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The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)

disease (COVID-19) in China at the end of 2019 caused a major global pandemic and

continues to be an unresolved global health crisis. The supportive care interventions

for reducing the severity of symptoms along with participation in clinical trials of

investigational treatments are the mainstay of COVID-19 management because there is

no effective standard therapy for COVID-19. The comorbidity of COVID-19 rises in obese

patients. Micronutrients may boost the host immunity against viral infections, including

COVID-19. In this review, we discuss the clinical impact potential of supplemental

nutrients as adjuncts of therapy in high-risk COVID-19 for obese patients.
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INTRODUCTION

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease (COVID-19) has been
declared a pandemic by the World Health Organization with more than 13.378.800 million
confirmed cases and more than 580.000 deaths worldwide (1). Immunocompromised risk groups
of the populations have high mortality rates because of the insufficient host immunity (2, 3).
SARS-CoV-2 damages the respiratory tract and causes acute lung injury (ALI) (2, 4, 5). ALI triggers
an inflammatory response while stimulating the immune system. This inflammatory immune
response is associated with a cytokine storm that may result in a potentially fatal acute respiratory
distress syndrome (ARDS) characterized by increased production of reactive oxygen species (ROS)
as well as pro-inflammatory cytokines and chemokines (6). The cytokine storm may disrupt an
effective anti-viral immune response and cause severe lymphocytopenia as well as T-cell exhaustion
in affected COVID-19 patients (7, 8).

The nutritional status of the human body plays a pivotal role in developing an effective and
appropriately balanced immune response to pathogenic viruses (9). Recent studies confirmed
the importance of host nutritional status in surviving the COVID-19 challenge (6, 10, 11). The
protein-energymalnutrition (PEM) causes an imbalanced immune response to viral pathogens that
can result in infiltration of the lungs by inflammatory cells and the development of pneumonitis
following viral infection (12). The comorbidities of COVID-19 patients are correlated with the
severity of PEM and contribute to a higher risk of ARDS and increased case mortality rate (13).
In COVID-19, the decreased serum albumin (14) and prealbumin (15) levels have prognostic
value. Low serum prealbumin levels serve as a surrogate marker for malnutrition and a poor
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prognostic factor (16). We believe that the nutritional status
of all COVID-19 patients should be carefully evaluated, and
consideration given to patient-tailored special diet programs
that ensure an adequate and balanced intake of proteins,
calories, and micronutrients (17). Adequate daily protein,
especially whey and soy, intake have beneficial effects on the
antioxidant defense system and host immunity (18). Among the
various sources of protein, the whey protein has been recently
recommended as a well-balanced and easy to digest amino
acid and protein source with anabolic (19), anti-inflammatory
(20), and immunomodulatory properties (21) as well as antiviral
effects (22). Besides being an energy-rich part of the daily diet
for balanced caloric intake, dietary fats, including fish oil and
vegetable oils, provide a source for essential fatty acids as well
as fat-soluble vitamins affecting metabolism and immunity. The
essential fatty acid alpha-linolenic acid (ALA, 18:3n-3, omega-3),
and the semi-essential fatty acids eicosapentaenoic acid (EPA),
and docosahexaenoic acid (DHA) (23, 24), can be useful in
supporting immune defense and the treatment of inflammatory
diseases caused by both viruses and bacteria (25). In addition,
essential micronutrients including vitamins and minerals, play
an important role for the functional integrity and responsiveness
of our immune system. Some of the vitamins (A, pyridoxine,
cobalamin, folate, C, D, and E) and trace minerals such as Zn,
Cu, Se, and Fe takes the crucial role to maintain and support the
immune system (6). Balanced nutrition and intake of nutrients in
appropriate amounts and composition may reduce the levels of
pro-inflammatory cytokines and their side effects in COVID-19
patients (10).

Obesity has a rising prevalence, and it is considered
a clinically significant risk factor for metabolic diseases
as well as infections (26, 27). The consumption of “poor
quality” foods often results in a nutritional deficiency in
obese persons despite the higher than average amounts
of food consumed (25). Such a nutritional deficiency
may increase the severity of COVID-19 with increased
morbidity and mortality (28). In this review, we discuss the
possible role of micronutrients in the pathophysiology and
survival outcome of COVID-19. We also review the current
knowledge about the emerging role of supplemental nutrients
as adjuncts to the supportive care for COVID-19, especially in
obese patients.

