has not been fully elucidated, HM
cortisol correlates with infant mood and aspects of behavioral
development, including sex specific temperament issues (19, 20).
Hahn et al. (21) demonstrated that higher HM cortisol was
associated with lower body mass index percentile (BMIP) at 2
years of age, suggesting that HM cortisol is protective against later
life excess adiposity. However, it is difficult to examine closely
the impacts of HM glucocorticoid composition and growth and
body composition in toddlers, given the increased role exerted
by increasing solid food and supplemental milk, including
varying formula based beverages on the childs development (22).
Therefore, studies are still required in younger children.

Much is known about the nutritional composition of HM
and its dynamicity, to meet the changing demands of infants
at every stage of lactation (9, 23, 24). Studies have provided
considerable details of the changing HMmacronutrients over the
first 12 months of lactation (25). There remains little data on
the variation and regulation of HM glucocorticoids throughout
lactation. To the best of our knowledge, there has been only
one human study (26) that has analyzed the concentrations of
cortisol over an extended period of 12 months of lactation.
In this study, HM samples were analyzed to determine the
changes in HM cortisol measured by radioimmunoassay and
corticosteroid binding globulin (CBG) assay at different stages of
lactation, largely between late pregnancy and after the cessation
of breastfeeding, reporting lower concentrations during the
established lactation (26). However, this study did not quantify
cortisone, the predominant glucocorticoid in HM, nor did
it examine the relationship between HM glucocorticoids and
infant growth. Therefore, in the current study, we aimed to
measure the concentration of HM cortisol and cortisone using
liquid chromatography mass spectrometry (LC-MS/MS), and
investigate their relationships with the development of breastfed

infant body composition and growth over the first 12 months
of life.

METHODS

Study Design and Subjects
Between 2013 and 2015, breastfed infants (n = 18) of
predominantly Caucasian and mothers of higher social-
economic status were recruited from the community, primarily
via the Australian Breastfeeding Association, Perth, Western
Australia. Inclusion criteria were: healthy singletons, gestational
age ≥ 37 weeks, exclusively breastfed at 2 and 5 months (27),
and maternal intention to breastfeed until 12 months, without
the introduction of formula. Exclusion criteria were: infant
factors that could potentially influence growth and development
of BC, maternal smoking and low milk supply. All mothers
provided written informed consent to participate in the study,
which was approved by The University of Western Australia
Human Research Ethics Committee (RA/1/4253, RA/4/1/2639)
and registered with the Australian New Zealand Clinical Trials
Registry (ACTRN12616000368437).

Maternal and infant anthropometric measurements were
made at the time of sample collection. Participants visited
the research laboratory at King Edward Memorial Hospital
for Women (Subiaco, Perth, WA) for up to 4 monitored
breastfeeding sessions between March 2013 and September
2015. At each study session, the infants were weighed pre-feed,
and then the mother breastfed her infant. Infant bioelectrical
spectroscopy (BIS) measurements were taken pre-feed, unless
impractical, then they were taken post-feed (28). Anthropometric
measurements were taken post-feed. Clothing was removed for
the measurements except for a dry diaper and a singlet.

Anthropometric Measurements
Infant’s weight was determined before breastfeeding using
Medela Electronic Baby Weigh Scales (±2.0 g; Medela Inc.,
McHenry, IL, USA), whereas maternal weight was measured
using Seca electronic scales (±0.1 kg; Seca, Chino, CA, USA).
Maternal and infant BMI was calculated as Bodyweight
(kg)/(Height (m))2. Infant crown-heel length was measured once
to the nearest 0.1 cm using non-stretch tape and a headpiece and
a foot piece, both applied perpendicularly to the hard surface.
Infant head circumference was measured with a non-stretch
tape to the nearest 0.1 cm. Maternal height measured against a
calibrated marked wall (accuracy∼0.1 cm).

Bioimpedance Spectroscopy Measurements
Whole body bioimpedance (wrist to ankle) of infants and
mothers was measured using a bioelectrical impedance
analyzer (ImpediMed SFB7, Brisbane, Queensland, Australia).
Mothers were measured in a supine position on a non-
conductive surface. A series of ten consecutive measurements
of percentage fat mass (% FM) were taken within 1–2min
and averaged for data analysis. Within the participant
coefficient of variation (CV) for maternal % FM was 0.21%
(29). Infants’ whole body bioimpedance was measured by
applying an adult protocol as used previously with data
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analyzed using settings customized for infants (30, 31). Values
of resistance (ohm) at a frequency of 50 kHz (R50) were
determined from the curve of best fit, averaged for analysis
purposes and used in BIS age-matched equations for fat-free
mass. BIS-based prediction equations for infant BC (31–
33) were sourced from the literature, evaluated compared
with the reference data (30) and selected according to the
following criteria: the absence of significant difference from
the reference distribution, closest age match, predominantly
Caucasian population. Within participant CV for infant R50 was
1.5% (28).