OBESITY AND COVID-19

Obesity has detrimental effects on pulmonary function.
Functional residual capacity and expiratory reserve volume are
negatively affected by obesity as a consequence of the airway
closure by fat accumulation in the mediastinal, thoracic, and
abdominal cavity (29). Along with the rising body fat content,
excessive secretion of adipokines, and cytokines from adipose
tissue are thought to both compromises the immune system
responsiveness to infections and cause systemic inflammation
(27). The levels of free fatty acid (FFA), and lipopolysaccharide
(LPS) released by gut bacteria increase during obesity which
triggers activation of the (i) Toll-like receptor 4 (TLR4) pathway,

(ii) adipose tissue macrophages (30) as well as (iii) nuclear factor-
kappa β (NF-κβ) pathway (31). M1 phenotype macrophages
that initiate and regulate inflammatory reactions through
interferon-gamma (IFN-γ), TLR4, LPS, and FFA stimulation
become the primary immune system elements located in the
adipose tissue (32). Many inflammatory cytokines such as tumor
necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), IL-6,
IL-12, and IL-18 are secreted by M1 macrophages. Therefore,
T helper cell 1 (Th1) to Th2 ratio, (26) and Th17 increase
in obesity, which results in an immune imbalance (33). M1
macrophages also play an essential role in the development
of tissue-level insulin resistance in obesity. This is owing in
part to the elevated levels of inflammatory factors that impair
the c-Jun N-Terminal Protein Kinase 1 and Iκβ kinase/NF-κβ

cascades which regulate phosphorylation of insulin receptor
substrates (IRS1 and IRS2) (34) (Figure 1). Besides the insulin
resistance, the beta-cell function of the pancreas may be
decreased during longterm obesity due to the continuous FFA
exposure that activates the NF-κβ signaling pathway (35).
In addition, venous thromboembolism is encountered more
frequently by obese individuals due to the prothrombotic effects
of low-grade chronic inflammation (36–38). The prothrombotic
effects of inflammation are triggered by platelet activation (39),
increased activity of coagulant factors (factor VIIa, VIII, IX, X,
fibrinogen, and von Willebrand factor), stimulation adhesion
molecules (P-selectin), and downregulation of endogenous
anticoagulant factors (antithrombin, and protein C) (40).
In addition, the plasminogen activator inhibitor-1 (PAI-1),
a prothrombotic adipokine, also contributes to augmented
venous thromboembolism of obesity (41). Coagulopathy,
including DIC, is one of the main causes of mortality in
COVID-19 (42).

Because of the overlapping systemic inflammation of
obesity and systemic inflammation triggered by viral
sepsis in COVID-19, obese patients with COVID-19
experience greater severity of pulmonary and metabolic
complications as well as multi-organ dysfunction (43–
45). Therefore, several micronutrients may have clinically
meaningful beneficial effects in obese COVID-19 patients
(46) (Figure 2). In COVID-19 patients many evidence
demonstrates the metabolic link between inflammatory
state and cytokine storm that mainly responsible for respiratory
symptoms (45).

Several studies have shown a relationship between high BMI
and severity of COVID-19. Ho et al. (47) reported that the risk
of critical illness in COVID-19 increases by 44% for overweight
people and almost doubles for obese patients. Likewise, an
observational study using electronic health records indicated that
obesity is an important contributing factor for case mortality
in COVID-19 (48). Because obese patients have an impaired
immune system, they may have inadequate cellular immune
responses to pathogens and this acquired immunodeficiency
increases their susceptibility to infections (49). In addition to
the reduced T-effector cell function, the unbalanced production
of immunomodulatory endocrine hormones also contribute
to poor host immunity of obese persons against infections
(50). Balanced nutrition and micronutrients help prevent the
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FIGURE 1 | The effects of obesity on inflammatory cytokine production and insulin resistance. Treg, regulatory T cell; Th2, T helper cell 2; M1, type 1 macrophages;

FFA, free fatty acid; TLR4, toll-like receptor-4; JNK1, c-Jun N-Terminal Protein Kinase 1; IKK, Iκβ kinase; IRS, insulin receptor substrate.
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FIGURE 2 | The protective and therapeutic effects of some specific micronutrients on inflammatory, thrombotic, and insulin resistance pathways in obese COVID-19

patients. RA, retinoic acid; M1, type 1 macrophages; Th1, T helper cell 1; ARDS, acute respiratory distress syndrome; ALI, acute lung injury; ACE2,

angiotensin-converting enzyme 2; NF-κβ, nuclear factor-kappa β; LPS, lipopolysaccharide; FFA, free fatty acid; TLR4, toll-like receptor-4; JNK1, c-Jun N-Terminal

Protein Kinase 1; IRS, insulin receptor substrate; Ang, angiotensin; PAI-1, plasminogen activator inhibitor-1.

unfavorable outcomes observed in both obesity and COVID-19
(Table 1) (51–78).

The complex interplay between obesity and COVID-19
is explained by several mechanisms. SARS-CoV-2 uses the
angiotensin-converting enzyme-2 (ACE2) for cell entry, and the

amount of this transmembrane enzyme is found larger amounts
in obese individuals (79). It is probably due to higher ACE2
expression in adipocytes of people with obesity (80). Therefore,
adipose tissue of obese individuals can be a potential target for
SARS-CoV-2 before spreading to other organs (81). Assuming
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TABLE 1 | The possible effects of some micronutrients on common symptoms of COVID-19 and obesity.

Micronutrients Key Mechanism of Action Outcomes References

Vitamin A • Inhibition of M1 macrophage

• Downregulation of IFN-γ

• Promotion of Treg via inhibiting Th17 shifting

• Inhibition of ACE2 by isotretinoin

• Epithelial cell repairing properties

• Inflammatory status ↓

• Probably insulin resistance ↓

• Probably viral replication ↓

• Lung damage prevention

(51–55)

Vitamin C • Protection of the respiratory system

• Promotion of antioxidation and anti-inflammation properties

• ROS scavenging activity

• Inhibition of NF-κβ pathway

• Inflammatory status ↓

• Immunity ↑

(56)

Vitamin D • Reduction of the risk of contracting respiratory infections

• Regulation of Th1/Th2 balance

Immunity ↑ (57)

Vitamin E • ROS scavenging activity

• Inhibition of acute neutrophil inflammation in lung

• Inflammatory status ↓

• Lung damage prevention

(58, 59)

B vitamins • Protection the respiratory system

• Reduction of the risks of infection and re-infection

• Reduction of inflammatory cytokine production

• Regulation of the CD4/CD8 ratio and natural killer cell activity by

vitamin B12

• Inhibition of ACE2 by folic acid

• Prevention of hyperhomocysteinemia by folic acid, B6, and B12

• Inflammatory status↓

• Lung damage prevention

• Immunity ↑

• Probably insulin resistance ↓

• Probably viral replication ↓

• Prevents thromboembolism

(60–64)

Selenium • Antioxidative and anti-inflammatory properties in high-risk adults

• Regulation of M1/M2 macrophage

• Cofactor for glutathione peroxidase

• Oxidizing capacity

• Anticoagulant

• Inflammatory status ↓

• Antiviral activity ↑

• Prevents thromboembolism

(65, 66)

Zinc • Antioxidative and anti-inflammatory properties in high-risk adults

• Reduction of inflammatory cytokine production

• Regulation of Th1/Th2 balance

• Inhibition of ACE2

• Exert antiviral effect

• Inflammatory status↓

• Immunity ↑

• Probably insulin resistance ↓

• Probably viral replication ↓

(67–73)

Copper • Regulation of Th1/Th2 balance

• Reduction of inflammatory cytokine production

• Oxidizing activity

• Inflammatory status↓

• Antiviral activity ↑

(74–76)

Magnesium • Reduction of inflammatory cytokine production

• Regulation of M1/M2 macrophage

• Inhibits PARP

• Inflammatory status↓

• Prevents thromboembolism

• Lung damage prevention

(77, 78)

that SARS-CoV/CoV-2 affects the pulmonary lipofibroblast
transcriptional program that leads to pulmonary fibrosis, the use
of peroxisome proliferator-activated receptor-gamma (PPARγ)
agonists could be an option to reduce the risk of pulmonary
fibrosis. This strategy may show strong anti-fibrotic effects that
disrupt myofibroblast differentiation and transforming growth
factor-beta (TGF-β) signaling. PPARy induction could lead to
an effective reduction of the problem and organ fibrotic disease,
including pulmonary fibrosis (81) by decreasing the fat mass of
adiponectin (82).

The Spike glycoprotein (S), a structural protein of SARS-
CoV-2, is responsible for binding to the host cell. Hoffmann
et al. (83) reported that S protein is primed serine protease
and recognized by the cell receptor. Liu et al. (84) showed
that the S protein of SARS-CoV-2 had two trimers that bind
to the ACE2 heterodimer. Dipeptidyl peptidase 4 (DPP4) is a
ubiquitous membrane-bound aminopeptidase that circulates in
the plasma has multifunctional roles in metabolism, immunity,
and the endocrine system. DPP4 regulates glucose homeostasis
and inflammation differently through its immunomodulatory

properties. Bassendine et al. (85) reported that obesity and
metabolic syndrome strongly affect the severity of COVID-19 by
modulating the DPP4 expression.

In COVID-19, loss of the ACE2 enzyme that converts
angiotensin-II to angiotensin-I may lead to insulin resistance (86)
and endothelial cell dysfunction (87). Although the lung tissue
is the primary target of SARS-CoV-2, ACE2 protein expression
levels in adipose tissue (80) and pancreas (88) are higher than
in the lung. High-level ACE2 expression in the pancreas may
predispose to viral pancreatitis (88) and subsequently diabetes as
a complication. Therefore, obese individualsmay be at higher risk
for metabolic complications of COVID-19.

MICRONUTRIENTS AND COVID-19
PATIENTS WITH OBESITY

The insufficiency of micronutrients including vitamin A,
vitamin D, vitamin E, vitamin B1, vitamin B6, vitamin B12,
vitamin C, Fe, Zn, and Se, called “latent hunger” causes
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important health problems globally. Correa-Rodríguez et al.
(89) observed significant reductions in vitamin C, vitamin A,
and Se intake in overweight or obese young adults. Therefore,
the supplementation of micronutrients may support the body’s
natural defense system by enhancing immunity, epithelial
barriers, cellular immunity, and antibody production (90).