Milk Collection
All sample sets with the exception of one were collected
between 9:30 and 10:30 am at the time of measurements at
King Edward Memorial Hospital for Women (Perth, Western
Australia) at 2 and/or 5, 9, and 12 months postpartum.
Small (1–2mL) pre- and post-feed milk samples were
collected into polypropylene 5mL polypropylene vials
(Disposable Products, Adelaide, Australia) and frozen at
−20◦C. Samples were shipped on dry ice to The University
of Auckland, Auckland, New Zealand for glucocorticoid
analysis, and were subsequently kept frozen at −80◦C
until analysis.

Milk samples were divided into four intervals and were
classified as T2 (samples collected between 1.9 and 2.3 months)
(13 milk samples), T5 (samples collected between 4.8 and 5.5
months) (18 milk samples), T9 (samples collected between 8.8
and 9.8 months) (18 milk samples) and T12 (samples collected
between 11.6 and 12.7 months) (13 milk samples). These time
periods were used in the subsequent analysis as four major time
points. Milk samples were analyzed for all participants on a
minimum of 3 timepoints.

HUMAN MILK GLUCACORTICOID
ANALYSIS

Sample Preparation
HM steroids were measured by liquid chromatography mass
spectrometry (LC-MS), as described previously (17). The
internal standard consisted of 12 ng/ml cortisol d4, 60 mg/ml
corticosterone d8, prepared in water. All milk samples were
warmed to 37◦C and vortexed for 10 s before 100 µl of the
sample was added to a glass tube containing 100 µL of the
internal standard solution. Steroids were then extracted using
1ml ethyl acetate (Merck, Germany); the top organic layer
was removed into a separate tube and then vacuum dried
(Savant, SC250EX, Thermo Scientific, USA) for ∼1 h. The
dried residues were reconstituted with 80 µl of 50% methanol
(Merck, Germany)/water and transferred to HPLC injector
vials. All samples were run in duplicate, and average values
are reported.

Liquid Chromatography Tandem Mass
Spectroscopy
The HPLC tandem mass spectrometer (MS) used an Accela MS
pump and auto sampler followed by an Ion Max APCI source

on a Thermo Scientific Quantum Ultra AM triple quadrupole
mass spectrometer, all controlled by Finnigan Xcaliber software
(Thermo Electron Corporation, San Jose, CA.). Themobile phase
was a methanol-water gradient starting at 60:40(v/v) (peaking
at 80:20 before returning back to 60:40) at 300 µl/min. The
chromatography was performed using a Phenomenex Luna C18
(2)-HST column (100 × 3mm, 2.5µm particle size) at 40◦C.
The instrument was set up in selective reaction monitoring
(SRM) mode with the following mass transitions: m/z 363.2 →

121.09 for cortisol, 361.1→163.04 for cortisone, 367.1→121.04
for cortisol d4 and 355.2 → 125.10 for corticosterone d8.
Dissociation voltage was 24V, and the collision gas (Argon) was
set at 1.2m Torr for all steroids. Steroid concentrations were
calculated from a standard curve generated for each steroid
relative to its internal standard (cortisol d4 for cortisol and
corticosterone d8 for cortisone).

Statistical Analysis
Results are expressed as mean± SD unless mentioned otherwise.
Normality was checked and normal distribution was observed.
ANOVA was used to compare the differences in cortisol and
cortisone concentration between different stages of lactation.
Spearman correlation was run to assess the relationship between
HM glucocorticoids and maternal and infant characteristics.
Linear mixed models were employed to investigate associations
between HM glucocorticoids concentration and both maternal
and infant characteristics. Linear regression was performed
at four timepoints to investigate associations with HM
glucocorticoids. A p ≤ 0.05 was considered significant. There
was no imputation carried out for missing values. Means and
standard deviations were used for reporting. Statistical analysis
was carried out using SPSS software (SPSS version 23.0 for

TABLE 1 | Maternal (M) and infant (Inf.) characteristics of longitudinal study

measuring the concentration of glucocorticoids in HM samples at T2, T5, T9, and

T12 months postpartum.