Vitamins
Vitamin A
Vitamin A is accepted as an anti-inflammatory or anti-infective
micronutrient owing to its immunomodulatory, and epithelial
cell repairing functions (55). Vitamin A has been shown to reduce
the severity of viral pneumonia caused by an avian coronavirus
(91), measles (92), influenza A, rotavirus, and Newcastle disease
virus (93). Therefore, retinoids could potentially inhibit the
replication of SARS-CoV-2 and thereby reduce the severity of
COVID-19 (94). Furthermore, the vitamin A derivate named
isotretinoin (54) may interfere with the cellular uptake of
SARS-CoV-2 and its lung-directed pathogenicity by inhibiting
the ACE2 (95). Administration of all-trans retinoic acid in a
hypoxia/reoxygenation model increased the mRNA expression
of ACE2 and down-regulated the mRNA expression of ACE1
and TGF-β1 in renal tubular epithelial cells (96). In individuals
with low vitamin A levels, histopathological changes have been
detected in pulmonary epithelia and lung parenchyma, along
with an increased risk of pulmonary dysfunction and respiratory
disease (97). Normal serum retinol levels may mask the
severity of vitamin A deficiency in obesity (98). The continuous
consumption of the western diet reduces tissue vitamin A levels
(99). Vitamin A deficiency and increased expression of leptin,
enhance the levels of pro-inflammatory cytokines that contribute
to the systemic inflammation in obesity (100). Penkert et al.
(98) reported that vitamin A supplementation protects against
a respiratory virus infection by controlling respiratory virus
clearance, decreasing inflammatory cytokines in the blood, and
altering the lung immune capacity in obese C57BL/6 mice. In
addition, high doses of oral vitamin A supplementation has been
shown to reduce obesity by upregulating brown adipose tissue-
uncoupling protein1 (BAT-UCP1) expression in the WNIN/Ob
rat model (101). Considering the effects of COVID-19 on lung
function and protective properties of vitamin A in the organism,
vitamin A is expected to have a beneficial effect in obese COVID-
19 patients.

Vitamin C
Vitamin C has been used to boost the antiviral host immune
defense (56), reduce or prevent the symptoms of the common
cold and other respiratory infections caused by viruses (102, 103).
Vitamin C regulates the immune responses in the early stage
of influenza infection through increasing the levels of type I
interferons (IFN-α and IFN-β) (104) having critical functions
to attenuate viral pathogenesis (105). Vitamin C is an effective
intracellular antioxidant for biomolecules and has significant
ROS scavenging activity that results in the inhibition of the
inflammatory NF-κβ signal transduction pathway (56). In
addition, the phagocytic activity of neutrophils and macrophages
is regulated by their vitamin C content (106). Supplemental

vitamin C may decrease the severity of obesity and its co-
morbidities by regulating lipid accumulation, inhibiting
lipolysis that reduces systematic FFA efflux, and glucocorticoid
production, reducing ROS activity and interfering adipocyte
macrophages, thus decrease pro-inflammatory adipokines
(leptin) and cytokines (107). In a meta-analysis of eight
randomized clinical trials in 3,135 children aged 3 months to
18 years, vitamin C administration decreased to the duration of
upper respiratory tract infection by 1.6 days. In the same study,
it was reported that children 6 years of age benefit from more
effective vitamin C administration associated with Echinacea
(108). In a randomized, double-blind, placebo-controlled,
phase I trial, ascorbic acid infusion rapidly increased plasma
ascorbic acid concentration and reduced the pro-inflammatory
biomarkers C-reactive protein (CRP) and procalcitonin levels,
prevented an increase in thrombomodulin levels consistent with
reduced vascular damage, and caused reductions in sequential
organ failure assessment scores (109). In addition, a time-delayed
infusion protocol of both ascorbic acid and dehydroascorbic acid
attenuated pro-inflammatory, procoagulant states that induce
lung vascular damage and significantly prolonged survival (110).
In obesity, low vitamin C status correlates with inflammatory
reactions and vascular dysfunction (111), and a dose of 1 g/day
vitamin C treatment for 8 weeks could reduce CRP and IL-6
levels in both hypertensive and diabetic obese patients (112). In
higher doses, vitamin C can act as an oxidizing agent (106). The
oxidizing properties of vitamin C are boosted with the presence
of iron, increasing its antiviral activity via the Fenton reaction
that results in the production of hydrogen peroxide and hydroxyl
radicals (113). The different doses of vitamin C supplementation
(125 and 250 mg/kg) reduced mitochondrial antiviral signaling,
interferon-regulating factor 3, and steroid hydroxylase in mice
exposed to restraint stress and H1N1-induced pneumonia (114).
Recently, Peng (115) started a randomized controlled vitamin C
infusion trial that aims to attenuate the respiratory symptoms of
COVID-19 infection. High-dose vitamin C might be an effective
choice in the early treatment of COVID-19 (116). Consumption
of citrus fruits and vegetables containing vitamin C has been
proposed as a low-cost strategy to support the immune system
during the COVID-19 pandemic (11).