Mean ± SD

Mothers (n = 18)

Age (years) 33.88 ± 4.88

Lactation stage

(months)

T2.0 T 5.0 T 9.0 T 12.0

M weight (kg) 73.06 ± 17.35 62.79 ± 16.34 68.02 ± 18.66 65.83 ± 20.71

M %FM (BIS) 35.04 ± 5.27 32.21 ± 7.07 31.68 ± 7.24 28.97 ± 7.47

Infant sex Female (n = 8) Male (n = 10)

Inf. Length (cm) 57.64 ± 1.95 64.76 ± 2.35 70.25 ± 2.05 74.15 ± 2.43

Inf. Weight (kg) 5.59 ± 0.88 7.46 ± 0.98 8.76 ± 0.95 9.66 ± 0.79

Inf. BMI 16.30 ± 1.38 17.74 ± 1.70 17.59 ± 1.58 17.30 ± 1.116

Inf. Head circum.

(cm)

39.62 ± 1.35 42.91 ± 1.72 45.45 ± 1.68 46.32 ± 1.42

Inf. %FM (BIS) 21.74 ± 2.17 28.24 ± 3.26 25.13 ± 4.65 24.26 ± 3.35

BIS, bioelectrical impedance spectroscopy; BMI, body mass index; %FM, percentage

fat mass; T2 (1.9–2.3 months), T5 (4.8–5.5 months), T9 (8.8–9.8 months), and T12

(11.6–12.7 months).
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windows, IBM SPSS Inc, IL USA) and GraphPad Prism 7.0
software was used for Figures (California, USA). Lattice plots
were produced using R software version 2.15.2.

RESULTS

Participants
The demographics and characteristics of the study participants
are described in Table 1. Of 18 mothers, 16 were Caucasian
and 2 Asian; 17 mothers were married; 15 mothers completed
last year (year 12) of school, 12 indicated various diplomas as
further education. Three mothers reported depression and one
exhibited hypertension.

All 18 infants were exclusively breastfed at 2 and 5 months
and continued to breastfeed at 9 months. Fifteen infants
(83%) continued to breastfeed on demand at 12 months. One
male infant ceased breastfeeding 8 days before the 12-month
appointment, one male infant was being weaned at the time of
12-month appointment, no samples were provided; one female
infant stopped at 10 months after birth; these three infants were
measured at the time of the 12-month appointment. One male
infant was sick and did not attend the last appointment.

Infant % FM (p < 0.00) changed significantly with an increase
from 2 to 5 months, followed by a decrease at 9 and 12 months.

Changes in HM Glucocorticoid
Concentration Throughout the Year
The concentration of cortisol and cortisone in each individual
and at each time point is shown in Figure 1. The concentration
of cortisol ranged between 0.01 and 5.82 ng/ml and cortisone
ranged between 2.60 and 13.23 ng/ml (Table 2). For all analyzed
samples, cortisone was the predominant glucocorticoid at all the
four time points. Mean concentrations of cortisol (p = 0.10),
cortisone (p = 0.06) and cortisol/cortisone ratio (p = 0.39) did
not differ significantly over the period of 12 months.

Relationships Between Maternal
Characteristics and HM Glucocorticoids
HM cortisol (rs = −0.29, p = 0.02), cortisone (rs = −0.27,
p = 0.03) and cortisol/cortisone ratio (rs = −0.24, p = 0.05)
showed associations with maternal height. Furthermore, an
overall significant positive correlation was found between HM
cortisol/cortisone ratio and maternal BMI (rs = 0.33, p = 0.009).
Maternal % FM showed no correlation with cortisol (rs = 0.21,
p = 0.09) and cortisol/cortisone ratio (rs = 0.24, p = 0.06).

FIGURE 1 | HM glucocorticoids (cortisol and cortisone) during the first 12 months of established lactation. Each box of the lattice plot indicates a single mother milk

glucocorticoid profile with symbol (o) representing cortisol and (1) representing cortisone. Each solid line indicates cortisol and dashed line cortisone. Time points are

categorized as T2 (1.9–2.3 months), T5 (4.8–5.5 months), T9 (8.8–9.8 months), and T12 (11.6–12.7 months).