Vitamin D
There are multiple variables such as age, body mass index, skin
color, and genetic variants that can affect the vitamin D stores
of the body (117). Low serum 25-hydroxyvitamin D [25(OH)D]
concentrations have been reported in obese humans and an
inverse relationship between BMI and serum 25(OH)D has
been reported in obese humans (118). Lin et al. (119) were
observed that vitamin D deficiency [25(OH)D <20 ng/mL] and
insufficiency [20<25(OH)D<30 ng/mL] in 52 obese (mean BMI
37.6 ± 6.4 kg/m2) were at 73 and 22% prevalence. Vitamin D
metabolizing enzyme expression (Cyp2r1, Cyp27a1, and Cyp2j3)
was affected by high fat diet-induced obesity, which may partially
explain the mechanisms of the modified vitamin D endocrine
system related to obesity (120). Adequate daily intake of vitamin
D is thought to curb viral infections (121, 122). Seasonal viral
infections affecting the respiratory tract as well as COVID-19may
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be facilitated by vitamin D deficiency (123, 124). The serum levels
of 25(OH)D, the circulatingmetabolite of vitaminD, are inversely
correlated with pulmonary inflammation (125) and directly
correlated with the pulmonary function (120) as well as host
immune response (126) during respiratory virus infection. 1,25-
dihydroxyvitamin D (1,25D), an active metabolite of vitamin
D, has pleiotropic effects on immune system elements (57,
127–129) and may reduce the production of pro-inflammatory
cytokines that have been implicated in the pathophysiology of
COVID-19 associated ARDS (IFN-γ, TNF-α, IL-1, IL-6, IL-2,
IL-12, and IL-17) (Figure 3) (130). Administration of vitamin
D stimulated binding of the SARS-CoV-2 cell entry receptor
ACE2 to angiotensin-II receptor type 1, decreasing the number of
virus particles that could attach to ACE2 and enter the cell (131,
132). Therefore, vitamin D supplementation could potentially
reduce the incidence of severe COVID-19 (124). In randomized
controlled trials of vitamin D for prevention of respiratory tract
infection (Of 1,137 citations retrieved, 11 placebo-controlled
studies of 5,660 patients), vitamin D showed a protective effect
against respiratory tract infection, with daily dosing appearing
to be the most effective strategy (133). That being said, a
clinical study conducted by Hastie et al. (134) indicated that the
relation between COVID-19 and serum vitamin D levels was not
significant. Additionally, the intake of high doses of vitamin D
may have harmful effects on COVID-19 patients (124).

Vitamin E
Vitamin E supplementation generally reduces the
severity of infectious diseases, owing to antioxidant and
immunomodulatory effects (135). Tocopherols (α and γ),
natural vitamin E isomers, exhibits ROS scavenging activity (58)
and can block acute neutrophil inflammation in the lung (59).
Dietary vitamin E deficiency may increase IL-1 induced lung
leak in rats (136), and probably provokes acute hyperoxic lung
injury related to IL-6 and 8-iso-prostaglandin F2α stimulated
inflammation in mice (137). Oral vitamin E intake is positively
associated with lung health (138). In a randomized clinical trial
performed by Agler et al. (139) proved that a dose of 600 IU
vitamin E (every other day) reduced the risk of chronic lung
disease. No studies have been done in the case of the link between
vitamin E and COVID-19 patients with obesity. Meydani et al.
(140) found that a daily intake of 200 IU vitamin E has not
any effect on lower respiratory infection. In the same study, the
incidence of upper respiratory infections such as common cold
found lower in older people.

After ACE2 mediated cell entry, coronaviruses firstly activate
aryl hydrocarbon receptors (AhRs) without indoleamine 2,3-
dioxygenase (IDO1) stimulation (141). Activated AhRs initiates
the production of inflammation factors (IL-1β, IL-6, and
TNF-α), induces tissue factor (TF) and PAI-1 mediated
thromboembolism (AhR-TF/PAI-1 pathway) (142), and lead
multiple organ fibrosis via Cytochrome P450, family 1, subfamily
A, polypeptide 1 (CYP1A1)/IL-22 signaling pathway with signal
transducer and activator of transcription 3 (STAT3) (143). The
produced inflammatory cytokines trigger IDO1 that metabolizes
tryptophan to kynurenine (AhR stimulator). Consequently, these
signaling factors lead to the IDO1-AhR-IDO1 loop (Figure 3)

(141). AhR signaling pathway stimulation also modulates obesity
via disrupting fat metabolism (144). The degree of AhR activation
raises depend on the severity of obesity due to enhanced
inflammatory factors, including TLR2/4- NF-κβ mediated (145).
Likewise, elevated dietary fat intake increases the level of serum
(low-density-lipoprotein) LDL (146) that responsible for the AhR
activation (147). SARS-CoV-2 induced IDO1-AhR-IDO1 loop
might be exponentially increased in obese COVID-19 patients,
and probably inhibited by vitamin D for AhR (148), and vitamin
E for IDO1 (149). Therefore, using both vitaminD and E together
most likely reduces the clinical symptoms in COVID-19 infection
and obesity-associated complications.