Frontiers in Nutrition | www.frontiersin.org 4 September 2020 | Volume 7 | Article 166

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.frontiersin.org/journals/nutrition#articles


Pundir et al. Milk Stress Hormones and Growth

TABLE 2 | Summary of glucocorticoids in HM samples (n = 63) collected from 18

breastfeeding Western Australian mothers at different stages of lactation (2, 5, 9,

and 12 months).

Mean ± SD (ng/ml)

Lactation stage (months) T2.0 T5.0 T9.0 T12.0

Cortisol (ng/ml) 1.52 ± 0.96 2.68 ± 1.65 2.32 ± 1.13 2.18 ± 1.11

Cortisone (ng/ml) 6.19 ± 2.00 8.57 ± 2.72 7.76 ± 2.15 7.83 ± 1.90

Cortisol/cortisone ratio 0.22 ± 0.13 0.30 ± 0.13 0.29 ± 0.11 0.27 ± 0.11

TABLE 3 | Linear regression: associations between milk glucocorticoids and

infant characteristics.

Infant factors Unstandardized β Standardized β SE p

Infant percentage fat

mass (with cortisol)

0.08 0.24 0.04 0.05

Infant head

circumference (with

cortisone)

0.21 0.26 0.10 0.03

The regression analysis identified a positive relationship between
HM cortisol and maternal height (p = 0.02), and maternal BMI
(p = 0.04). However, no association was found between HM
cortisone and maternal BMI (p = 0.81) or maternal height (p
= 0.60).

Relationships Between Infant
Characteristics and HM Glucocorticoids
Overall, a weak positive correlation was found between cortisol
and infant head circumference (rs = 0.25, p= 0.05) and % FM (rs
= 0.27 p = 0.03). Furthermore, the HM cortisol/cortisone ratio
showed a positive correlation with infant % FM (rs = 0.34 p =

0.01) and BMI (rs = 0.28, p = 0.032), while cortisone showed no
significant associations with any of the infant parameters (p =

0.07, head circumference, rs = 0.23). The mixed model analysis
showed a positive relationship between HM cortisol and infant %
FM (p = 0.008), and head circumference (p = 0.05); and showed
no associations with infant length (p = 0.37), weight (p = 0.56),
and BMI (p = 0.26). Whereas, cortisone showed a significant
positive association with infant head circumference (p = 0.01)
and showed no association with infant % FM (p = 1.00), length
(p = 0.61), weight (p = 1.00), and BMI (p = 1.0). Furthermore,
cortisol/cortisone ratio showed a significant association with
infant % FM (p = 0.04) and no associations were found between
cortisol/cortisone ratio and infant length (p = 0.50), weight (p
= 0.81), BMI (p = 0.72), and head circumference (p = 0.11).
Follow-up analysis using linear regression (Table 3) established
that infant % FM and head circumference significantly associated
with cortisol (PE+/–SE; p = 0.05) and cortisone (PE+/–SE; p =
0.03) in HM, respectively.

DISCUSSION

The concentrations of the glucocorticoid hormones in HM,
cortisol and cortisone, exhibited unique individual variation

at the measured timepoints during the first year on life.
Averaged across the sampled cohort, there was no consistent
pattern in the HM glucocorticoid concentrations throughout the
first year of lactation. However, this study providing evidence
that higher concentrations of HM cortisol were positively and
significantly related to greater infant adiposity (% FM). Higher
concentrations of HM cortisone were positively associated
with larger infant head circumferences. These data provide
preliminary evidence that HM glucocorticoids exert influence on
infant growth and body composition. HM cortisol was correlated
with maternal BMI and height, but not HM cortisone, suggesting
a more complex relationship between HM glucocorticoids and
maternal adiposity.

The composition of HM is influenced by the complex
interplay between maternal, infant and diverse environmental
factors (10); and also varies depending upon the stages of
lactation (34–36). In the current study, it was demonstrated that
cortisol, cortisone and their ratio did not significantly change
over the first 12 months of lactation. These data further confirm
the prior demonstration that HM cortisol remained unaltered
between 1 and 12 months of lactations (26). Interestingly, the
apparent concentration of cortisol measured in this earlier study
(26) ranged between 0.2 and 32 ng/ml, which was on average, 5.5-
fold higher than that of the current study. Given the quantitative
nature of the current LC-MS technique and the ability to
accurately discriminate between differing glucocorticoids, it is
then likely that the previously used immunoassay may have
exaggerated the abundance, potentially due to antibody cross-
reactivity.