B Vitamins
The prevention or treatment of lung damage is critical for
the survival outcome of COVID-19 patients. Vitamin B3, a
claimed protector of lungs, can promote the healing of tissue
damage in the lungs (60, 61), most likely owing to its ability
to inhibit the poly ADP ribose polymerase (PARP) (61).
Because the increased activity of PARP elevates the inflammatory
cytokines that contribute to the cytokine storm, vitamin B3
therapy may reduce cytokine storm in COVID-19 (6). The
pyridine-nucleoside form of vitamin B3 called nicotinamide
riboside functions as a precursor to nicotinamide adenine
dinucleotide (NAD+), prevented ALI/ARDS and heart injury,
and improved the survival of mice after the LPS challenge or
sepsis caused by intraperitoneal injection of feces (150). In LPS-
challenged rats, the administration of nicotinamide prevented
the decrease in mitochondrial respiration and intracellular
NAD+ levels in macrophages (151). In obesity, adipose tissue
nicotinamide phosphoribosyltransferase (NAMPT) expression
reduces, and NAD+ biosynthesis impairs. The reduction in
NAD+ levels causes decreasing adiponectin and increasing
FFA production (152). The dietary supplementation of NAD+

precursors alleviates inflammation, improves insulin sensitivity,
and reduces body weight gain in obesity (153).

Vitamin B6 levels and the severity of inflammatory reactions
are inversely correlated (154, 155). The utilization of vitamin B6
rapidly increases under inflammatory conditions, and COVID-
19 patients probably may have vitamin B6 deficiency (156).
Vitamin B6 downregulated the pulmonary inflammation by
inhibiting macrophage activation, as reduced production of IL-
1β, IL-6, and TNF-α in macrophages challenged with LPS of
mice (155). In a rat model of systemic inflammation, orally
administered 500 mg/kg riboflavin and 600 mg/kg thiamine
increased the anti-inflammatory activity of dexamethasone,
along with reducing TNF-α and IL-6 production (157). The
relationship between dexamethasone and thiamine caused more
inhibition of IL-6 production compared to dexamethasone-
induced. Multivitamin supplementation within 48 h of hospital
admission, including thiamine, riboflavin, and niacin was
associated with lower overall mortality in patients with Ebola
Virus Disease (158).

The folic acid and its derivates such as tetrahydrofolic acid
and 5-methyl tetrahydrofolate may interfere with the cell entry
of SARS-CoV 2 (63) via inhibition of furin protein that has
essential for COVID-19 progression (159). In addition to the
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FIGURE 3 | The role of the IDO1-AhR-IDO1 signaling loop in obese COVID-19 patients. AhR, aryl hydrocarbon receptors; IDO1, indoleamine 2,3-dioxygenase; ACE2,

angiotensin-converting enzyme 2; NF-κβ, nuclear factor-kappa β; TLR, tool-like receptor; PAI-1, plasminogen activator inhibitor-1; CYP1A1, Cytochrome P450, family

1, subfamily A, polypeptide 1; STAT3, signal transducer and activator of transcription 3; TNF-α, tumor necrosis factor-alpha IL; interleukin TF, tissue factor.

ACE2 protein, S-glycoprotein, some of the proteases (Mpro and
PLpro), RNA dependent RNA polymerase, and Nsp15 promote
the cellular entry of SARS-CoV 2 (63, 160). In a virtual screening
study among the 106 nutraceuticals, the folic acid and folic
acid derivates were identified as potential agents that could have
potential in post-exposure prophylaxis (63).

The deficiency of some B vitamins (folic acid, B6, and
B12) and dietary essential amino acid methionine results in
hyperhomocysteinemia that leads to venous thromboembolism
(64). In obesity, the high cardiovascular risk that is related to
hyperhomocysteinemia correlates with insufficient nutritional
status of folate and vitamin B12. The decreased levels of plasma
folate and vitamin B12 are accepted as a predictor of vascular
dysfunction (161). A high dose of vitamin B6 administration
may reduce the TNF-α, IL-6, and D-dimer levels and improves
endothelial integrity along with preventing coagulopathy in
COVID-19 patients (156).

Minerals
Magnesium
Magnesium can alleviate inflammatory disorders, including
obesity (162) and respiratory infections (78). The M1 type

macrophages producing NF-κβ depended on pro-inflammatory
mediators shifts to M2 type macrophages after Mg treatment and
stimulates the anti-inflammatory cytokine secretion (77). The
low dietary Mg intake inversely was associated with endothelial
cell dysfunction and biomarkers of systemic inflammation (163).
Different forms of Mg could be used against various lung
diseases (164). Li et al. (78) reported that MgSO4 administration
reduced the PARP-1 and apoptosis-inducing factor levels in
LPS induced ALI mice. Recently Tan et al. (165) observed
that the administration of oral vitamin D, Mg, and vitamin
B12 combination reduces the clinical deterioration in COVID-
19 patients. Mg nutrition may be an effective strategy for
the treatment and prevention of COVID-19 infection (166,
167). Moreover, many diseases, such as obesity that cause Mg
deficiency (162), probably exacerbate the clinical symptoms
of COVID-19.

Selenium
Selenium is considered an important antioxidant trace mineral.
The severity and mortality of viral infections were inversely
correlated with serum Se levels in several studies (168–170).
Virulence and pathogenesis levels of viruses can be increased
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due to the weakened immune system after the long term
intake of inadequate Se containing diets (171). The M1 type
macrophages increase with Se deficiency or low Se intake (65,
172). However, high amounts of Se intake lead to shifts Th2
phenotype to the Th1 phenotype (173). Zhang et al. (174) recently
reported that Chinese persons with lower hair Se content had
more severe COVID-19 infections. Se supplementation may
therefore have clinical utility in COVID-19 pending further
confirmation of the prognostic role of Se for the survival outcome
of COVID-19 patients. Fakhrolmobasheri et al. (175) reported
that Se could prevent cell death caused by viral replication.
In patients with ARDS, sodium selenite (1mg for 3 days and
1 mg/d for a further 6 days) supplementation replenished Se
levels and Se concentrations were positively correlated with
antioxidant activity. Serum concentrations of IL-1β and IL-
6 were inversely associated with serum Se concentrations.
Nevertheless, there was no effect on overall survival, mechanical
ventilation time, and length of stay in intensive care (176). In
LPS-stressed RAW264.7 cells, LPS increased mRNA profiles of
inflammatory genes, while short-time Se pretreatment reduced
the LPS-induced upregulation of cyclooxygenase-2, intercellular
adhesion molecule−1, IL-1β, IL-6, IL-10, nitric oxide synthase,
and monocyte chemoattractant protein-1 and further increased
expression of IFN-β and TNF-α (177). In the same study, LPS
decreasedmRNA levels of selenoprotein encoding genes, whereas
increased mRNA levels of thioredoxin reductases (TXNRD1and
TXNRD3) in cells. Se deficiency or overexposure impairs the
selenoprotein synthesis (glutathione peroxidase and TXNRDs)
that cause adipocyte dysfunction leading to various metabolic
disorders. The expression of these selenoproteins is decreased
in obese individuals due to their lower Se status (178). In
COVID-19, selenoprotein expression may also be reduced by
inflammatory factors and suppressed immune status (179).
Therefore, dietary Se supplementation may help alleviate the
respiratory and inflammatory clinical symptoms in obese patients
suffering from COVID-19.

Zinc
Zinc is another important trace mineral to improve the immune
functions against viral infections (180, 181). In risk groups for Zn
deficiency, including aging, immune deficiency, obesity, diabetes,
and atherosclerosis, low Zn status may relate to severe COVID-
19 risk (182). Zn can exert its antiviral effect by suppressing
viral replication, improvement of mucociliary clearance and
increasing immune responses, prevention of lung injury, and
regulation of antiviral and antibacterial immunity (73). Zn can
provide low-cost and effective adjunctive therapy for some viral
diseases, including respiratory infections (183). For example,
Mossad et al. (184) reported that the duration of common cold
symptoms was shortened from 7.6 to 4.4 days with zinc gluconate
(containing 13.3mg elemental Zn). In vitro studies showed that
Zn exhibits antiviral activity by inhibiting the SARS-CoV RNA
polymerase (73). Indirect data suggest that Zn may decrease the
activity of ACE2. The anti-inflammatory activity of Zn depends
on NF-κB signaling pathway inhibition and modulation of Treg
function, which may help reduce the risk of cytokine storm
in COVID-19 (73). In addition, Zn has been revealed to be

vital for respiratory epithelium, owing to antioxidant and anti-
inflammatory activity (185), and also the regulation of tightly
binding proteins zonula occludens-1 and Claudin-1, thereby
enhancing barrier functions (186). In an in-vitro study was
demonstrated that Zn administration (10 µm Zn preincubation)
inhibited respiratory syncytial virus replication by more than
1.000-fold reduction (187). Antiviral agent chloroquine, a Zn
ionosphere that is used in the treatment of COVID-19, increases
the Zn transport into the cells (73, 188, 189). It has recently
been proposed that the severity of COVID-19 infection could
be reduced with an adequate daily intake of Zn (183). Recently,
Finzi (190) reported that high dose oral supplementation of
Zn salts (zinc citrate, zinc gluconate, or zinc acetate) reduced
the respiratory clinical symptoms of COVID-19 patients (190).
In line with this information, it was suggested that Zn could
be one of the most promising micronutrients for COVID-19
prevention or treatment (191, 192). The effects of Zn on obesity
and respiratory viral infections may help to treatment of COVID-
19 in both obese and overweight patients.

Copper
Copper (Cu), a trace mineral, has an important role in host
immunity against viruses, regulating inflammatory responses,
and boosting the immunity of the host in many infections (193–
198). Elevating the Cu levels in the lung tissue has been suggested
as a strategy for treating or preventing pulmonary inflammation
(199). The appropriate dietary Cu intake within normal daily
limits probably increases the number of phagocytic cells, the
activity of Natural killer cells, the proliferation of Th cells (200),
and more importantly the Th1-stimulated production of IL-2,
but not TNF-α (75). In this context, Cu ismay require tomaintain
the balance of the Th1/Th2 profile (74). The increased pro-
inflammatory cytokine TNF-α causes decreasing Cu levels in the
lungs during lung infections (199). Raha et al. (201) hypothesized
that Cu supplementation could protect the high-risk COVID-19
patient populations with Cu deficiency from developing ARDS.

In addition, the raising of the ROS concentration may be
used to exhibit the antiviral action by Cu (76). The Cu-peroxide
complexes could enhance the effectiveness of this action (202).
Since ROS production properties of Cu containing surfaces,
SARS-CoV and SARS-CoV-2 viruses are sensitive to Cu alloys
(203, 204). However, Cu supplementation may also increase the
risk of sepsis and ARDS and should not be attempted outside a
well-controlled clinical trial.