In this study, HM cortisol is significantly associated with
adiposity (% FM) in infants, with higher levels of HM cortisol
being associated with greater infant adiposity (over the first
12 months of lactation). Elevated circulatory cortisol is known
to be a potent stimulator of body fat mass gain and the
mechanisms are well-described (37, 38). However, majority of
these studies have been done in adults with metabolic syndrome
and hence require more robust studies on the long term effect
of glucocorticoids on the breastfeed infants. A recent study by
Hahn et al. (21) provided prior evidence that HM cortisol is
the predictor of infant obesity. In this study, infants exposed to
higher milk cortisol concentration exhibited reduced infant body
mass index percentile (BMIP) at 2 years of age. Furthermore,
they reported that the milk cortisol did not predict weight gain,
but infants exposed to elevated level of cortisol grew taller,
causing the variations in BMIP. However, not much is known
about the impact of milk-ingested glucocorticoids, particularly
cortisoneThis study did not examine the relationship of HM
cortisone. Unlike cortisol, cortisone is the biologically inactive
steroid, requiring type 1-11β-hydroxysteroid dehydrogenase (11
βHSD) enzyme conversion into physiologically active cortisol
and 11 βHSD type-2 for converting cortisol into cortisone
(39). Since cortisone is not secreted in measurable amounts in
maternal plasma, 11 βHSD type-2 could potentially be present
within the milk or mammary gland. However, the function and
mechanisms of this conversion in milk remains largely unknown.

During infancy or early childhood, head circumference is
commonly used as an indicator of infant brain size (40) and is also
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used as a proxy for infant’s neurological development, cognitive
function and intracranial volume (41). Numerous prospective
studies have shown that chronic prenatal maternal stress during
pregnancy influences infant brain development and is associated
with smaller head circumference, although the underlying
mechanisms are unclear (42–46). Head circumference is an old
method of measuring infant brain development, but still is
considered reliable. Dupont el al. (47) investigated the predictive
value of head circumference during the first year of life on
early child development. They demonstrated that post-natal head
circumference growth positively predicted gross motor skills as
well as behavioral growth at 2 years of age. However, only a
few studies have investigated the relationship between maternal
perceived stress and infant neurodevelopmental outcomes (48).
Studies examining these associations have pronounced mixed
results in humans; some found a negative association between
maternal stress and infant head circumference (45, 49), while
others failed to show any association (43). Chronic prenatal
stress disrupts cognitive performance and reduces brain volume
in the area related to learning and memory (44). A negative
association between prenatal maternal stress and fetal head
growth development suggests a key role of maternal stress
in regulating fetal head growth (45). Recently the role of
glucocorticoids has become evident in infant development (50,
51), and in this current study, we identified that increasing head
circumference could be associated with HM glucocorticoids.
Although, correlation does not imply causation, hence results
should be read with caution.

An association between early glucocorticoid exposure and
infant metabolism is complex and regulated by many maternal
related factors such as maternal circulating levels. Excessive
exposure to both endogenous and exogenous glucocorticoids
during pregnancy and lactation have been previously linked to
obesity risk factors (52, 53). This study has shown a significant
association between maternal BMI and HM cortisol levels.
There are several factors that contribute to the plasticity of
HM, including maternal BMI, an important contributor to the
hormonal profile of HM, further affecting the developmental
trajectories of HM fed infants (29). Evidence suggests that
individuals with higher BMI are more likely to have an increased
level of circulating cortisol (54, 55). This study is the first to
demonstrate an association between maternal BMI and HM
cortisol concentration. This is in accordance with previous
studies that report obesity or higher BMI to be an indicator of
increased circulatory or saliva cortisol level (56, 57).

A limitation of the current study was the absence of
maternal plasma samples. Therefore, this study is unable to

report on possible relationships between maternal hypothalamic
variabilities and the HM glucocorticoids. Furthermore, the
sample set was small and predominately from Caucasian women.
Further studies examining HM hormonal profiles and infant
outcomes, at different stages of lactation, will further elucidate
the possibilities of lactocrine programming.

In conclusion, HM cortisol and cortisone demonstrated
unique variability in each women, but on average remained
constant throughout the first 12 months of lactation. HM
cortisol and cortisone were positively correlated with infant head
circumference and % FM during the first year of life. This current
research points to the need to better understand the determinants
of HM glucocorticoids regulation. Yet the implications the HM
glucocorticoids function to regulate infant metabolism, appetite
and behavior suggest that further exploration is required to
better understand how ingested hormones can mediate these
peripheral actions.
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