OTHER IMPORTANT NUTRIENTS IN
COVID-19

Flavonoids
Plant-derived flavonoids having anti-inflammatory, antioxidant,
and antimicrobial activities (205) also have anti-obesity and
anti-diabetic potential (206). In obesity and other inflammatory
disorders, dietary flavonoids could inhibit inflammatory cytokine
production, leptin secretion, insulin resistance, and improve
immune responses (207). Polyphenols inhibit NF-κB and
activator protein-1 activates nuclear factor erythroid 2–related
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factor 2 (Nrf2) and improves lipid profiles via enhancing HDL-
cholesterol, while the reduction in LDL-cholesterol. Therefore,
the intake of high-polyphenol diets shows various antioxidant,
anti-inflammatory, and dyslipidemia-reducing effects (182).
Vernarelli and Lambert (208) reported that dietary flavonoid
consumption was inversely correlated with the severity of
obesity and serum CRP levels. The inhibition of inflammatory
cytokines by flavonoids (205) in the context of pulmonary
infection (209, 210) may prevent the development of or reduce
the negative consequences of the cytokine storm in COVID-
19. Additionally, the coagulopathy associated with COVID-
19 may be alleviated by flavonoids through the reduction of
endothelial TF availability (211). Both in vitro and in vivo
studies indicate that flavonoids exhibit antiviral activity against
respiratory tract viruses including SARS-CoV and influenza
(212). In a meta-analysis performed by Somerville et al. (213),
flavonoids have been shown to potentially reduce the incidence
of upper respiratory tract infections caused by viruses. In silico
virtual computational screening studies have been demonstrated
that natural compounds like flavonoids may inhibit SARS-CoV-2
by binding to S proteins that have an affinity to ACE2 (214). Also,
Adem et al. (215) demonstrated that flavonoids may inhibit Mpro

used by SARS-CoV-2 for viral replication. Especially, quercetin
and catechins have antiviral activity on SARS-CoV (216), and
probably on SARS-CoV 2 (217, 218). In addition, curcumin
(219, 220) indomethacin and resveratrol have been proposed as
potential supportive care supplements against COVID-19 (221).

Lactoferrin
Lactoferrin, which shows antimicrobial activity, has anti-
inflammatory and immunomodulatory activities (222). Due to
its antiviral activity, many viruses, including SARS-CoV (223),
could be killed by lactoferrin (224–226). The reported antiviral
action of lactoferrin against SARS and COVID-19 most probably
stems from blocking the activity of ACE2 and Heparan Sulfate
Proteoglycan, which are required for cell entry of SARS-CoV and
SARS-CoV 2 (227). Additionally, a clinical study performed by
Serrano et al. (228) indicated that bovine liposomal lactoferrin
using combined with vitamin C and Zn attenuated symptoms of
COVID-19 infection. Likewise, lactoferrin can alleviate obesity
by inhibiting leptin production and controlling LPS releasing
from gut microbiota (229). In this context, the leptin reducing
functions of Zn and vitamin C (230) when combined with
lactoferrin may be beneficial in the treatment of COVID-19 in
obese individuals.

Essential Fatty Acids
Dietary polyunsaturated fatty acids (PUFAs) and their
metabolites exert protective effective effects during systemic

inflammation (231). Supplementation of n-3 PUFAs reduces
the systemic inflammation of non-diabetic obese patients
(232). EPA and DHA may inhibit the inflammatory NF-κB
and TLR signaling pathways (233). These long-chain fatty
acids also decrease the M1/M2 macrophage ratio in adipose
tissues, thereby reducing the inflammatory state and decreasing
the insulin resistance (234). Omega-3 PUFAs and its lipid
derivatives such as resolvins, and protectins (protectin D1),
when used at appropriate dose levels and according to rational
administration schedules, could be potentially useful in reducing
the pro-inflammatory cytokine production that leads to cytokine
storm in COVID-19 (235). Importantly, omega-3 and omega-6
PUFAs have been shown to reduce platelet aggregation and
may therefore prevent thrombosis (236) and reduce the risk of
thromboembolic complications in COVID-19 patients that have
been associated with a poor survival outcome (237).

CONCLUSION

A deficiency of micronutrients due to malnutrition has the
potential to increase the severity of viral infections. Many
essential nutrients like vitamins, minerals, amino acids, and
fatty acids are important for the pleiotropic functions of our
immune system. Balanced nutrition and intake of nutrients
in appropriate amounts and composition may reduce the
levels of pro-inflammatory cytokines and their side effects
in COVID-19 patients. More importantly, obese COVID-19
patients are more susceptible to inflammation, lung diseases,
coagulopathy, and probably insulin resistance than lean patients.
Some in vitro and in silico studies suggested that specific
nutrients might exhibit protective effects against COVID-19
infection. However, further studies are needed to improve our
current knowledge about the emerging role of supplemental
nutrients as adjuncts to the supportive care for obese
COVID-19 patients.
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